Research Article
BibTex RIS Cite

Investigation of dimensional accuracy in the production of TPMS-based lattice structures by SLM method

Year 2022, , 372 - 378, 15.04.2022
https://doi.org/10.28948/ngumuh.1027480

Abstract

In this study, it was aimed to examine the geometric precision of the production of triple periodic minimal surface (TPMS) based lattice structures produced from CoCr powder by SLM method. Two different TPMS lattice structures with 10% relative density of 4x4x4 unit cell sizes, primitive lattice and body centred cubic (BCC), were used. In order to evaluate the dimensional accuracy after production, microscope images and micro-CT were taken from each sample and production was simulated by finite element analysis (FEA). In the results obtained, it was observed that there were significant dimensional deviations due to mass agglomeration, stair effect and bonded particle formation in the production of TPMS-based lattice structures by SLM method. When the dimensions of the designed lattice structure and the dimensions obtained as a result of production are examined, it is seen that the thickness value of each unit lattice structure deviates by 15% for the primitive lattice and 32% for the BCC lattice, while the primitive lattice deviates by 4% and the BCC lattice by 27% in the width value, and finally in the length values. On the other hand, it was determined that the primitive lattice deviated by 3% and the BCC lattice deviated by 55%.

References

  • J. Zhang, B. Song, L. Yang, R. Liu, L. Zhang and Y. Shi, Microstructure evolution and mechanical properties of TiB/Ti6Al4V gradient-material lattice structure fabricated by laser powder bed fusion. Composites Part B: Engineering, 202, 108417, 2020. doi:10.1016/j.compositesb.2020.108417.
  • L. Zhang, B. Song, J. J. Fu, S. S. Wei, L. Yang, C. Z. Yan and Y. S. Shi, Topology-optimized lattice structures with simultaneously high stiffness and light weight fabricated by selective laser melting: Design, manufacturing and characterization. Journal of Manufacturing Processes, 56, 1166–1177, 2020. https://doi:10.1016/j.jmapro.2020.06.005.
  • S. Yin, H. Chen, Y. Wu, Y. Y. Li and J. Xu, Introducing composite lattice core sandwich structure as an alternative proposal for engine hood. Composite Structures, 201, 131–140, 2018. https://doi:10.1016/j.compstruct.2018.06.038.
  • J. Parthasarathy, B. Starly and S. Raman, A design for the additive manufacture of functionally graded porous structures with tailored mechanical properties for biomedical applications. Journal of Manufacturing Processes, 13(2), 160–170, 2011. https://doi:10.1016/j.jmapro.2011.01.004.
  • A. Gupta and M. Talha, Recent development in modeling and analysis of functionally graded materials and structures. Progress in Aerospace Sciences, 79, 1–14, 2015. https://doi:10.1016/j.paerosci.2015.07.001.
  • C. Pan, Y. Han and J. Lu, Design and Optimization of Lattice Structures: A Review. Applied Science, 10,6374, 2020. https://doi:10.3390/app10186374.
  • C. H. P. Nguyen, Y. Kim and Y. Choi, Design for Additive Manufacturing of Functionally Graded Lattice Structures: A Design Method with Process Induced Anisotropy Consideration. International Journal of Precision Engineering and Manufacturing-Green Technology, 8(1), 29-45, 2019. https://doi:10.1007/s40684-019-00173-7.
  • D. Mahmoud and M. Elbestawi, Lattice Structures and Functionally Graded Materials Applications in Additive Manufacturing of Orthopedic Implants: A Review. Journal of Manufacturing and Materials Processing, 1(2), 13, 2017. https://doi:10.3390/jmmp1020013.
  • A. Alghamdi, T. Maconachie, D. Downing, M. Brandt, M. Qian and M. Leary, Effect of additive manufactured lattice defects on mechanical properties: an automated method for the enhancement of lattice geometry. The International Journal of Advanced Manufacturing Technology, 108(3), 957-971, 2020. https://doi:10.1007/s00170-020-05394-8.
  • L. Jiao, Z. Chua, S. Moon, J. Song, G. Bi and H. Zheng, Femtosecond Laser Produced Hydrophobic Hierarchical Structures on Additive Manufacturing Parts. Nanomaterials, 8(8), 601 2018. https://doi:10.3390/nano8080601.
  • Z. S. Bagheri, D. Melancon, L. Liu, R. B. Johnston and D. Pasini, Compensation strategy to reduce geometry and mechanics mismatches in porous biomaterials built with Selective Laser Melting. Journal of the Mechanical Behavior of Biomedical Materials, 70, 17–27, 2017. https://doi:10.1016/j.jmbbm.2016.04.041.
  • J. Kozak and Zakrzewski, Accuracy problems of additive manufacturing using SLS/SLM processes, 020010, 1-12, 2018. https://doi:10.1063/1.5056273.
  • T. Maconachie, M. Leary, B. Lozanovski, X. Zhang, M. Qian, O. Faruque and M. Brandt, SLM lattice structures: Properties, performance, applications and challenges. Materials & Design, 108137, 2019. https://doi:10.1016/j.matdes.2019.108137.
  • W. Zhai, W. Zhou, L. M. S. Nai and J. Wei, Characterization of nanoparticle mixed 316 L powder for additive manufacturing. Journal of Materials Science & Technology, 47, 162–168, 2020. https://doi:10.1016/j.jmst.2020.02.019.
  • S. L. Sing, F. E. Wiria and W. Y. Yeong, Selective laser melting of lattice structures: A statistical approach to manufacturability and mechanical behavior. Robotics and Computer-Integrated Manufacturing, 49, 170–180, 2018. https://doi:10.1016/j.rcim.2017.06.006.
  • D. Wang, S. Wu, F. Fu, S. Mai, Y. Yang, Y. Liu and C. Song, Mechanisms and characteristics of spatter generation in SLM processing and its effect on the properties. Materials & Design, 117, 121–130, 2017. https://doi:10.1016/j.matdes.2016.12.060.
  • L. Yang, M. Ferrucci, R. Mertens, W. Dewulf, C. Yan, Y. Shi and S. Yang, An investigation into the effect of gradients on the manufacturing fidelity of triply periodic minimal surface structures with graded density fabricated by selective laser melting. Journal of Materials Processing Technology, 116367, 2019. https://doi:10.1016/j.jmatprotec.2019.116367.
  • J. P. Kruth, G. Levy, F. Klocke, and T. H. C. Childs, Consolidation phenomena in laser and powder-bed based layered manufacturing. CIRP Annals, 56(2), 730–759, 2007. https://doi:10.1016/j.cirp.2007.10.004.
  • M. A. Isa and I. Lazoglu, Five-axis additive manufacturing of freeform models through buildup of transition layers, Journal of Manufacturing System, 50, 69-80, 2019. https://doi:10.1016/j.jmsy.2018.12.002.
  • G. Strano, L. Hao, R. M. Everson, and K. E. Evans, Surface roughness analysis, modelling and prediction in selective laser melting. J. Mater. Process. Technol. 213, 589-597, 2013. https://doi:10.1016/j.jmatprotec.2012.11.011.
  • M. V. Mergulhão, C. E. Podestá and M. D. M. das Neves, Mechanical Properties and Microstructural Characterization of Cobalt-Chromium (CoCr) Obtained by Casting and Selective Laser Melting (SLM). Materials Science Forum, 899, 534–539, 2017. https://doi:10.4028/www.scientific.net/msf.899.534.
  • M. Zhao, F. Liu, G. Fu, D. Zhang, T. Zhang and H. Zhou, Improved Mechanical Properties and Energy Absorption of BCC Lattice Structures with Triply Periodic Minimal Surfaces Fabricated by SLM. Materials, 11(12), 2411, 2018. https://doi:10.3390/ma11122411.
  • O. Al-Ketan and R. K. Abu Al-Rub, Multifunctional mechanical‐metamaterials based on triply periodic minimal surface lattices: A review. Advanced Engineering Materials, 21(10), 2019. https://doi:10.1002/adem.201900524.
  • L. Y. Zhu, L. Li, J. P. Shi, Z. A. Li and J. Q. Yang, Mechanical characterization of 3D printed multi-morphology porous Ti6Al4V scaffolds based on triply periodic minimal surface architectures. American journal of translational research, 10(11), 3443–3454, 2018.
  • N. Yang, Z. Quan, D. Zhang and Y. Tian, Multi-morphology transition hybridization CAD design of minimal surface porous structures for use in tissue engineering. Computer-Aided Design, 56, 11–21, 2014. https://doi:10.1016/j.cad.2014.06.006.
  • C. Körner, A. Bauereiß and E. Attar, Fundamental consolidation mechanisms during selective beam melting of powders. Modelling and Simulation in Materials Science and Engineering, 21(8), 085011, 2013. https://doi:10.1088/0965-0393/21/8/085011.
  • S. Van Bael, G. Kerckhofs, M. Moesen, G. Pyka, J. Schrooten and J. P. Kruth, Micro-CT-based improvement of geometrical and mechanical controllability of selective laser melted Ti6Al4V porous structures. Materials Science and Engineering: A, 528(24), 7423–7431, 2011. https://doi:10.1016/j.msea.2011.06.04

ÜPMY tabanlı kafes yapılarının SLE yöntemi ile üretiminde boyut hassasiyetinin incelenmesi

Year 2022, , 372 - 378, 15.04.2022
https://doi.org/10.28948/ngumuh.1027480

Abstract

Bu çalışmada CoCr tozundan üretilen üçlü periyodik minimum yüzey (ÜPMY) tabanlı kafes yapılarının seçmeli lazer ergitme (SLE) yöntemi ile üretimindeki boyutsal hassasiyetin incelenmesi amaçlanmıştır. İlkel kafes ve hacim merkezli kübik (HMK) olmak üzere 4x4x4 birim hücre boyutlarında %10 nispi yoğunluklu 2 farklı ÜPMY kafes yapısı kullanıldı. Üretim sonrası boyutsal hassasiyetin değerlendirilebilmesi için her bir numuneden mikroskop ve micro-CT görüntüleri alınmış ve sonlu elemanlar analizi (SEA) ile üretim simüle edilmiştir. Elde edilen sonuçlarda SLE yöntemi ile ÜPMY bazlı kafes yapılarının üretiminde kütle birikimi, merdiven etkisi ve yapışmış partikül oluşumundan kaynaklı belirgin boyutsal sapmaların meydana geldiği görülmüştür. Tasarlanan kafes yapısı boyutları ile üretim sonucu elde edilen boyutlar incelendiğinde her bir birim kafes yapısının kalınlık değerinin ilkel kafes için %15, HMK kafes için %32 saptığı, genişlik değerinde ise ilkel kafesin %4, HMK kafesin ise %27 saptığı ve son olarak uzunluk değerlerinde ise ilkel kafesin %3, HMK kafesin ise %55 saptığı tespit edilmiştir.

References

  • J. Zhang, B. Song, L. Yang, R. Liu, L. Zhang and Y. Shi, Microstructure evolution and mechanical properties of TiB/Ti6Al4V gradient-material lattice structure fabricated by laser powder bed fusion. Composites Part B: Engineering, 202, 108417, 2020. doi:10.1016/j.compositesb.2020.108417.
  • L. Zhang, B. Song, J. J. Fu, S. S. Wei, L. Yang, C. Z. Yan and Y. S. Shi, Topology-optimized lattice structures with simultaneously high stiffness and light weight fabricated by selective laser melting: Design, manufacturing and characterization. Journal of Manufacturing Processes, 56, 1166–1177, 2020. https://doi:10.1016/j.jmapro.2020.06.005.
  • S. Yin, H. Chen, Y. Wu, Y. Y. Li and J. Xu, Introducing composite lattice core sandwich structure as an alternative proposal for engine hood. Composite Structures, 201, 131–140, 2018. https://doi:10.1016/j.compstruct.2018.06.038.
  • J. Parthasarathy, B. Starly and S. Raman, A design for the additive manufacture of functionally graded porous structures with tailored mechanical properties for biomedical applications. Journal of Manufacturing Processes, 13(2), 160–170, 2011. https://doi:10.1016/j.jmapro.2011.01.004.
  • A. Gupta and M. Talha, Recent development in modeling and analysis of functionally graded materials and structures. Progress in Aerospace Sciences, 79, 1–14, 2015. https://doi:10.1016/j.paerosci.2015.07.001.
  • C. Pan, Y. Han and J. Lu, Design and Optimization of Lattice Structures: A Review. Applied Science, 10,6374, 2020. https://doi:10.3390/app10186374.
  • C. H. P. Nguyen, Y. Kim and Y. Choi, Design for Additive Manufacturing of Functionally Graded Lattice Structures: A Design Method with Process Induced Anisotropy Consideration. International Journal of Precision Engineering and Manufacturing-Green Technology, 8(1), 29-45, 2019. https://doi:10.1007/s40684-019-00173-7.
  • D. Mahmoud and M. Elbestawi, Lattice Structures and Functionally Graded Materials Applications in Additive Manufacturing of Orthopedic Implants: A Review. Journal of Manufacturing and Materials Processing, 1(2), 13, 2017. https://doi:10.3390/jmmp1020013.
  • A. Alghamdi, T. Maconachie, D. Downing, M. Brandt, M. Qian and M. Leary, Effect of additive manufactured lattice defects on mechanical properties: an automated method for the enhancement of lattice geometry. The International Journal of Advanced Manufacturing Technology, 108(3), 957-971, 2020. https://doi:10.1007/s00170-020-05394-8.
  • L. Jiao, Z. Chua, S. Moon, J. Song, G. Bi and H. Zheng, Femtosecond Laser Produced Hydrophobic Hierarchical Structures on Additive Manufacturing Parts. Nanomaterials, 8(8), 601 2018. https://doi:10.3390/nano8080601.
  • Z. S. Bagheri, D. Melancon, L. Liu, R. B. Johnston and D. Pasini, Compensation strategy to reduce geometry and mechanics mismatches in porous biomaterials built with Selective Laser Melting. Journal of the Mechanical Behavior of Biomedical Materials, 70, 17–27, 2017. https://doi:10.1016/j.jmbbm.2016.04.041.
  • J. Kozak and Zakrzewski, Accuracy problems of additive manufacturing using SLS/SLM processes, 020010, 1-12, 2018. https://doi:10.1063/1.5056273.
  • T. Maconachie, M. Leary, B. Lozanovski, X. Zhang, M. Qian, O. Faruque and M. Brandt, SLM lattice structures: Properties, performance, applications and challenges. Materials & Design, 108137, 2019. https://doi:10.1016/j.matdes.2019.108137.
  • W. Zhai, W. Zhou, L. M. S. Nai and J. Wei, Characterization of nanoparticle mixed 316 L powder for additive manufacturing. Journal of Materials Science & Technology, 47, 162–168, 2020. https://doi:10.1016/j.jmst.2020.02.019.
  • S. L. Sing, F. E. Wiria and W. Y. Yeong, Selective laser melting of lattice structures: A statistical approach to manufacturability and mechanical behavior. Robotics and Computer-Integrated Manufacturing, 49, 170–180, 2018. https://doi:10.1016/j.rcim.2017.06.006.
  • D. Wang, S. Wu, F. Fu, S. Mai, Y. Yang, Y. Liu and C. Song, Mechanisms and characteristics of spatter generation in SLM processing and its effect on the properties. Materials & Design, 117, 121–130, 2017. https://doi:10.1016/j.matdes.2016.12.060.
  • L. Yang, M. Ferrucci, R. Mertens, W. Dewulf, C. Yan, Y. Shi and S. Yang, An investigation into the effect of gradients on the manufacturing fidelity of triply periodic minimal surface structures with graded density fabricated by selective laser melting. Journal of Materials Processing Technology, 116367, 2019. https://doi:10.1016/j.jmatprotec.2019.116367.
  • J. P. Kruth, G. Levy, F. Klocke, and T. H. C. Childs, Consolidation phenomena in laser and powder-bed based layered manufacturing. CIRP Annals, 56(2), 730–759, 2007. https://doi:10.1016/j.cirp.2007.10.004.
  • M. A. Isa and I. Lazoglu, Five-axis additive manufacturing of freeform models through buildup of transition layers, Journal of Manufacturing System, 50, 69-80, 2019. https://doi:10.1016/j.jmsy.2018.12.002.
  • G. Strano, L. Hao, R. M. Everson, and K. E. Evans, Surface roughness analysis, modelling and prediction in selective laser melting. J. Mater. Process. Technol. 213, 589-597, 2013. https://doi:10.1016/j.jmatprotec.2012.11.011.
  • M. V. Mergulhão, C. E. Podestá and M. D. M. das Neves, Mechanical Properties and Microstructural Characterization of Cobalt-Chromium (CoCr) Obtained by Casting and Selective Laser Melting (SLM). Materials Science Forum, 899, 534–539, 2017. https://doi:10.4028/www.scientific.net/msf.899.534.
  • M. Zhao, F. Liu, G. Fu, D. Zhang, T. Zhang and H. Zhou, Improved Mechanical Properties and Energy Absorption of BCC Lattice Structures with Triply Periodic Minimal Surfaces Fabricated by SLM. Materials, 11(12), 2411, 2018. https://doi:10.3390/ma11122411.
  • O. Al-Ketan and R. K. Abu Al-Rub, Multifunctional mechanical‐metamaterials based on triply periodic minimal surface lattices: A review. Advanced Engineering Materials, 21(10), 2019. https://doi:10.1002/adem.201900524.
  • L. Y. Zhu, L. Li, J. P. Shi, Z. A. Li and J. Q. Yang, Mechanical characterization of 3D printed multi-morphology porous Ti6Al4V scaffolds based on triply periodic minimal surface architectures. American journal of translational research, 10(11), 3443–3454, 2018.
  • N. Yang, Z. Quan, D. Zhang and Y. Tian, Multi-morphology transition hybridization CAD design of minimal surface porous structures for use in tissue engineering. Computer-Aided Design, 56, 11–21, 2014. https://doi:10.1016/j.cad.2014.06.006.
  • C. Körner, A. Bauereiß and E. Attar, Fundamental consolidation mechanisms during selective beam melting of powders. Modelling and Simulation in Materials Science and Engineering, 21(8), 085011, 2013. https://doi:10.1088/0965-0393/21/8/085011.
  • S. Van Bael, G. Kerckhofs, M. Moesen, G. Pyka, J. Schrooten and J. P. Kruth, Micro-CT-based improvement of geometrical and mechanical controllability of selective laser melted Ti6Al4V porous structures. Materials Science and Engineering: A, 528(24), 7423–7431, 2011. https://doi:10.1016/j.msea.2011.06.04
There are 27 citations in total.

Details

Primary Language Turkish
Subjects Mechanical Engineering
Journal Section Mechanical Engineering
Authors

Erkan Bahçe 0000-0001-5389-5571

Ender Emir 0000-0003-4972-5064

Mehmet Sami Güler 0000-0003-0414-7707

Publication Date April 15, 2022
Submission Date November 26, 2021
Acceptance Date January 21, 2022
Published in Issue Year 2022

Cite

APA Bahçe, E., Emir, E., & Güler, M. S. (2022). ÜPMY tabanlı kafes yapılarının SLE yöntemi ile üretiminde boyut hassasiyetinin incelenmesi. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 11(2), 372-378. https://doi.org/10.28948/ngumuh.1027480
AMA Bahçe E, Emir E, Güler MS. ÜPMY tabanlı kafes yapılarının SLE yöntemi ile üretiminde boyut hassasiyetinin incelenmesi. NÖHÜ Müh. Bilim. Derg. April 2022;11(2):372-378. doi:10.28948/ngumuh.1027480
Chicago Bahçe, Erkan, Ender Emir, and Mehmet Sami Güler. “ÜPMY Tabanlı Kafes yapılarının SLE yöntemi Ile üretiminde Boyut Hassasiyetinin Incelenmesi”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 11, no. 2 (April 2022): 372-78. https://doi.org/10.28948/ngumuh.1027480.
EndNote Bahçe E, Emir E, Güler MS (April 1, 2022) ÜPMY tabanlı kafes yapılarının SLE yöntemi ile üretiminde boyut hassasiyetinin incelenmesi. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 11 2 372–378.
IEEE E. Bahçe, E. Emir, and M. S. Güler, “ÜPMY tabanlı kafes yapılarının SLE yöntemi ile üretiminde boyut hassasiyetinin incelenmesi”, NÖHÜ Müh. Bilim. Derg., vol. 11, no. 2, pp. 372–378, 2022, doi: 10.28948/ngumuh.1027480.
ISNAD Bahçe, Erkan et al. “ÜPMY Tabanlı Kafes yapılarının SLE yöntemi Ile üretiminde Boyut Hassasiyetinin Incelenmesi”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 11/2 (April 2022), 372-378. https://doi.org/10.28948/ngumuh.1027480.
JAMA Bahçe E, Emir E, Güler MS. ÜPMY tabanlı kafes yapılarının SLE yöntemi ile üretiminde boyut hassasiyetinin incelenmesi. NÖHÜ Müh. Bilim. Derg. 2022;11:372–378.
MLA Bahçe, Erkan et al. “ÜPMY Tabanlı Kafes yapılarının SLE yöntemi Ile üretiminde Boyut Hassasiyetinin Incelenmesi”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, vol. 11, no. 2, 2022, pp. 372-8, doi:10.28948/ngumuh.1027480.
Vancouver Bahçe E, Emir E, Güler MS. ÜPMY tabanlı kafes yapılarının SLE yöntemi ile üretiminde boyut hassasiyetinin incelenmesi. NÖHÜ Müh. Bilim. Derg. 2022;11(2):372-8.

download