Research Article
BibTex RIS Cite

Effective removal of Pb(II) ions from aqueous solutions using chemically untreated Midyat stone: Isotherm, kinetic and thermodynamic studies

Year 2022, , 1085 - 1096, 14.10.2022
https://doi.org/10.28948/ngumuh.1089310

Abstract

One of the most pressing concerns that scientists are attempting to solve is the removal of heavy metals from industrial waste. The effectiveness of Midyat stone (MS) for the adsorption of Pb2+ ions from aqueous solutions is investigated in this study. The effects of numerous variables on adsorption effectiveness, such as contact duration, initial metal ion concentration, and pH, were studied in the study. Scanning electron microscopy, energy dispersion spectroscopy, and Fourier transform infrared spectroscopy were used to analyze the surface properties of MS. Under the most favorable working conditions for the removal of the Pb2+ ion, the starting concentration, contact duration, and solution pH were determined to be 800 mg/L, 90 minutes, and 4,23, respectively. The results showed that the isotherm data fit the Langmuir isotherm model, and the kinetic data fit the pseudo-second-order (PSO) model. At 298, 308, and 318 K, the adsorption capacity of the Pb2+ ion was determined to be 129.87 mg/g, 178.57 mg/g, and 188.68 mg/g, respectively. The elimination of Pb2+ ions by MS was shown to be natural and endothermic in thermodynamic analyses. Because of its features, such as high adsorption capacity, low cost, and ease of availability, it has been determined that MS is an effective and promising material for removing Pb2+ ions from the aqueous environment.

References

  • I. Acosta-Rodríguez, A. Rodríguez-Pérez, N. C. Pacheco-Castillo, E. Enríquez-Domínguez, J. F. Cárdenas-González and V. M. Martínez-Juárez, Removal of Cobalt (II) from Waters Contaminated by the Biomass of Eichhornia crassipes. Water, 13(13), 1725, 2021. https://doi.org/10.3390/w13131725.
  • S. Babel and T. A. Kurniawan, Low-cost adsorbents for heavy metals uptake from contaminated water: a review. Journal of hazardous materials, 97(1-3), 219-243, 2003.
  • S. Pandey and J. Ramontja, Natural bentonite clay and its composites for dye removal: current state and future potential. American Journal of Chemistry and Applications, 3(2), 8-19, 2016.
  • C. L. Văcar, E. Covaci, S. Chakraborty, B. Li, D. C. Weindorf, T. Frențiu and D. Podar, Heavy metal-resistant filamentous fungi as potential mercury bioremediators. Journal of Fungi, 7(5), 386, 2021. https://doi.org/10.3390/jof7050386.
  • V. Prabhu, S. Lee and H. L. Clack, Electrostatic precipitation of powdered activated carbon and implications for secondary mercury adsorption within electrostatic precipitators. Energy & Fuels, 25(3), 1010-1016, 2011.
  • R. V. Hemavathy, A. Saravanan, P. S. Kumar, D. V. N. Vo, S. Karishma, and S. Jeevanantham, Adsorptive removal of Pb (II) ions onto surface modified adsorbents derived from Cassia fistula seeds: Optimization and modelling study. Chemosphere, 283, 131276, 2021.
  • P. Ozpinar, C. Dogan, H. Demiral, U. Morali, S. Erol, C. Samdan, D. Yildiz, and I. Demiral, Activated carbons prepared from hazelnut shell waste by phosphoric acid activation for supercapacitor electrode applications and comprehensive electrochemical analysis. Renewable Energy, 189, 535-548, 2022.
  • S. Erol, Process Model Development of Lithium-ion Batteries—An Electrochemical Impedance Spectroscopy Simulation. Sakarya University Journal of Science, 24(6), 1191-1197, 2020.
  • Y. Koç, U. Morali, S. Erol, and H. Avci, Investigation of electrochemical behavior of potassium ferricyanide/ferrocyanide redox probes on screen printed carbon electrode through cyclic voltammetry and electrochemical impedance spectroscopy. Turkish Journal of Chemistry, 45(6), 1895-1915, 2021.
  • A. Saravanan, P. S. Kumar, P. R. Yaashikaa, S. Karishma, S. Jeevanantham, and S. Swetha, Mixed biosorbent of agro waste and bacterial biomass for the separation of Pb (II) ions from water system. Chemosphere, 277, 130236, 2021.
  • S. N. H. Azmi, M. Al-Balushi, F. Al-Siyabi, N. Al-Hinai, and S. Khurshid, Adsorptive removal of Pb (II) ions from groundwater samples in Oman using carbonized Phoenix dactylifera seed (Date stone). Journal of King Saud University-Science, 32(7), 2931-2938, 2020.
  • A. B. Rakhym, G. A. Seilkhanova and T. S. Kurmanbayeva, Adsorption of lead (II) ions from water solutions with natural zeolite and chamotte clay. Materials Today: Proceedings, 31, 482-485, 2020.
  • S. Kaushal, N. Kaur, M. Kaur and P. P. Singh, Dual-Responsive Pectin/Graphene Oxide (Pc/GO) nano-composite as an efficient adsorbent for Cr (III) ions and photocatalyst for degradation of organic dyes in waste water. Journal of Photochemistry and Photobiology A: Chemistry, 403, 112841, 2020.
  • Y. Altunkaynak, Effectively removing Cu (II) and Ni (II) ions from aqueous solutions using chemically non-processed Midyat stone: equivalent, kinetic and thermodynamic studies. Journal of the Iranian Chemical Society, 1-14, 2022.
  • A. Benhamou, M. Baudu, Z. Derriche and J. P. Basly, Aqueous heavy metals removal on amine-functionalized Si-MCM-41 and Si-MCM-48. Journal of Hazardous Materials, 171(1-3), 1001-1008, 2009.
  • M. E. Malool, M. KeshavarzMoraveji and J. Shayegan, Hydrothermal carbonization of digested sewage sludge coupled with Alkali activation: Integrated approach for sludge handling, optimized production, characterization and Pb (II) adsorption. Journal of the Taiwan Institute of Chemical Engineers, 104203, 2022.
  • C. Ren, X. Ding, W. Li, H. Wu and H. Yang, Highly efficient adsorption of heavy metals onto novel magnetic porous composites modified with amino groups. Journal of Chemical & Engineering Data, 62(6), 1865-1875, 2017.
  • S. Kaushal, S. K. Mittal and P. Singh, Developments in Synthesis, Characterization and Applications of Composite Ion-exchange Materials: A Review. Oriental Journal of Chemistry, 33(4), 1726, 2017.
  • Y. Altunkaynak, M. Canpolat and Ö. Yavuz, Adsorption of cobalt (II) ions from aqueous solution using orange peel waste: equilibrium, kinetic and thermodynamic studies. Journal of the Iranian Chemical Society, 1-12, 2021.
  • S. Bhardwaj and T. Sarkar, Core–shell type magnetic Ni/NiO nanoparticles as recyclable adsorbent for Pb (II) and Cd (II) ions: One-pot synthesis, adsorption performance, and mechanism. Journal of the Taiwan Institute of Chemical Engineers, 113, 223-230, 2020.
  • J. M. Zachara, C. E. Cowan and C. T. Resch, Sorption of divalent metals on calcite. Geochimica et cosmochimica acta, 55(6), 1549-1562, 1991. https://doi.org/10.1016/0016-7037(91)90127-Q.
  • J. A. Davis, C. C. Fuller and A. D. Cook, A model for trace metal sorption processes at the calcite surface: Adsorption of Cd2+ and subsequent solid solution formation. Geochimica et Cosmochimica Acta, 51(6), 1477-1490, 1987. https://doi.org/10.1016/0016-
  • A. Rana, P. Kalla, H. K. Verma and J. K. Mohnot, Recycling of dimensional stone waste in concrete: A review. Journal of cleaner production, 135, 312-331, 2016. https://doi.org/10.1016/j. jclepro.2016.06.126.
  • V. V. D. S. Guilarduci, J. P. D. Mesquita, P. B. Martelli and H. D. F. Gorgulho, Adsorção de fenol sobre carvão ativado em meio alcalino. Química nova, 29, 1226-1232, 2006.
  • H. B. Aziz, M. N. Adlan, and K. S. Ariffin, Heavy metals (Cd, Pb, Zn, Ni, Cu and Cr (III)) removal from water in Malaysia: post treatment by high quality limestone. Bioresource technology, 99(6), 1578-1583, 2008.
  • A. Sdiri, T. Higashi, F. Jamoussi, and S. Bouaziz, Effects of impurities on the removal of heavy metals by natural limestones in aqueous systems. Journal of Environmental management, 93(1), 245-253, 2012.
  • S. Ilhan, A. Cabuk, C. Filik and F. Caliskan, Effect of pretreatment on biosorption of heavy metals by fungal biomass. Trakya Univ J Sci, 5(1), 11-17, 2004.
  • Z. Aksu and İ. A. İşoğlu, Removal of copper (II) ions from aqueous solution by biosorption onto agricultural waste sugar beet pulp. Process biochemistry, 40(9), 3031-3044, 2005. https://doi.org/10.1016/j.procbio. 2005.02.004
  • I. Kara, D. Tunc, F. Sayin and S. T. Akar, Study on the performance of metakaolin based geopolymer for Mn (II) and Co (II) removal. Applied clay science, 161, 184-193, 2018. https://doi.org/10.1016/j.clay.2018. 04.027.
  • I. A. Mohammed, A. H. Jawad, A. S. Abdulhameed and M. S. Mastuli, Physicochemical modification of chitosan with fly ash and tripolyphosphate for removal of reactive red 120 dye: statistical optimization and mechanism study. International journal of biological macromolecules, 161, 503-513, 2020. https:// doi.org/10.1016/j.ijbiomac.2020.06.069.
  • N. J. Vickers, Animal communication: when i’m calling you, will you answer too?. Current biology, 27(14), R713-R715, 2017. https://doi.org/ 10.1016/j.cub.2017.05.064.
  • Y. A. Neolaka, Y. Lawa, J. N. Naat, A. A. Riwu, M. Iqbal, H. Darmokoesoemo and H. S. Kusuma, The adsorption of Cr (VI) from water samples using graphene oxide-magnetic (GO-Fe3O4) synthesized from natural cellulose-based graphite (kusambi wood or Schleichera oleosa): Study of kinetics, isotherms and thermodynamics. Journal of Materials Research and Technology, 9(3), 6544-6556, 2020. https://doi.org/ 10.1016/j.jmrt.2020.04.040.
  • Y. A. Neolaka, Y. Lawa, J. N. Naat, A. A. P. Riwu, H. Darmokoesoemo, G. Supriyanto and H. S. Kusuma, A Cr (VI)-imprinted-poly (4-VP-co-EGDMA) sorbent prepared using precipitation polymerization and its application for selective adsorptive removal and solid phase extraction of Cr (VI) ions from electroplating industrial wastewater. Reactive and Functional Polymers, 147, 104451, 2020. https://doi.org/ 10.1016/j.reactfunctpolym.2019.104451.
  • M. R. Abukhadra, F. M. Dardir, M. Shaban, E. A. Ahmed, and M. F. Soliman, Superior removal of Co2+, Cu2+ and Zn2+ contaminants from water utilizing spongy Ni/Fe carbonate–fluorapatite; preparation, application and mechanism. Ecotoxicology and environmental safety, 157, 358-368, 2018. https://doi.org/10.1016/j.ecoenv.2018.03.085.
  • M. Kragović, A. Daković, M. Marković, J. Krstić, G. D. Gatta, and N. Rotiroti, Characterization of lead sorption by the natural and Fe (III)-modified zeolite. Applied Surface Science, 283, 764-774, 2013. https://doi.org/10.1016/j.apsusc.2013.07.016.
  • Y. Man, B. Wang, J. Wang, M. Slaný, H. Yan, P. Li and X. Feng, Use of biochar to reduce mercury accumulation in Oryza sativa L: A trial for sustainable management of historically polluted farmlands. Environment International, 153, 106527, 2021. https://doi.org/ 10.1016/j.envint.2021.106527.
  • M. Khajeh, S. Laurent and K. Dastafkan, Nanoadsorbents: classification, preparation, and applications (with emphasis on aqueous media). Chemical reviews, 113(10), 7728-7768, 2013. https://doi.org/10.1021/cr400086v.
  • D. A. Sruamsiri, and M. Ogawa, Adsorption of Pb2+ on a layered alkali titanate from water. In IOP Conference Series: Earth and Environmental Science, 950(1), 012040, 2022.
  • A. Sarı, M. Tuzen, and M. Soylak, Adsorption of Pb (II) and Cr (III) from aqueous solution on Celtek clay. Journal of Hazardous Materials, 144(1-2), 41-46, 2007.
  • A. Sari, M. Tuzen, D. Citak, and M. Soylak, Equilibrium, kinetic and thermodynamic studies of adsorption of Pb (II) from aqueous solution onto Turkish kaolinite clay. Journal of hazardous materials, 149(2), 283-291, 2007.
  • S. He, Y. Li, L. Weng, J. Wang, J. He, Y. Liu and Z. Zhang, Competitive adsorption of Cd2+, Pb2+ and Ni2+ onto Fe3+-modified argillaceous limestone: Influence of pH, ionic strength and natural organic matters. Science of the Total Environment, 637, 69-78, 2018.
  • S. Zhu, S. H. Ho, X. Huang, D. Wang, F. Yang, L. Wang and F. Ma, Magnetic nanoscale zerovalent iron assisted biochar: interfacial chemical behaviors and heavy metals remediation performance. ACS Sustainable Chemistry & Engineering, 5(11), 9673-9682, 2017. https://doi.org/10.1021/acssuschemeng.7b00542.
  • R. Karthik and S. Meenakshi, Removal of Pb (II) and Cd (II) ions from aqueous solution using polyaniline grafted chitosan. Chemical Engineering Journal, 263, 168-177, 2015.
  • R. Jayasree, P. S. Kumar, A. Saravanan, R. V. Hemavathy, P. R. Yaashikaa, P. Arthi and K. C. Choi, Sequestration of toxic Pb (II) ions using ultrasonic modified agro waste: Adsorption mechanism and modelling study. Chemosphere, 285, 131502, 2021.
  • R. V. Hemavathy, A. Saravanan, P. S. Kumar, D. V. N. Vo, S. Karishma and S. Jeevanantham, Adsorptive removal of Pb (II) ions onto surface modified adsorbents derived from Cassia fistula seeds: Optimization and modelling study. Chemosphere, 283, 131276, 2021.
  • E. C. Lima, A. Hosseini-Bandegharaei, J. C. Moreno-Piraján and I. Anastopoulos, A critical review of the estimation of the thermodynamic parameters on adsorption equilibria. Wrong use of equilibrium constant in the Van't Hoof equation for calculation of thermodynamic parameters of adsorption. Journal of Molecular Liquids, 273, 425-434, 2019. https://doi.org/10.1016/j.molliq.2018.10.048.
  • V. K. Gupta, Equilibrium uptake, sorption dynamics, process development, and column operations for the removal of copper and nickel from aqueous solution and wastewater using activated slag, a low-cost adsorbent. Industrial & Engineering Chemistry Research, 37(1), 192-2, 1998. https://doi.org/10.1021/ie9703898.
  • K. G. Akpomie, F. A. Dawodu and K. O. Adebowale, Mechanism on the sorption of heavy metals from binary-solution by a low cost montmorillonite and its desorption potential. Alexandria Engineering Journal, 54(3), 757-767, 2015. https://doi.org/10.1016/j.aej.2015.03.025.
  • G. De Angelis, L. Medeghini, A. M. Conte and S. Mignardi, Recycling of eggshell waste into low-cost adsorbent for Ni removal from wastewater. Journal of Cleaner Production, 164, 1497-1506, 2017. https://doi.org/10.1016/j.jclepro.2017.07.085.

Kimyasal olarak işlenmemiş Midyat taşı kullanılarak sulu çözeltilerden Pb(II) iyonlarının etkin bir şekilde uzaklaştırılması: İzoterm, kinetik ve termodinamik çalışmalar

Year 2022, , 1085 - 1096, 14.10.2022
https://doi.org/10.28948/ngumuh.1089310

Abstract

Endüstriyel atıklardan ağır metallerin uzaklaştırılması bilim insanlarının çözüm aradığı en önemli konulardan biridir. Bu araştırma, sulu çözeltilerden Pb2+ iyonlarının adsorpsiyonu için Midyat taşının (MT) değerlendirilmesini inceliyor. Çalışmada, temas süresi, başlangıç metal iyon konsantrasyonu, pH gibi çeşitli değişkenlerin adsorpsiyon verimliliği üzerindeki sonuçları araştırıldı. MT'nin yüzey özellikleri taramalı elektron mikroskobu, enerji dağılım spektroskopisi ve Fourier dönüşümlü kızılötesi spektroskopisi ile araştırıldı. Pb2+ iyonunun uzaklaştırılması için en uygun çalışma koşullarında başlangıç konsantrasyonu, temas süresi ve çözelti pH'ı sırasıyla 800 mg/L, 90 dakika ve 4,23 olarak belirlendi. Sonuçlar, izoterm verilerinin Langmuir izoterm modeli için, kinetik verileri için de Yalancı birinci dereceden kinetik modeline (PSO) uygun olduğunu göstermiştir. Pb2+ iyonu için adsorpsiyon kapasitesi 298, 308 ve 318 K'da sırasıyla 129.87 mg/g, 178.57 mg/g ve 188.68 mg/g olarak hesaplandı. Termodinamik çalışmalar, MT yoluyla Pb2+ iyonunun uzaklaştırılmasının doğal ve endotermik olduğunu göstermiştir. MT'nin sahip olduğu yüksek adsorpsiyon kapasitesi, ucuz ve kolay bulunabilmesi gibi özelliklerinden dolayı Pb2+ iyonlarının sulu ortamdan uzaklaştırılmasında etkili ve gelecek vaat eden bir malzeme olduğu tespit edilmiştir.

References

  • I. Acosta-Rodríguez, A. Rodríguez-Pérez, N. C. Pacheco-Castillo, E. Enríquez-Domínguez, J. F. Cárdenas-González and V. M. Martínez-Juárez, Removal of Cobalt (II) from Waters Contaminated by the Biomass of Eichhornia crassipes. Water, 13(13), 1725, 2021. https://doi.org/10.3390/w13131725.
  • S. Babel and T. A. Kurniawan, Low-cost adsorbents for heavy metals uptake from contaminated water: a review. Journal of hazardous materials, 97(1-3), 219-243, 2003.
  • S. Pandey and J. Ramontja, Natural bentonite clay and its composites for dye removal: current state and future potential. American Journal of Chemistry and Applications, 3(2), 8-19, 2016.
  • C. L. Văcar, E. Covaci, S. Chakraborty, B. Li, D. C. Weindorf, T. Frențiu and D. Podar, Heavy metal-resistant filamentous fungi as potential mercury bioremediators. Journal of Fungi, 7(5), 386, 2021. https://doi.org/10.3390/jof7050386.
  • V. Prabhu, S. Lee and H. L. Clack, Electrostatic precipitation of powdered activated carbon and implications for secondary mercury adsorption within electrostatic precipitators. Energy & Fuels, 25(3), 1010-1016, 2011.
  • R. V. Hemavathy, A. Saravanan, P. S. Kumar, D. V. N. Vo, S. Karishma, and S. Jeevanantham, Adsorptive removal of Pb (II) ions onto surface modified adsorbents derived from Cassia fistula seeds: Optimization and modelling study. Chemosphere, 283, 131276, 2021.
  • P. Ozpinar, C. Dogan, H. Demiral, U. Morali, S. Erol, C. Samdan, D. Yildiz, and I. Demiral, Activated carbons prepared from hazelnut shell waste by phosphoric acid activation for supercapacitor electrode applications and comprehensive electrochemical analysis. Renewable Energy, 189, 535-548, 2022.
  • S. Erol, Process Model Development of Lithium-ion Batteries—An Electrochemical Impedance Spectroscopy Simulation. Sakarya University Journal of Science, 24(6), 1191-1197, 2020.
  • Y. Koç, U. Morali, S. Erol, and H. Avci, Investigation of electrochemical behavior of potassium ferricyanide/ferrocyanide redox probes on screen printed carbon electrode through cyclic voltammetry and electrochemical impedance spectroscopy. Turkish Journal of Chemistry, 45(6), 1895-1915, 2021.
  • A. Saravanan, P. S. Kumar, P. R. Yaashikaa, S. Karishma, S. Jeevanantham, and S. Swetha, Mixed biosorbent of agro waste and bacterial biomass for the separation of Pb (II) ions from water system. Chemosphere, 277, 130236, 2021.
  • S. N. H. Azmi, M. Al-Balushi, F. Al-Siyabi, N. Al-Hinai, and S. Khurshid, Adsorptive removal of Pb (II) ions from groundwater samples in Oman using carbonized Phoenix dactylifera seed (Date stone). Journal of King Saud University-Science, 32(7), 2931-2938, 2020.
  • A. B. Rakhym, G. A. Seilkhanova and T. S. Kurmanbayeva, Adsorption of lead (II) ions from water solutions with natural zeolite and chamotte clay. Materials Today: Proceedings, 31, 482-485, 2020.
  • S. Kaushal, N. Kaur, M. Kaur and P. P. Singh, Dual-Responsive Pectin/Graphene Oxide (Pc/GO) nano-composite as an efficient adsorbent for Cr (III) ions and photocatalyst for degradation of organic dyes in waste water. Journal of Photochemistry and Photobiology A: Chemistry, 403, 112841, 2020.
  • Y. Altunkaynak, Effectively removing Cu (II) and Ni (II) ions from aqueous solutions using chemically non-processed Midyat stone: equivalent, kinetic and thermodynamic studies. Journal of the Iranian Chemical Society, 1-14, 2022.
  • A. Benhamou, M. Baudu, Z. Derriche and J. P. Basly, Aqueous heavy metals removal on amine-functionalized Si-MCM-41 and Si-MCM-48. Journal of Hazardous Materials, 171(1-3), 1001-1008, 2009.
  • M. E. Malool, M. KeshavarzMoraveji and J. Shayegan, Hydrothermal carbonization of digested sewage sludge coupled with Alkali activation: Integrated approach for sludge handling, optimized production, characterization and Pb (II) adsorption. Journal of the Taiwan Institute of Chemical Engineers, 104203, 2022.
  • C. Ren, X. Ding, W. Li, H. Wu and H. Yang, Highly efficient adsorption of heavy metals onto novel magnetic porous composites modified with amino groups. Journal of Chemical & Engineering Data, 62(6), 1865-1875, 2017.
  • S. Kaushal, S. K. Mittal and P. Singh, Developments in Synthesis, Characterization and Applications of Composite Ion-exchange Materials: A Review. Oriental Journal of Chemistry, 33(4), 1726, 2017.
  • Y. Altunkaynak, M. Canpolat and Ö. Yavuz, Adsorption of cobalt (II) ions from aqueous solution using orange peel waste: equilibrium, kinetic and thermodynamic studies. Journal of the Iranian Chemical Society, 1-12, 2021.
  • S. Bhardwaj and T. Sarkar, Core–shell type magnetic Ni/NiO nanoparticles as recyclable adsorbent for Pb (II) and Cd (II) ions: One-pot synthesis, adsorption performance, and mechanism. Journal of the Taiwan Institute of Chemical Engineers, 113, 223-230, 2020.
  • J. M. Zachara, C. E. Cowan and C. T. Resch, Sorption of divalent metals on calcite. Geochimica et cosmochimica acta, 55(6), 1549-1562, 1991. https://doi.org/10.1016/0016-7037(91)90127-Q.
  • J. A. Davis, C. C. Fuller and A. D. Cook, A model for trace metal sorption processes at the calcite surface: Adsorption of Cd2+ and subsequent solid solution formation. Geochimica et Cosmochimica Acta, 51(6), 1477-1490, 1987. https://doi.org/10.1016/0016-
  • A. Rana, P. Kalla, H. K. Verma and J. K. Mohnot, Recycling of dimensional stone waste in concrete: A review. Journal of cleaner production, 135, 312-331, 2016. https://doi.org/10.1016/j. jclepro.2016.06.126.
  • V. V. D. S. Guilarduci, J. P. D. Mesquita, P. B. Martelli and H. D. F. Gorgulho, Adsorção de fenol sobre carvão ativado em meio alcalino. Química nova, 29, 1226-1232, 2006.
  • H. B. Aziz, M. N. Adlan, and K. S. Ariffin, Heavy metals (Cd, Pb, Zn, Ni, Cu and Cr (III)) removal from water in Malaysia: post treatment by high quality limestone. Bioresource technology, 99(6), 1578-1583, 2008.
  • A. Sdiri, T. Higashi, F. Jamoussi, and S. Bouaziz, Effects of impurities on the removal of heavy metals by natural limestones in aqueous systems. Journal of Environmental management, 93(1), 245-253, 2012.
  • S. Ilhan, A. Cabuk, C. Filik and F. Caliskan, Effect of pretreatment on biosorption of heavy metals by fungal biomass. Trakya Univ J Sci, 5(1), 11-17, 2004.
  • Z. Aksu and İ. A. İşoğlu, Removal of copper (II) ions from aqueous solution by biosorption onto agricultural waste sugar beet pulp. Process biochemistry, 40(9), 3031-3044, 2005. https://doi.org/10.1016/j.procbio. 2005.02.004
  • I. Kara, D. Tunc, F. Sayin and S. T. Akar, Study on the performance of metakaolin based geopolymer for Mn (II) and Co (II) removal. Applied clay science, 161, 184-193, 2018. https://doi.org/10.1016/j.clay.2018. 04.027.
  • I. A. Mohammed, A. H. Jawad, A. S. Abdulhameed and M. S. Mastuli, Physicochemical modification of chitosan with fly ash and tripolyphosphate for removal of reactive red 120 dye: statistical optimization and mechanism study. International journal of biological macromolecules, 161, 503-513, 2020. https:// doi.org/10.1016/j.ijbiomac.2020.06.069.
  • N. J. Vickers, Animal communication: when i’m calling you, will you answer too?. Current biology, 27(14), R713-R715, 2017. https://doi.org/ 10.1016/j.cub.2017.05.064.
  • Y. A. Neolaka, Y. Lawa, J. N. Naat, A. A. Riwu, M. Iqbal, H. Darmokoesoemo and H. S. Kusuma, The adsorption of Cr (VI) from water samples using graphene oxide-magnetic (GO-Fe3O4) synthesized from natural cellulose-based graphite (kusambi wood or Schleichera oleosa): Study of kinetics, isotherms and thermodynamics. Journal of Materials Research and Technology, 9(3), 6544-6556, 2020. https://doi.org/ 10.1016/j.jmrt.2020.04.040.
  • Y. A. Neolaka, Y. Lawa, J. N. Naat, A. A. P. Riwu, H. Darmokoesoemo, G. Supriyanto and H. S. Kusuma, A Cr (VI)-imprinted-poly (4-VP-co-EGDMA) sorbent prepared using precipitation polymerization and its application for selective adsorptive removal and solid phase extraction of Cr (VI) ions from electroplating industrial wastewater. Reactive and Functional Polymers, 147, 104451, 2020. https://doi.org/ 10.1016/j.reactfunctpolym.2019.104451.
  • M. R. Abukhadra, F. M. Dardir, M. Shaban, E. A. Ahmed, and M. F. Soliman, Superior removal of Co2+, Cu2+ and Zn2+ contaminants from water utilizing spongy Ni/Fe carbonate–fluorapatite; preparation, application and mechanism. Ecotoxicology and environmental safety, 157, 358-368, 2018. https://doi.org/10.1016/j.ecoenv.2018.03.085.
  • M. Kragović, A. Daković, M. Marković, J. Krstić, G. D. Gatta, and N. Rotiroti, Characterization of lead sorption by the natural and Fe (III)-modified zeolite. Applied Surface Science, 283, 764-774, 2013. https://doi.org/10.1016/j.apsusc.2013.07.016.
  • Y. Man, B. Wang, J. Wang, M. Slaný, H. Yan, P. Li and X. Feng, Use of biochar to reduce mercury accumulation in Oryza sativa L: A trial for sustainable management of historically polluted farmlands. Environment International, 153, 106527, 2021. https://doi.org/ 10.1016/j.envint.2021.106527.
  • M. Khajeh, S. Laurent and K. Dastafkan, Nanoadsorbents: classification, preparation, and applications (with emphasis on aqueous media). Chemical reviews, 113(10), 7728-7768, 2013. https://doi.org/10.1021/cr400086v.
  • D. A. Sruamsiri, and M. Ogawa, Adsorption of Pb2+ on a layered alkali titanate from water. In IOP Conference Series: Earth and Environmental Science, 950(1), 012040, 2022.
  • A. Sarı, M. Tuzen, and M. Soylak, Adsorption of Pb (II) and Cr (III) from aqueous solution on Celtek clay. Journal of Hazardous Materials, 144(1-2), 41-46, 2007.
  • A. Sari, M. Tuzen, D. Citak, and M. Soylak, Equilibrium, kinetic and thermodynamic studies of adsorption of Pb (II) from aqueous solution onto Turkish kaolinite clay. Journal of hazardous materials, 149(2), 283-291, 2007.
  • S. He, Y. Li, L. Weng, J. Wang, J. He, Y. Liu and Z. Zhang, Competitive adsorption of Cd2+, Pb2+ and Ni2+ onto Fe3+-modified argillaceous limestone: Influence of pH, ionic strength and natural organic matters. Science of the Total Environment, 637, 69-78, 2018.
  • S. Zhu, S. H. Ho, X. Huang, D. Wang, F. Yang, L. Wang and F. Ma, Magnetic nanoscale zerovalent iron assisted biochar: interfacial chemical behaviors and heavy metals remediation performance. ACS Sustainable Chemistry & Engineering, 5(11), 9673-9682, 2017. https://doi.org/10.1021/acssuschemeng.7b00542.
  • R. Karthik and S. Meenakshi, Removal of Pb (II) and Cd (II) ions from aqueous solution using polyaniline grafted chitosan. Chemical Engineering Journal, 263, 168-177, 2015.
  • R. Jayasree, P. S. Kumar, A. Saravanan, R. V. Hemavathy, P. R. Yaashikaa, P. Arthi and K. C. Choi, Sequestration of toxic Pb (II) ions using ultrasonic modified agro waste: Adsorption mechanism and modelling study. Chemosphere, 285, 131502, 2021.
  • R. V. Hemavathy, A. Saravanan, P. S. Kumar, D. V. N. Vo, S. Karishma and S. Jeevanantham, Adsorptive removal of Pb (II) ions onto surface modified adsorbents derived from Cassia fistula seeds: Optimization and modelling study. Chemosphere, 283, 131276, 2021.
  • E. C. Lima, A. Hosseini-Bandegharaei, J. C. Moreno-Piraján and I. Anastopoulos, A critical review of the estimation of the thermodynamic parameters on adsorption equilibria. Wrong use of equilibrium constant in the Van't Hoof equation for calculation of thermodynamic parameters of adsorption. Journal of Molecular Liquids, 273, 425-434, 2019. https://doi.org/10.1016/j.molliq.2018.10.048.
  • V. K. Gupta, Equilibrium uptake, sorption dynamics, process development, and column operations for the removal of copper and nickel from aqueous solution and wastewater using activated slag, a low-cost adsorbent. Industrial & Engineering Chemistry Research, 37(1), 192-2, 1998. https://doi.org/10.1021/ie9703898.
  • K. G. Akpomie, F. A. Dawodu and K. O. Adebowale, Mechanism on the sorption of heavy metals from binary-solution by a low cost montmorillonite and its desorption potential. Alexandria Engineering Journal, 54(3), 757-767, 2015. https://doi.org/10.1016/j.aej.2015.03.025.
  • G. De Angelis, L. Medeghini, A. M. Conte and S. Mignardi, Recycling of eggshell waste into low-cost adsorbent for Ni removal from wastewater. Journal of Cleaner Production, 164, 1497-1506, 2017. https://doi.org/10.1016/j.jclepro.2017.07.085.
There are 49 citations in total.

Details

Primary Language Turkish
Subjects Chemical Engineering
Journal Section Chemical Engineering
Authors

Mutlu Canpolat 0000-0002-3771-6737

Yalçın Altunkaynak 0000-0003-2562-9297

Ömer Yavuz 0000-0002-7706-1878

Publication Date October 14, 2022
Submission Date March 17, 2022
Acceptance Date August 9, 2022
Published in Issue Year 2022

Cite

APA Canpolat, M., Altunkaynak, Y., & Yavuz, Ö. (2022). Kimyasal olarak işlenmemiş Midyat taşı kullanılarak sulu çözeltilerden Pb(II) iyonlarının etkin bir şekilde uzaklaştırılması: İzoterm, kinetik ve termodinamik çalışmalar. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 11(4), 1085-1096. https://doi.org/10.28948/ngumuh.1089310
AMA Canpolat M, Altunkaynak Y, Yavuz Ö. Kimyasal olarak işlenmemiş Midyat taşı kullanılarak sulu çözeltilerden Pb(II) iyonlarının etkin bir şekilde uzaklaştırılması: İzoterm, kinetik ve termodinamik çalışmalar. NÖHÜ Müh. Bilim. Derg. October 2022;11(4):1085-1096. doi:10.28948/ngumuh.1089310
Chicago Canpolat, Mutlu, Yalçın Altunkaynak, and Ömer Yavuz. “Kimyasal Olarak işlenmemiş Midyat taşı kullanılarak Sulu çözeltilerden Pb(II) iyonlarının Etkin Bir şekilde uzaklaştırılması: İzoterm, Kinetik Ve Termodinamik çalışmalar”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 11, no. 4 (October 2022): 1085-96. https://doi.org/10.28948/ngumuh.1089310.
EndNote Canpolat M, Altunkaynak Y, Yavuz Ö (October 1, 2022) Kimyasal olarak işlenmemiş Midyat taşı kullanılarak sulu çözeltilerden Pb(II) iyonlarının etkin bir şekilde uzaklaştırılması: İzoterm, kinetik ve termodinamik çalışmalar. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 11 4 1085–1096.
IEEE M. Canpolat, Y. Altunkaynak, and Ö. Yavuz, “Kimyasal olarak işlenmemiş Midyat taşı kullanılarak sulu çözeltilerden Pb(II) iyonlarının etkin bir şekilde uzaklaştırılması: İzoterm, kinetik ve termodinamik çalışmalar”, NÖHÜ Müh. Bilim. Derg., vol. 11, no. 4, pp. 1085–1096, 2022, doi: 10.28948/ngumuh.1089310.
ISNAD Canpolat, Mutlu et al. “Kimyasal Olarak işlenmemiş Midyat taşı kullanılarak Sulu çözeltilerden Pb(II) iyonlarının Etkin Bir şekilde uzaklaştırılması: İzoterm, Kinetik Ve Termodinamik çalışmalar”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 11/4 (October 2022), 1085-1096. https://doi.org/10.28948/ngumuh.1089310.
JAMA Canpolat M, Altunkaynak Y, Yavuz Ö. Kimyasal olarak işlenmemiş Midyat taşı kullanılarak sulu çözeltilerden Pb(II) iyonlarının etkin bir şekilde uzaklaştırılması: İzoterm, kinetik ve termodinamik çalışmalar. NÖHÜ Müh. Bilim. Derg. 2022;11:1085–1096.
MLA Canpolat, Mutlu et al. “Kimyasal Olarak işlenmemiş Midyat taşı kullanılarak Sulu çözeltilerden Pb(II) iyonlarının Etkin Bir şekilde uzaklaştırılması: İzoterm, Kinetik Ve Termodinamik çalışmalar”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, vol. 11, no. 4, 2022, pp. 1085-96, doi:10.28948/ngumuh.1089310.
Vancouver Canpolat M, Altunkaynak Y, Yavuz Ö. Kimyasal olarak işlenmemiş Midyat taşı kullanılarak sulu çözeltilerden Pb(II) iyonlarının etkin bir şekilde uzaklaştırılması: İzoterm, kinetik ve termodinamik çalışmalar. NÖHÜ Müh. Bilim. Derg. 2022;11(4):1085-96.

download