Research Article
BibTex RIS Cite

Co-injection filling characterization of the polypropylen packaging by 3-D simulation

Year 2022, , 806 - 812, 18.07.2022
https://doi.org/10.28948/ngumuh.1083285

Abstract

Polypropylene (PP) is a crystalline thermoplastic widely used in many industrial applications such as medical devices, automotive parts, battery cases, household products, or packaging trays due to its high chemical resistance, processability and impact/stiffness balance, well barrier property, lightness and toughness respectively. However, researchers and engineers have focused on new injection methods to reduce the cost of products and production time. After doing a literature survey about the new injection methods in this study, the co-injection simulation conducted with the Moldex 3-D program using properties of both virgin PP and scrap PP. By the way, the effect of co-injection parameters such as injection pressure, closing force, mod and melt temperatures on co-injection filling characterization investigated. As a result that when the core temperature of the first injected virgin PP is higher than its nucleation temperature, the core of the wall goes on the wall with the second injection of scrap PP until cooling of nucleation temperature. End of co-injection, the second injected scrap PP after first injected virgin PP replaced the advancing virgin PP on the wall core, and a three-layered wall consisting of original PP, scrap PP, original PP obtained.

Supporting Institution

TÜBİTAK, ŞEKEROĞLU Chemistry and Plastic Industry and Trade I.C.

Project Number

3292423 NOLU TÜBİTAK 1501 PROJE

Thanks

This paper was produced with the support of the TUBITAK 1501 university-industry corporation project code 3292423. Authors thank TUBITAK and ŞEKEROĞLU Chemistry and Plastic Industry and Trade I.C.

References

  • Y. Ssrethep, A study on material distribution, mechanical properties, and numerical simulation in co-injection molding. Degree of Master of Science in the Graduate School of The Ohio State University, USA, 2008.
  • H. A. Maddah, Polypropylene as a promising plastic: A review. American Journal of Polymer Science, 1, 1-11, 2016.
  • Dental 3D Printing Market by Product, https://www.marketsandmarkets.com/Market-Reports/polypropylene-market 64103589.html#:~:text=The%20polypropylene%20market%20size%20was,5.6%25%20between%202017%20and%202022. Accessed 3 March 2022.
  • K.G. Harutun, Handbook of Polypropylene and Polypropylene Composites. New York: Marcel Dekker, 1999.
  • L. Baltes, L. Costiuc, S. Patachia and M. Tierean, Differential scanning calorimetry—a powerful tool for the determination of morphological features of the recycled polypropylene, Journal of Thermal Analysis and Calorimetry, 138, 2399–2408, 2019.
  • I.. Ituarte, O. Wiikinkoski and A. Jansson, Additive manufacturing of polypropylene: A screening design of experiment using laser-pased powder fed fusion, Polymers, 10, 1293, 2018.
  • M. Zaverl, A study on skin/core optimization in co-injection molding of biopolyester blends. Degree of Master of Applied Science in Engineering, Guelph, Ontario, Canada, 2013.
  • M.C. Huang and C.C. Tai, The effective factors in the warpage problem of an injection-molded part with a thin shell feature, J Mater Process Tech 110(1), 1–9, 2001.
  • Z. Chen and L.S. Turng, A review of current developments in process and quality control for injection molding, Adv Polym Technol 24(3),165–182, 2005.
  • S. Kashyap and D. Datta, Process parameter optimization of plastic injection molding: a review. Int J Plast Technology, 19, 1–18, 2015.
  • T.C. Chang and E. Faison, Shrinkage behaviour and optimization of injection molded parts studied by the Taguchi method, Polym Eng Sci, 41(5), 703–710, 2001.
  • X.P. Dang, General frameworks for optimization of plastic injection molding process parameters, Simulation Model Pract Theory, 41,15–27, 2014.
  • V.W. Wang, C.A. Hieber and K.K. Wang, Dynamic simulation and graphics for the injection molding of three-dimensional thin parts. J Polym Eng, 7(1), 21–45,1986.
  • M. Kadota, M. Cakmak and H. Hamada, Structural hierarchy developed in co-injection molded polystyrene/polypropylene parts, Polymer, 40, 3119 – 3145, 1999.
  • J.C. Viana, Co-injection molding of immiscible polymers: skin-core structure and adhesion studies, Poly Eng & Sci, 51: 2398 – 2407, 2011.
  • Boraalis catalog, https://www.borealisgroup.com/search?search-global-search&index-search=products&id-search=13799, Accessed 3 March 2022.
  • H.B.H. Salah, H.B. Daly, J. Denault and F. Perrin, Morphological aspects of injected polypropylene/clay nanocomposite materials, Journal of Polym Eng Sci, 53(5), 905–913, 2013.
  • W. Wang, G. Zhao, Y. Guan, X. Wu and Y. Hui, Effect of rapid heating cycle injection mold temperature on crystal structures, morphology of polypropylene and surface quality of plastic parts, Journal of Polym Res, 22, 84, 2015.
  • J. Lou, Y. Li, H. He, D. Li, G. Wang, J. Feng and C. Liu, Interface development and numerical simulation of powder co-injection moulding. Part. I. Experimental results on the flow behaviour and die filling process, Powder Technol. 305, 405–410, 2017.https://doi.org/10.1016/j.powtec.2016.10.015.
  • G. Bernardes, N. Luiz, R. Santana and M. Forte, Rheological behavior and morphological and interfacial properties of PLA/TPE blends, J. Appl. Polym. Sci. 136, 1–9, 2019. https://doi.org/10.1002/app.47962
  • W. He, J. Yang, Y. Chen, P. Liu, C. Li, M. Xiong, X. Niu and X. Li, Study on co-injection molding of poly(styrene-ethylene-butylene-styrene and polypropylene: Simulation and experiment, Polymer Testing 108, 2022. https://doi.org/10.1016/j.polymertesting.2022.107510

Polipropilen ambalajın eş-enjeksiyon dolum karakteristiğinin 3-B simülasyonu

Year 2022, , 806 - 812, 18.07.2022
https://doi.org/10.28948/ngumuh.1083285

Abstract

Polipropilen (PP), hafiflik ve tokluk, yüksek kimyasal dayanım, şekillendirilebilirlik, darbe ve rijitliği dengelenmiş iyi bariyer özelliklerinden dolayı medikal ve otomotiv parçaları, ev eşyaları ve gıda ambalajlarının imalatında yaygın kullanılan kristalin termoplastik malzemedir. Bu bağlamda, araştırmacılar ve mühendisler üretim zamanı ve ürün maliyetini azaltmak için yeni enjeksiyon metotları üzerine yoğunlaşmışlardır. Bu çalışmada yeni enjeksiyon metotlarıyla ilgili literatür araştırmasından sonra, üretim hurdası PP ve orijinal PP’ nin özellikleri kullanılarak 3-B Moldex programıyla eş enjeksiyon simülasyonlar gerçekleştirilmiştir. Böylece, enjeksiyon zamanı, enjeksiyon basıncı, kapama kuvveti, kalıp ve enjeksiyon sıcaklığı gibi eş-enjeksiyon parametrelerinin dolum karakteristiğine etkisi araştırılmaya çalışılmıştır. İlk enjekte edilen orijinal PP’ nin yolluk merkezindeki sıcaklığı çekirdeklenme sıcaklığından yüksek olduğunda, eş zamanlı ikinci enjekte edilen üretim hurdası PP’nin orijinal PP katılaşana kadar yolukta ilerlemekte olduğu sonucuna varılmıştır. Eş-enjeksiyon simülasyon sonunda, ilk enjekte edilen ve ilerleyen orijinal PP’ nin yerini ikinci enjekte edilen üretim hurdası PP almış ve orijinal PP, hurda PP, orijinal PP’ den oluşan üç katmalı cidar elde edilmiştir.

Project Number

3292423 NOLU TÜBİTAK 1501 PROJE

References

  • Y. Ssrethep, A study on material distribution, mechanical properties, and numerical simulation in co-injection molding. Degree of Master of Science in the Graduate School of The Ohio State University, USA, 2008.
  • H. A. Maddah, Polypropylene as a promising plastic: A review. American Journal of Polymer Science, 1, 1-11, 2016.
  • Dental 3D Printing Market by Product, https://www.marketsandmarkets.com/Market-Reports/polypropylene-market 64103589.html#:~:text=The%20polypropylene%20market%20size%20was,5.6%25%20between%202017%20and%202022. Accessed 3 March 2022.
  • K.G. Harutun, Handbook of Polypropylene and Polypropylene Composites. New York: Marcel Dekker, 1999.
  • L. Baltes, L. Costiuc, S. Patachia and M. Tierean, Differential scanning calorimetry—a powerful tool for the determination of morphological features of the recycled polypropylene, Journal of Thermal Analysis and Calorimetry, 138, 2399–2408, 2019.
  • I.. Ituarte, O. Wiikinkoski and A. Jansson, Additive manufacturing of polypropylene: A screening design of experiment using laser-pased powder fed fusion, Polymers, 10, 1293, 2018.
  • M. Zaverl, A study on skin/core optimization in co-injection molding of biopolyester blends. Degree of Master of Applied Science in Engineering, Guelph, Ontario, Canada, 2013.
  • M.C. Huang and C.C. Tai, The effective factors in the warpage problem of an injection-molded part with a thin shell feature, J Mater Process Tech 110(1), 1–9, 2001.
  • Z. Chen and L.S. Turng, A review of current developments in process and quality control for injection molding, Adv Polym Technol 24(3),165–182, 2005.
  • S. Kashyap and D. Datta, Process parameter optimization of plastic injection molding: a review. Int J Plast Technology, 19, 1–18, 2015.
  • T.C. Chang and E. Faison, Shrinkage behaviour and optimization of injection molded parts studied by the Taguchi method, Polym Eng Sci, 41(5), 703–710, 2001.
  • X.P. Dang, General frameworks for optimization of plastic injection molding process parameters, Simulation Model Pract Theory, 41,15–27, 2014.
  • V.W. Wang, C.A. Hieber and K.K. Wang, Dynamic simulation and graphics for the injection molding of three-dimensional thin parts. J Polym Eng, 7(1), 21–45,1986.
  • M. Kadota, M. Cakmak and H. Hamada, Structural hierarchy developed in co-injection molded polystyrene/polypropylene parts, Polymer, 40, 3119 – 3145, 1999.
  • J.C. Viana, Co-injection molding of immiscible polymers: skin-core structure and adhesion studies, Poly Eng & Sci, 51: 2398 – 2407, 2011.
  • Boraalis catalog, https://www.borealisgroup.com/search?search-global-search&index-search=products&id-search=13799, Accessed 3 March 2022.
  • H.B.H. Salah, H.B. Daly, J. Denault and F. Perrin, Morphological aspects of injected polypropylene/clay nanocomposite materials, Journal of Polym Eng Sci, 53(5), 905–913, 2013.
  • W. Wang, G. Zhao, Y. Guan, X. Wu and Y. Hui, Effect of rapid heating cycle injection mold temperature on crystal structures, morphology of polypropylene and surface quality of plastic parts, Journal of Polym Res, 22, 84, 2015.
  • J. Lou, Y. Li, H. He, D. Li, G. Wang, J. Feng and C. Liu, Interface development and numerical simulation of powder co-injection moulding. Part. I. Experimental results on the flow behaviour and die filling process, Powder Technol. 305, 405–410, 2017.https://doi.org/10.1016/j.powtec.2016.10.015.
  • G. Bernardes, N. Luiz, R. Santana and M. Forte, Rheological behavior and morphological and interfacial properties of PLA/TPE blends, J. Appl. Polym. Sci. 136, 1–9, 2019. https://doi.org/10.1002/app.47962
  • W. He, J. Yang, Y. Chen, P. Liu, C. Li, M. Xiong, X. Niu and X. Li, Study on co-injection molding of poly(styrene-ethylene-butylene-styrene and polypropylene: Simulation and experiment, Polymer Testing 108, 2022. https://doi.org/10.1016/j.polymertesting.2022.107510
There are 21 citations in total.

Details

Primary Language English
Subjects Mechanical Engineering
Journal Section Mechanical Engineering
Authors

Bekir Yalçın 0000-0002-3784-7251

Ahmet Yılmaz This is me 0000-0002-0627-9722

Zübeyir Gök This is me 0000-0002-4755-3580

Project Number 3292423 NOLU TÜBİTAK 1501 PROJE
Publication Date July 18, 2022
Submission Date March 7, 2022
Acceptance Date May 27, 2022
Published in Issue Year 2022

Cite

APA Yalçın, B., Yılmaz, A., & Gök, Z. (2022). Co-injection filling characterization of the polypropylen packaging by 3-D simulation. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 11(3), 806-812. https://doi.org/10.28948/ngumuh.1083285
AMA Yalçın B, Yılmaz A, Gök Z. Co-injection filling characterization of the polypropylen packaging by 3-D simulation. NÖHÜ Müh. Bilim. Derg. July 2022;11(3):806-812. doi:10.28948/ngumuh.1083285
Chicago Yalçın, Bekir, Ahmet Yılmaz, and Zübeyir Gök. “Co-Injection Filling Characterization of the Polypropylen Packaging by 3-D Simulation”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 11, no. 3 (July 2022): 806-12. https://doi.org/10.28948/ngumuh.1083285.
EndNote Yalçın B, Yılmaz A, Gök Z (July 1, 2022) Co-injection filling characterization of the polypropylen packaging by 3-D simulation. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 11 3 806–812.
IEEE B. Yalçın, A. Yılmaz, and Z. Gök, “Co-injection filling characterization of the polypropylen packaging by 3-D simulation”, NÖHÜ Müh. Bilim. Derg., vol. 11, no. 3, pp. 806–812, 2022, doi: 10.28948/ngumuh.1083285.
ISNAD Yalçın, Bekir et al. “Co-Injection Filling Characterization of the Polypropylen Packaging by 3-D Simulation”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 11/3 (July 2022), 806-812. https://doi.org/10.28948/ngumuh.1083285.
JAMA Yalçın B, Yılmaz A, Gök Z. Co-injection filling characterization of the polypropylen packaging by 3-D simulation. NÖHÜ Müh. Bilim. Derg. 2022;11:806–812.
MLA Yalçın, Bekir et al. “Co-Injection Filling Characterization of the Polypropylen Packaging by 3-D Simulation”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, vol. 11, no. 3, 2022, pp. 806-12, doi:10.28948/ngumuh.1083285.
Vancouver Yalçın B, Yılmaz A, Gök Z. Co-injection filling characterization of the polypropylen packaging by 3-D simulation. NÖHÜ Müh. Bilim. Derg. 2022;11(3):806-12.

download