Prostat Kanseri Risk Tahmininde ChatGPT ve MKCSS Nomogramı Karşılaştırması: Korelasyon Çalışması
Year 2025,
Volume: 20 Issue: 3, 201 - 207, 20.10.2025
Serkan Gönültaş
,
Mustafa Gökhan Köse
,
Sina Kardaş
,
Serhat Yentur
,
Filip Paslanmaz
,
Engin Kandirali
Abstract
Amaç: Prostat kanserinde tedavi planlaması ve hasta prognozunun belirlenmesi açısından ekstrakapsüler yayılım, seminal vezikül invazyonu ve lenf nodu tutulumu gibi risklerin doğru tahmini kritik öneme sahiptir. Geleneksel nomogramlar, bu risk stratifikasyonunda yaygın olarak kullanılmaktadır. Son yıllarda yapay zeka (YZ) tabanlı sohbet robotları ise bu alanda potansiyel göstermektedir. Bu çalışmanın amacı, prostat kanseri hastalarında YZ sohbet robotu (ChatGPT-4o) tahminleri ile MKCSS nomogramı tahminleri arasındaki korelasyonu risk gruplarına göre değerlendirmektir.
Materyal ve Metot: Düşük, orta, yüksek ve lokal ileri risk gruplarını temsil eden 40 adet sentetik hasta senaryosu oluşturulmuştur. Bu senaryolar hem ChatGPT-4o'ya hem de MKCSS nomogramına girilerek "Organ-Confined Disease", "Extracapsular Extension", "Seminal Vesicle Invasion" ve "Lymph Node Involvement" tahminleri elde edilmiştir. Elde edilen veriler Pearson Korelasyon Katsayısı kullanılarak analiz edilmiştir.
Bulgular: Genel olarak tüm tahmin başlıklarında ChatGPT-4o ile MKCSS nomogramı arasında anlamlı pozitif korelasyon saptanmıştır (p < 0.001). Ancak, yüksek riskli hasta grubunda "Organ-Confined Disease" (r = 0.521, p = 0.123), "Seminal Vesicle Invasion" (r = 0.382, p = 0.276) ve "Lymph Node Involvement" (r = 0.218, p = 0.546) tahminleri arasında anlamlı korelasyon bulunamamıştır. Benzer şekilde, lokal ileri hasta grubunda "Organ-Confined Disease" (r = 0.522, p = 0.122) ve "Extracapsular Extension" (r = 0.524, p = 0.120) tahminleri arasında da anlamlı korelasyon tespit edilememiştir.
Sonuç: Yapay zeka tabanlı bir sohbet robotu (ChatGPT-4o) ile MKCSS nomogramı arasında prostat kanseri risk tahmininde genel olarak yüksek korelasyon olduğu gösterilmiştir. Ancak, özellikle yüksek riskli ve lokal ileri hasta grubu tahminlerinde anlamlı korelasyon gözlenmemiştir. Bu bulgular, YZ sohbet robotlarının prostat kanseri risk stratifikasyonunda potansiyel bir yardımcı araç olmakla birlikte, özellikle daha karmaşık ve ileri evre vakalarda klinik kullanıma sunulmadan önce kapsamlı validasyon ve geliştirme çalışmalarına ihtiyaç duyduğunu göstermektedir.
References
-
1. Culp MB, Soerjomataram I, Efstathiou JA, Bray F, Jemal A. Recent Global Patterns in Prostate Cancer Incidence and Mortality Rates. Eur Urol. 2020;77(1):38-52. https:// doi.org/10.1016/j.eururo.2019.08.005
-
2. Sung H, Ferlay J, Siegel R.L, Laversanne M, Soerjomataram I, Jemal A, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin. 2021;71(3):209-249. https://doi. org/10.3322/caac.21660
-
3. Wilczak W, Wittmer C, Clauditz T, Minner S, Steurer S, Büscheck F, et al. Marked Prognostic Impact of Minimal Lymphatic Tumor Spread in Prostate Cancer. Eur Urol. 2018;74(3):376-386. https://doi.org/10.1016/j.eururo.2018.05.034
-
4. Cornford P, van den Bergh RCN, Briers E, Van den Broeck T, Brunckhorst O, Darraugh J, et al. EAUEANM-ESTRO-ESUR-ISUP-SIOG Guidelines on Prostate Cancer-2024 Update. Part I: Screening, Diagnosis, and Local Treatment with Curative Intent. Eur Urol. 2024;86(2):148-163. https://doi.org/10.1016/j. eururo.2024.03.027
-
5. Mikel Hubanks J, Boorjian SA, Frank I, Gettman MT, Houston Thompson R, Rangel LJ, et al. The presence of extracapsular extension is associated with an increased risk of death from prostate cancer after radical prostatectomy for patients with seminal vesicle invasion and negative lymph nodes. Urol Oncol. 2014;32(1):26. e1-7. https://doi.org/10.1016/j.urolonc.2012.09.002
-
6. Tollefson MK, Karnes RJ, Rangel LJ, Bergstralh EJ, Boorjian SA. The impact of clinical stage on prostate cancer survival following radical prostatectomy. J Urol. 2013;189(5):1707-12. https://doi.org/10.1016/j. juro.2012.11.065
-
7. Eifler JB, Feng Z, Lin BM, Partin MT, Humphreys EB, Han M, et al. An updated prostate cancer staging nomogram (Partin tables) based on cases from 2006 to 2011. BJU Int. 2013;111(1):22-9. https://doi.org/10.1111/j.1464-410X.2012.11324.x
-
8. Ohori M, Kattan MW, Koh H, Maru N, Slawin KM, Shariat S, Muramoto M, Reuter VE, Wheeler TM, Scardino PT. Predicting the presence and side of extracapsular extension: a nomogram for staging prostate cancer. J Urol. 2004;171(5):1844-9; discussion 1849. https://doi.org/10.1097/01.ju.0000121693.05077.3d
-
9. Cimino S, Reale G, Castelli T, Favilla V, Giardina R, Russo GI, et al. Comparison between Briganti, Partin and MSKCC tools in predicting positive lymph nodes in prostate cancer: a systematic review and meta-analysis. Scand J Urol. 2017;51(5):345-350. https://doi.org/10.108 0/21681805.2017.1332680
-
10. Huang C, Song G, Wang H, Lin Z, Wang H, Ji G, et al. Preoperative PI-RADS Version 2 scores helps improve accuracy of clinical nomograms for predicting pelvic lymph node metastasis at radical prostatectomy. Prostate Cancer Prostatic Dis. 2020;23:116–26. https://doi.org/10.1038/s41391-019-0164-z
-
11. Wang H, Xia Z, Xu Y, Sun J, Wu J. The predictive value of machine learning and nomograms for lymph node metastasis of prostate cancer: a systematic review and meta-analysis. Prostate Cancer Prostatic Dis. 2023;26(3):602-613. https://doi.org/10.1038/s41391-023- 00704-z
-
12. Görtz M, Baumgärtner K, Schmid T, Muschko M, Woessner P, Gerlach A, et al. An artificial intelligence-based chatbot for prostate cancer education: Design and patient evaluation study. Digit Health. 2023;9:20552076231173304. https://doi. org/10.1177/20552076231173304
-
13. Belge Bilgin G, Bilgin C, Childs DS, Orme JJ, Burkett BJ, Packard AT, et al. Performance of ChatGPT-4 and Bard chatbots in responding to common patient questions on prostate cancer 177Lu-PSMA-617 therapy. Front Oncol. 2024;14:1386718. https://doi.org/10.3389/fonc.2024.1386718
-
14. Twilt JJ, van Leeuwen KG, Huisman HJ, Fütterer JJ, de Rooij M. Artificial Intelligence Based Algorithms for Prostate Cancer Classification and Detection on Magnetic Resonance Imaging: A Narrative Review. Diagnostics (Basel). 2021;11(6):959. https://doi. org/10.3390/diagnostics11060959
Comparing ChatGPT and MSKCC Nomogram for Prostate Cancer Risk Predictions: A Correlation Study
Year 2025,
Volume: 20 Issue: 3, 201 - 207, 20.10.2025
Serkan Gönültaş
,
Mustafa Gökhan Köse
,
Sina Kardaş
,
Serhat Yentur
,
Filip Paslanmaz
,
Engin Kandirali
Abstract
Objectives: Accurate prediction of risks such as extracapsular spread, seminal vesicle invasion and lymph node involvement is critical for treatment planning and patient prognosis in prostate cancer. Traditional nomograms are widely used for this risk stratification. In recent years, artificial intelligence (AI)-based Chabot’s have shown potential in this field. The aim of this study was to evaluate the correlation between AI chatbot (ChatGPT-4o) predictions and Memorial Sloan Kettering Cancer Center (MSKCC) nomogram predictions in prostate cancer patients according to risk groups.
Materials and Methods: 40 synthetic patient scenarios representing low, intermediate, high and locally advanced risk groups were created. These scenarios were entered into both ChatGPT-4o and MSKCC nomogram and predictions of “Organ-Confined Disease”, “Extracapsular Extension”, “Seminal Vesicle Invasion” and “Lymph Node Involvement” were obtained. The obtained data were analyzed using Spearman Correlation Coefficient.
Results: In general, there was a significant positive correlation between ChatGPT-4o and MSKCC nomogram in all prediction topics (p < 0.001). However, no significant correlation was found between the predictions of “Organ-Confined Disease” (r = 0.521, p = 0.123), “Seminal Vesicle Invasion” (r = 0.382, p = 0.276) and “Lymph Node Involvement” (r = 0.218, p = 0.546) in the high-risk patient group. Similarly, no significant correlation was found between the estimates of “Organ-Confined Disease” (r = 0.522, p = 0.122) and “Extracapsular Extension” (r = 0.524, p = 0.120) in the locally advanced patient group.
Conclusion: An overall high correlation between an AI-based chatbot (ChatGPT-4o) and the MSKCC nomogram was demonstrated for prostate cancer risk prediction. However, no significant correlation was observed especially in high-risk and locally advanced patient groups. These findings suggest that while AI chatbots are a potential tool for prostate cancer risk stratification, they require extensive validation and development studies before they can be put into clinical use, especially in more complex and advanced cases.
Ethical Statement
Since this study used synthetically generated patient scenarios instead of real patient data, ethics committee approval was not required. The study was conducted in accordance with general research ethical principles.
Supporting Institution
No financial support was received for this study.
References
-
1. Culp MB, Soerjomataram I, Efstathiou JA, Bray F, Jemal A. Recent Global Patterns in Prostate Cancer Incidence and Mortality Rates. Eur Urol. 2020;77(1):38-52. https:// doi.org/10.1016/j.eururo.2019.08.005
-
2. Sung H, Ferlay J, Siegel R.L, Laversanne M, Soerjomataram I, Jemal A, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin. 2021;71(3):209-249. https://doi. org/10.3322/caac.21660
-
3. Wilczak W, Wittmer C, Clauditz T, Minner S, Steurer S, Büscheck F, et al. Marked Prognostic Impact of Minimal Lymphatic Tumor Spread in Prostate Cancer. Eur Urol. 2018;74(3):376-386. https://doi.org/10.1016/j.eururo.2018.05.034
-
4. Cornford P, van den Bergh RCN, Briers E, Van den Broeck T, Brunckhorst O, Darraugh J, et al. EAUEANM-ESTRO-ESUR-ISUP-SIOG Guidelines on Prostate Cancer-2024 Update. Part I: Screening, Diagnosis, and Local Treatment with Curative Intent. Eur Urol. 2024;86(2):148-163. https://doi.org/10.1016/j. eururo.2024.03.027
-
5. Mikel Hubanks J, Boorjian SA, Frank I, Gettman MT, Houston Thompson R, Rangel LJ, et al. The presence of extracapsular extension is associated with an increased risk of death from prostate cancer after radical prostatectomy for patients with seminal vesicle invasion and negative lymph nodes. Urol Oncol. 2014;32(1):26. e1-7. https://doi.org/10.1016/j.urolonc.2012.09.002
-
6. Tollefson MK, Karnes RJ, Rangel LJ, Bergstralh EJ, Boorjian SA. The impact of clinical stage on prostate cancer survival following radical prostatectomy. J Urol. 2013;189(5):1707-12. https://doi.org/10.1016/j. juro.2012.11.065
-
7. Eifler JB, Feng Z, Lin BM, Partin MT, Humphreys EB, Han M, et al. An updated prostate cancer staging nomogram (Partin tables) based on cases from 2006 to 2011. BJU Int. 2013;111(1):22-9. https://doi.org/10.1111/j.1464-410X.2012.11324.x
-
8. Ohori M, Kattan MW, Koh H, Maru N, Slawin KM, Shariat S, Muramoto M, Reuter VE, Wheeler TM, Scardino PT. Predicting the presence and side of extracapsular extension: a nomogram for staging prostate cancer. J Urol. 2004;171(5):1844-9; discussion 1849. https://doi.org/10.1097/01.ju.0000121693.05077.3d
-
9. Cimino S, Reale G, Castelli T, Favilla V, Giardina R, Russo GI, et al. Comparison between Briganti, Partin and MSKCC tools in predicting positive lymph nodes in prostate cancer: a systematic review and meta-analysis. Scand J Urol. 2017;51(5):345-350. https://doi.org/10.108 0/21681805.2017.1332680
-
10. Huang C, Song G, Wang H, Lin Z, Wang H, Ji G, et al. Preoperative PI-RADS Version 2 scores helps improve accuracy of clinical nomograms for predicting pelvic lymph node metastasis at radical prostatectomy. Prostate Cancer Prostatic Dis. 2020;23:116–26. https://doi.org/10.1038/s41391-019-0164-z
-
11. Wang H, Xia Z, Xu Y, Sun J, Wu J. The predictive value of machine learning and nomograms for lymph node metastasis of prostate cancer: a systematic review and meta-analysis. Prostate Cancer Prostatic Dis. 2023;26(3):602-613. https://doi.org/10.1038/s41391-023- 00704-z
-
12. Görtz M, Baumgärtner K, Schmid T, Muschko M, Woessner P, Gerlach A, et al. An artificial intelligence-based chatbot for prostate cancer education: Design and patient evaluation study. Digit Health. 2023;9:20552076231173304. https://doi. org/10.1177/20552076231173304
-
13. Belge Bilgin G, Bilgin C, Childs DS, Orme JJ, Burkett BJ, Packard AT, et al. Performance of ChatGPT-4 and Bard chatbots in responding to common patient questions on prostate cancer 177Lu-PSMA-617 therapy. Front Oncol. 2024;14:1386718. https://doi.org/10.3389/fonc.2024.1386718
-
14. Twilt JJ, van Leeuwen KG, Huisman HJ, Fütterer JJ, de Rooij M. Artificial Intelligence Based Algorithms for Prostate Cancer Classification and Detection on Magnetic Resonance Imaging: A Narrative Review. Diagnostics (Basel). 2021;11(6):959. https://doi. org/10.3390/diagnostics11060959