Research Article
BibTex RIS Cite

Evaluation of the thermal conductivities of asphalt mixtures

Year 2022, , 348 - 355, 15.04.2022
https://doi.org/10.28948/ngumuh.1049283

Abstract

In the article, thermal conductivity of asphalt mixtures was investigated depending on aggregate type, aggregate gradation, maximum aggregate size, mixture type and commonly used asphalt additives. By using basalt and limestone aggregates, dense graded and gap graded asphalt mixture designs were made with 19 mm and 12.5 mm maximum sized aggregates in different gradations. In addition to control (K) bituminous mixtures using basalt and limestone aggregates, rubber (R), cellulosic fiber (SE), Styrene-Butadiene-Styrene (SBS), Styrene Isoprene Styrene (SIS), Elvaloy (E), Styrene-Ethylene- Butylene-Styrene (SEBS), polyolefin elastomer (PE) and nanoclay (NC) modified asphalt mixtures were produced. It was observed that the thermal conductivity of the mixtures was significantly affected by the aggregate gradation, the increase in the fine aggregate ratio increased the thermal conductivity of the mixture, and the thermal conductivity of the dense graded mixtures was higher than the stone mastic asphalts. The effect of maximum aggregate size was not clearly understood in the gradations created. All of the additives used decreased the thermal conductivity, and the highest decrease was observed in SE and R modified mixtures. The thermal conductivity of the mixtures using limestone aggregate instead of basalt aggregate decreased.

References

  • J. Gui, P. E. Phelan, K. E. Kaloush, J. S. Golden, İmpact of pavement thermophysical properties on surface temparatures. Journal of Materials in Civil Engineering, 19(8), 683-690, 2007. https://doi.org/ 10.1061/(ASCE)08991561(2007)19:8(683)
  • R. B. Mallick, S. Chen. Bhowmick, Harvesting energy from asphalt pavements and reducing the heat island effect. International Journal of Sustainable Engineering, 2(3), 214-228, 2009. https://doi.org/10.1080/ 19397030903121950
  • X. Shi, Y. Rew, E. Ivers, Chang-Seon Shon, E. M. Stenger, P. Park, Effects of thermally modified asphalt concrete on pavement temperature. International Journal of Pavement Engineering, 20(6), 669-681, 2017. https://doi.org/10.1080/10298436.2017.1326234
  • A. Demez, Pirofillit agrega kullanılarak üretilen yüksek dayanımlı betonların yangın dayanımının araştırılması. Yüksek Lisans Tezi, İnönü Üniversitesi Fen Bilimleri Enstitisü, Türkiye, 2017.
  • M. Chen, S. Wu, H. Wang, J. Zhang, Study of ice and snow melting process on conductive asphalt solar collector. Solar Energy materials and Solar Cells, 95(12), 3241-3250, 2011. https://doi.org/ 10.1016/j.solmat.2011.07.013.
  • X. Shi, Controlling thermal properties of asphalt concrete and its multifunctional applications. Disseration. Master Thesis, A.M. University, Texas, 2014.
  • TM 5-852-6/AFM, 88-19. Arctic and subarctic construction calculation methods for determination of depths of freeze and thaw in soils, 1966.
  • A. R. Dawson, P. K. Dehdezi, M. R. Hall, J. Wang, R. Isola, Enhancing thermal properties of asphalt materials for heat storage and transfer applications. Road Materials and Pavement Design, 13(4), 784-803, 2012. https://doi.org/10.1080/14680629.2012.735791
  • A. Khan, D. Mrawira, Influence of selected mix design factors on the thermal behavior of lightweight aggregate asphalt mixes, Journal of Testing and Evaluation 36(6), 2008. https://doi.org/ 10.1520/JTE101687
  • J. Côté, V. Grosjean, Jean-Marie Konrad, Thermal conductivity of bitumen concrete. Canadian of Civil Engineering, 40(2), 172-180, 2013. https://doi.org/ 10.1139/cjce-2012-0159
  • M. R. Islam, R. A. Tarefder, Determining thermal properties of asphalt concrete using field data and laboratory testing. Construction and Building Materials, 67(B), 297-306, 2014. https://doi.org/ 10.1016/j.conbuildmat.2014.03.040
  • X. Zhou, S. Wang, C. Zhou, Thermal conduction and insulation modification in asphalt-based composites. Jornal of Materials Science and Technology, 28(3), 285-288, 2012. https://doi.org/10.1016/S1005-0302(12)60055-3
  • P. Pan, S. Wu, Y. Xiao, P. Wang, X. Liu, Influence of graphite on the thermal characteristics and anti-ageing properties of asphalt binder. Construction and Building Materials, 68, 220-226, 2014. https://doi.org/ 10.1016/j.conbuildmat.2014.06.069
  • H. V. Vo, P. W. Park, W.J. Seo, J. S. Im, Effect of conductive filler size and type on thermal properties of asphalt mixtures. Innovative Materials and Design for sustainable transportation infrastructure, Fairbanks, Alaska. https://doi.org/10.1061/9780784479278.001
  • A. Arabzadeh, A. Sassani, H. Ceylan, S. Kim, K. Gopalakrishnan, P.C. Taylor, Comparison between cement paste and asphalt mastic modified by carbonaceous materials: electrical and thermal properties. Construction and Building Materials, 213, 121-130, 2019. https://doi.org/10.1016/j.conbuildmat. 2019.04.060
  • Karayolu Teknik Şartnamesi, Karayolları Genel Müdürlüğü, Ankara, 2013.
  • A. Sağlık, KGM Kauçuk Asfalt Çalışmaları, Karayolları Genel Müdürlüğü Araştırma-Geliştirme Dairesi Başkanlığı Üstyapı Geliştirme Şube Müdürlüğü, Türkiye, 2011.
  • E. Çelikten, Taş mastik asfalt yapımında mineral filler olarak mermer tozunun kullanılması. Yüksek Lisans Tezi, Harran Üniversitesi Fen Bilimleri Enstitüsü, Türkiye, 2020.
  • P. Vrzyski, P. Kosinski, A. Skoratko, W. Motacki, Thermal properties of cellulose fiber as insulation material in a loose state. AIP Conference Proceedings, 2133(1) , 2019. https://doi.org/10.1063/1.5120136
  • O. Özay ve E.A.Öztürk, Modifiye edilmiş poroz asfalt karişimlarin performansı. 5. Ulusal Asfalt Sempozyumu, 28(3), 577-586, 2013, Ankara, Türkiye.
  • P. Ahmedzade, M. Yılmaz, Stiren-Butadien-Stiren modifikasyonunun bitümlü bağlayıcıların ısı duyarlılığı, rijitlik ve yaşlanma özellikleri üzerindeki etkisi. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 11(3), 232-238, 2009. https://doi.org/10.19113/sdufbed.06022
  • M. Mazumder, S. J. Lee, M. S. Lee, Properties of Styrene-Isoprene-Styrene (SIS) modified asphalt binder. Proceedings of the 9th international conference on maintenance and rehabilitation of pavements, Lecture Notes in Civil Engineering, 2020. https://doi.org/10.1007/978-3-030-48679-2_56
  • T. Geçkil, Physical, Chemical, Microstructural and rheological properties of reactive terpolymer-modified bitumen. materials (Basel). 20;12(6), 921, 2019. https://doi.org/10.3390/ma12060921.
  • M. Yılmaz, B. V. Kök, N. Kuloğlu, T. Alataş, Elastomer türü polimerler ile modifiye edilmiş bitümlü bağlayıcıların depolama stabi̇li̇teleri̇ni̇n ve reoloji̇k özelliklerinin incelenmesi. DEÜ Mühendislik Fakültesi Fen ve Mühendislik Dergisi, 15(1), 66-77, 2013.
  • S. B. Ertekin, Polyolefin Katkıların Asfaltların Kıvamı ve Yumuşama Noktasına Etkileri. Yüksek Lisans Tezi, Dokuz Eylül Üniversitesi Fen Bilimleri Enstitüsü, Türkiye, 2003.
  • Z. Hossain, M. Zaman, T. Hawa, M.C. Saha, Evaluation of moisture susceptibility of nanoclay-modified asphalt binders through the surface science approach. Journal of Materials in Civil Engineering, 27(10), 2015. https://doi.org/10.1061/ (ASCE)MT.19435533.0001228
  • ICT International, Armidale, NSW, 2350. http://ictinternational.com/products/kd2-pro/decagon-kd2-pro/, Accessed 27 December 2021.
  • J. Chen, H. Wang, L. Li, Conductivity of asphalt concrete with random aggregate microstructure. Journal of Materials in Civil Engineering, 27(12), 2015. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001313
  • K. H. Kim, S. E. Jeon, J. K. Kim, S. Yang, An experimental study on thermal conductivity of concrete. Cement and Concrete Research, 33(3), 363-371, 2003. https://doi.org/10.1016/S0008-8846(02)00965-1.
  • A. Hassn, M. Aboufoul, Y. Wu, A. Dawson, A. Garcia, Effect of air voids content on thermal properties of asphalt mixtures. Construction and Building Materials, 115, 327-335, 2016. https://doi.org/ 10.1016/j.conbuildmat.2016.03.106
  • D. Mrawira, J. Luca, Effect of aggregate type, gradation and compaction level on thermal properties of hot-mix asphalts. Canadian Journal Of Civil Engineering, 33(11), 1410-1417, 2011. https://doi.org/10.1139/l06-076
  • H. M. Al-Baijat, The use of basalt aggregates in concrete mixes in Jordan. Jordan Journal of Civil Engineering, 2(1), 63-70, 2008.
  • S. N. Leung, Thermally conductive polymer composites and nanocomposites: processing-structure- property relationships. Composites Part B: Engineering, 150, 78-92, 2018. https://doi.org/10.1016/ j.compositesb.2018.05.056
  • C. Huang, X. Qian, R. Yang, Thermal conductivity of polymer nanocomposites. Materials Science and Engineering: R: Reports, 132, 1-22, 2018. https://doi.org/10.1016/j.mser.2018.06.002
  • M. Saçak, Polimer Teknolojisi, Gazi Kitapevi, Ankara, 2014.
  • F. Hussain, S. Roy, K. Narasimhan, K. Vengadassalam, H. Lu, E-Glass–Polypropylene Pultruded Nanocomposite: manufacture, characterization, thermal and mechanical properties. Journal of Thermoplactic Composite Materials, 20(4),2007. https://doi.org/10.1177/0892705707079604

Asfalt karışımların termal iletkenliklerinin değerlendirilmesi

Year 2022, , 348 - 355, 15.04.2022
https://doi.org/10.28948/ngumuh.1049283

Abstract

Makalede asfalt karışımların termal iletkenlikleri agrega cinsi, agrega gradasyonu, maksimum agrega boyutu, karışım türü ve yaygın kullanılan asfalt katkı maddelerine bağlı olarak araştırılmıştır. Bazalt ve kireç taşı agregası kullanılarak 19 mm ve 12.5 mm maksimum boyutlu agregalarla farklı gradasyonlarda yoğun gradasyonlu ve kesikli gradasyonlu karışım tasarımları yapılmıştır. Bazalt ve kireç taşı agregaları kullanılarak kontrol (K) bitümlü karışımlara ilave olarak kauçuk (R), selülozik elyaf (SE), Stiren-Bütadien-Stiren (SBS), Styrene Isoprene Styrene (SIS), Elvaloy (E), Stiren-Etilen-Butilen-Stiren (SEBS), poliolefin elastomer (PE) ve nanokil (NC) modifiye asfalt karışımlar üretilmiştir. Karışımların termal iletkenliklerinin agrega gradasyonundan önemli ölçüde etkilendiği, ince agrega oranının artmasının karışımın termal iletkenliğini artırdığı, yoğun gradasyonlu karışımların termal iletkenliğinin taş mastik asfaltlardan daha yüksek olduğu görülmüştür. Maksimum agrega boyutunun etkisi oluşturulan gradasyonlarda açık olarak anlaşılamamıştır. Kullanılan katkı maddelerinin tamamı termal iletkenliği azaltmış, en yüksek azalma SE ve R modifiye karışımlarda görülmüştür. Bazalt agregası yerine kireç taşı agregası kullanılan karışımların termal iletkenlikleri azalmıştır.

References

  • J. Gui, P. E. Phelan, K. E. Kaloush, J. S. Golden, İmpact of pavement thermophysical properties on surface temparatures. Journal of Materials in Civil Engineering, 19(8), 683-690, 2007. https://doi.org/ 10.1061/(ASCE)08991561(2007)19:8(683)
  • R. B. Mallick, S. Chen. Bhowmick, Harvesting energy from asphalt pavements and reducing the heat island effect. International Journal of Sustainable Engineering, 2(3), 214-228, 2009. https://doi.org/10.1080/ 19397030903121950
  • X. Shi, Y. Rew, E. Ivers, Chang-Seon Shon, E. M. Stenger, P. Park, Effects of thermally modified asphalt concrete on pavement temperature. International Journal of Pavement Engineering, 20(6), 669-681, 2017. https://doi.org/10.1080/10298436.2017.1326234
  • A. Demez, Pirofillit agrega kullanılarak üretilen yüksek dayanımlı betonların yangın dayanımının araştırılması. Yüksek Lisans Tezi, İnönü Üniversitesi Fen Bilimleri Enstitisü, Türkiye, 2017.
  • M. Chen, S. Wu, H. Wang, J. Zhang, Study of ice and snow melting process on conductive asphalt solar collector. Solar Energy materials and Solar Cells, 95(12), 3241-3250, 2011. https://doi.org/ 10.1016/j.solmat.2011.07.013.
  • X. Shi, Controlling thermal properties of asphalt concrete and its multifunctional applications. Disseration. Master Thesis, A.M. University, Texas, 2014.
  • TM 5-852-6/AFM, 88-19. Arctic and subarctic construction calculation methods for determination of depths of freeze and thaw in soils, 1966.
  • A. R. Dawson, P. K. Dehdezi, M. R. Hall, J. Wang, R. Isola, Enhancing thermal properties of asphalt materials for heat storage and transfer applications. Road Materials and Pavement Design, 13(4), 784-803, 2012. https://doi.org/10.1080/14680629.2012.735791
  • A. Khan, D. Mrawira, Influence of selected mix design factors on the thermal behavior of lightweight aggregate asphalt mixes, Journal of Testing and Evaluation 36(6), 2008. https://doi.org/ 10.1520/JTE101687
  • J. Côté, V. Grosjean, Jean-Marie Konrad, Thermal conductivity of bitumen concrete. Canadian of Civil Engineering, 40(2), 172-180, 2013. https://doi.org/ 10.1139/cjce-2012-0159
  • M. R. Islam, R. A. Tarefder, Determining thermal properties of asphalt concrete using field data and laboratory testing. Construction and Building Materials, 67(B), 297-306, 2014. https://doi.org/ 10.1016/j.conbuildmat.2014.03.040
  • X. Zhou, S. Wang, C. Zhou, Thermal conduction and insulation modification in asphalt-based composites. Jornal of Materials Science and Technology, 28(3), 285-288, 2012. https://doi.org/10.1016/S1005-0302(12)60055-3
  • P. Pan, S. Wu, Y. Xiao, P. Wang, X. Liu, Influence of graphite on the thermal characteristics and anti-ageing properties of asphalt binder. Construction and Building Materials, 68, 220-226, 2014. https://doi.org/ 10.1016/j.conbuildmat.2014.06.069
  • H. V. Vo, P. W. Park, W.J. Seo, J. S. Im, Effect of conductive filler size and type on thermal properties of asphalt mixtures. Innovative Materials and Design for sustainable transportation infrastructure, Fairbanks, Alaska. https://doi.org/10.1061/9780784479278.001
  • A. Arabzadeh, A. Sassani, H. Ceylan, S. Kim, K. Gopalakrishnan, P.C. Taylor, Comparison between cement paste and asphalt mastic modified by carbonaceous materials: electrical and thermal properties. Construction and Building Materials, 213, 121-130, 2019. https://doi.org/10.1016/j.conbuildmat. 2019.04.060
  • Karayolu Teknik Şartnamesi, Karayolları Genel Müdürlüğü, Ankara, 2013.
  • A. Sağlık, KGM Kauçuk Asfalt Çalışmaları, Karayolları Genel Müdürlüğü Araştırma-Geliştirme Dairesi Başkanlığı Üstyapı Geliştirme Şube Müdürlüğü, Türkiye, 2011.
  • E. Çelikten, Taş mastik asfalt yapımında mineral filler olarak mermer tozunun kullanılması. Yüksek Lisans Tezi, Harran Üniversitesi Fen Bilimleri Enstitüsü, Türkiye, 2020.
  • P. Vrzyski, P. Kosinski, A. Skoratko, W. Motacki, Thermal properties of cellulose fiber as insulation material in a loose state. AIP Conference Proceedings, 2133(1) , 2019. https://doi.org/10.1063/1.5120136
  • O. Özay ve E.A.Öztürk, Modifiye edilmiş poroz asfalt karişimlarin performansı. 5. Ulusal Asfalt Sempozyumu, 28(3), 577-586, 2013, Ankara, Türkiye.
  • P. Ahmedzade, M. Yılmaz, Stiren-Butadien-Stiren modifikasyonunun bitümlü bağlayıcıların ısı duyarlılığı, rijitlik ve yaşlanma özellikleri üzerindeki etkisi. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 11(3), 232-238, 2009. https://doi.org/10.19113/sdufbed.06022
  • M. Mazumder, S. J. Lee, M. S. Lee, Properties of Styrene-Isoprene-Styrene (SIS) modified asphalt binder. Proceedings of the 9th international conference on maintenance and rehabilitation of pavements, Lecture Notes in Civil Engineering, 2020. https://doi.org/10.1007/978-3-030-48679-2_56
  • T. Geçkil, Physical, Chemical, Microstructural and rheological properties of reactive terpolymer-modified bitumen. materials (Basel). 20;12(6), 921, 2019. https://doi.org/10.3390/ma12060921.
  • M. Yılmaz, B. V. Kök, N. Kuloğlu, T. Alataş, Elastomer türü polimerler ile modifiye edilmiş bitümlü bağlayıcıların depolama stabi̇li̇teleri̇ni̇n ve reoloji̇k özelliklerinin incelenmesi. DEÜ Mühendislik Fakültesi Fen ve Mühendislik Dergisi, 15(1), 66-77, 2013.
  • S. B. Ertekin, Polyolefin Katkıların Asfaltların Kıvamı ve Yumuşama Noktasına Etkileri. Yüksek Lisans Tezi, Dokuz Eylül Üniversitesi Fen Bilimleri Enstitüsü, Türkiye, 2003.
  • Z. Hossain, M. Zaman, T. Hawa, M.C. Saha, Evaluation of moisture susceptibility of nanoclay-modified asphalt binders through the surface science approach. Journal of Materials in Civil Engineering, 27(10), 2015. https://doi.org/10.1061/ (ASCE)MT.19435533.0001228
  • ICT International, Armidale, NSW, 2350. http://ictinternational.com/products/kd2-pro/decagon-kd2-pro/, Accessed 27 December 2021.
  • J. Chen, H. Wang, L. Li, Conductivity of asphalt concrete with random aggregate microstructure. Journal of Materials in Civil Engineering, 27(12), 2015. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001313
  • K. H. Kim, S. E. Jeon, J. K. Kim, S. Yang, An experimental study on thermal conductivity of concrete. Cement and Concrete Research, 33(3), 363-371, 2003. https://doi.org/10.1016/S0008-8846(02)00965-1.
  • A. Hassn, M. Aboufoul, Y. Wu, A. Dawson, A. Garcia, Effect of air voids content on thermal properties of asphalt mixtures. Construction and Building Materials, 115, 327-335, 2016. https://doi.org/ 10.1016/j.conbuildmat.2016.03.106
  • D. Mrawira, J. Luca, Effect of aggregate type, gradation and compaction level on thermal properties of hot-mix asphalts. Canadian Journal Of Civil Engineering, 33(11), 1410-1417, 2011. https://doi.org/10.1139/l06-076
  • H. M. Al-Baijat, The use of basalt aggregates in concrete mixes in Jordan. Jordan Journal of Civil Engineering, 2(1), 63-70, 2008.
  • S. N. Leung, Thermally conductive polymer composites and nanocomposites: processing-structure- property relationships. Composites Part B: Engineering, 150, 78-92, 2018. https://doi.org/10.1016/ j.compositesb.2018.05.056
  • C. Huang, X. Qian, R. Yang, Thermal conductivity of polymer nanocomposites. Materials Science and Engineering: R: Reports, 132, 1-22, 2018. https://doi.org/10.1016/j.mser.2018.06.002
  • M. Saçak, Polimer Teknolojisi, Gazi Kitapevi, Ankara, 2014.
  • F. Hussain, S. Roy, K. Narasimhan, K. Vengadassalam, H. Lu, E-Glass–Polypropylene Pultruded Nanocomposite: manufacture, characterization, thermal and mechanical properties. Journal of Thermoplactic Composite Materials, 20(4),2007. https://doi.org/10.1177/0892705707079604
There are 36 citations in total.

Details

Primary Language Turkish
Subjects Civil Engineering
Journal Section Civil Engineering
Authors

Nurgül Şirin 0000-0002-3132-5508

Erol İskender 0000-0001-7934-839X

Atakan Aksoy 0000-0001-5232-6465

Mustafa Taha Aslan 0000-0002-0453-788X

Cansu İskender 0000-0003-2856-4409

Publication Date April 15, 2022
Submission Date December 28, 2021
Acceptance Date February 7, 2022
Published in Issue Year 2022

Cite

APA Şirin, N., İskender, E., Aksoy, A., Aslan, M. T., et al. (2022). Asfalt karışımların termal iletkenliklerinin değerlendirilmesi. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 11(2), 348-355. https://doi.org/10.28948/ngumuh.1049283
AMA Şirin N, İskender E, Aksoy A, Aslan MT, İskender C. Asfalt karışımların termal iletkenliklerinin değerlendirilmesi. NÖHÜ Müh. Bilim. Derg. April 2022;11(2):348-355. doi:10.28948/ngumuh.1049283
Chicago Şirin, Nurgül, Erol İskender, Atakan Aksoy, Mustafa Taha Aslan, and Cansu İskender. “Asfalt karışımların Termal Iletkenliklerinin değerlendirilmesi”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 11, no. 2 (April 2022): 348-55. https://doi.org/10.28948/ngumuh.1049283.
EndNote Şirin N, İskender E, Aksoy A, Aslan MT, İskender C (April 1, 2022) Asfalt karışımların termal iletkenliklerinin değerlendirilmesi. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 11 2 348–355.
IEEE N. Şirin, E. İskender, A. Aksoy, M. T. Aslan, and C. İskender, “Asfalt karışımların termal iletkenliklerinin değerlendirilmesi”, NÖHÜ Müh. Bilim. Derg., vol. 11, no. 2, pp. 348–355, 2022, doi: 10.28948/ngumuh.1049283.
ISNAD Şirin, Nurgül et al. “Asfalt karışımların Termal Iletkenliklerinin değerlendirilmesi”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 11/2 (April 2022), 348-355. https://doi.org/10.28948/ngumuh.1049283.
JAMA Şirin N, İskender E, Aksoy A, Aslan MT, İskender C. Asfalt karışımların termal iletkenliklerinin değerlendirilmesi. NÖHÜ Müh. Bilim. Derg. 2022;11:348–355.
MLA Şirin, Nurgül et al. “Asfalt karışımların Termal Iletkenliklerinin değerlendirilmesi”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, vol. 11, no. 2, 2022, pp. 348-55, doi:10.28948/ngumuh.1049283.
Vancouver Şirin N, İskender E, Aksoy A, Aslan MT, İskender C. Asfalt karışımların termal iletkenliklerinin değerlendirilmesi. NÖHÜ Müh. Bilim. Derg. 2022;11(2):348-55.

download