KBH4 hidrolizinde ince film nikel katalizörünü kullanarak hidrojen üretimi ve proses optimizasyonu
Year 2022,
, 1097 - 1102, 14.10.2022
Meryem Sena Akkuş
Abstract
Bu çalışmada nikel, magnetron saçtırma işlemi ile lam üzerine ince bir film olarak kaplanmış ve alkali potasyum borhidrür hidrolizinde katalizör olarak kullanılmıştır. Ayrıca ortam sıcaklığı, katalizör miktarı, % KBH4 oranı, HCl hacmi ve % NaOH oranı gibi parametrelerin potasyum borhidrür çözeltisinin katalitik hidrolizinde hidrojen üretimi hızına olan etkileri de yanıt yüzey metodu ile ayrıntılı olarak incelenmiştir. Proses optimizasyonu merkezi kompozit dizaynı kullanılarak yapılmış ve parametrelerin etkinliği varyans analizi ile belirlenmiştir. Oluşturulan model sonucunda, maksimum HGR değeri için optimum parametreler; ortam sıcaklığı 55 ˚C; %13 oranında KBH4; %0.6 oranında NaOH; 9 mL 0.5 M HCI olarak belirlenmiştir. Maksimum hidrojen üretim hızı 92.8 L/dk. g olarak hesaplanmıştır.
Supporting Institution
Ankara Yıldırım Beyazıt Üniversitesi Bilimsel Araştırma Birimi
Thanks
Bu çalışma Ankara Yıldırım Beyazıt Üniversitesi Bilimsel Araştırma Birimi (2148 No'lu Proje) tarafından desteklenmiştir.
References
- H. Ç. Kazıcı, M. S. İzgi and Ö. Şahin, A comprehensive study on the synthesis, characterization and mathematical modeling of nanostructured Co-based catalysts using different support materials for AB hydrolysis. Chemical Papers, 75, 2713-2725, 2021. https://doi.org/10.1007/s11696-021-01514-0.
- J. Ren, N. M. Musyoka, H. W. Langmi, M. Mathe and S. Liao, Current research trends and perspectives on materials-based hydrogen storage solutions: a critical review. International Journal of Hydrogen Energy, 42, 289-311, 2017. https://doi.org/10.1016/j.ijhydene. 2016.11.195.
- L. Ouyang, M. Liu, K. Chen, J. Liu, H. Wang and M. Zhu, Recent progress on hydrogen generation from the hydrolysis of light metals and hydrides. Journal of Alloys and Compounds, 164831, 2022. https://doi.org/10.1016/j.jallcom.2022.164831.
- P. Nikolaidis and A. Poullikkas, A comparative overview of hydrogen production processes. Renewable and sustainable energy reviews, 67, 597-611, 2017. https://doi.org/10.1016/j.rser.2016.09.044.
- I. Dincer and C. Acar, Review and evaluation of hydrogen production methods for better sustainability. International Journal of Hydrogen Energy, 40, 11094-11111, 2015. https://doi.org/10.1016/j.ijhydene.2014. 12.035.
- I. Dincer, Green methods for hydrogen production. International Journal of Hydrogen Energy, 37, 1954-1971, 2012. https://doi.org/10.1016/j.ijhydene.2011. 03.173.
- M. Balat, Possible methods for hydrogen production. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 31, 39-50, 2008. https://doi.org/10.1080/15567030701468068.
- Technical System Targets: Onboard Hydrogen Storage for Light-Duty Fuel Cell Vehicles 2022. https://www.energy.gov/sites/default/files/
2017/05/f34/fcto_myrdd_table_onboard_h2_storage_systems_doe_targets_ldv_1.pdf, Accessed 20 August 2022.
- M. S. Akkuş, H. B. Murathan, D. Ö. Özgür, G. Özkan and G. Özkan, New insights on the mechanism of vapour phase hydrolysis of sodium borohydride in a fed-batch reactor. International Journal of Hydrogen Energy, 43, 10734-10740, 2018. https://doi.org/ 10.1016/j.ijhydene.2018.01.177.
- A. Garron, D. Świerczyński, S. Bennici and A. Auroux, New insights into the mechanism of H2 generation through NaBH4 hydrolysis on Co-based nanocatalysts studied by differential reaction calorimetry. International Journal of Hydrogen Energy, 34, 1185-1199, 2009. https://doi.org/10.1016/j.ijhydene.2008. 11.027.
- N. Rusman and M. Dahari, A review on the current progress of metal hydrides material for solid-state hydrogen storage applications. International Journal of Hydrogen Energy, 41, 12108-12126, 2016. https://doi.org/10.1016/j.ijhydene.2016.05.244.
- I. Jain, P. Jain and A. Jain, Novel hydrogen storage materials: A review of lightweight complex hydrides. Journal of Alloys and Compounds, 503, 303-339, 2010. https://doi.org/10.1016/j.jallcom.2010.04.250.
- L. Damjanović, S. Bennici and A. Auroux, A direct measurement of the heat evolved during the sodium and potassium borohydride catalytic hydrolysis. Journal of Power Sources, 195, 3284-3292, 2010. https://doi.org/10.1016/j.jpowsour.2009.11.105.
- D. Kilinc and O. Sahin, High volume hydrogen evolution from KBH4 hydrolysis with palladium complex catalyst. Renewable Energy, 161, 257-264, 2020. https://doi.org/10.1016/j.renene.2020.06.035.
- D. Kılınc and Ö. Şahin, Metal-Schiff Base complex catalyst in KBH4 hydrolysis reaction for hydrogen production. International Journal of Hydrogen Energy, 44, 18848-18857, 2019. https://doi.org/ 10.1016/j.ijhydene.2019.01.229.
- P. J. Kelly and R. D. Arnell, Magnetron sputtering: a review of recent developments and applications. Vacuum, 56, 159-172, 2000. https://doi.org/10.1016/ S0042-207X(99)00189-X.
- L. Shaginyan, M. Mišina, S. Kadlec, L. Jastrabık, A. Mackova and V. Peřina, Mechanism of the film composition formation during magnetron sputtering of WTi. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 19, 2554-2566, 2001. https://doi.org/10.1116/1.1392401.
- M. Salih Keskin, Ö. Şahin and S. Horoz, Efficiency of TiO2-supported Ni-Mo-Ru–B catalyst for hydrogen production from potassium borohydride hydrolysis. Journal of the Australian Ceramic Society, 1-7, 2022. https://doi.org/10.1007/s41779-022-00755.
- C. Saka and A. Balbay, Fast and effective hydrogen production from ethanolysis and hydrolysis reactions of potassium borohydride using phosphoric acid. International Journal of Hydrogen Energy, 43, 19976-19983, 2018. https://doi.org/10.1016/j.ijhydene.2018. 09.048.
- O. Erhan, M. Aslan ve M. S. İzgi, Kobalt bazli bimetalik nanokatalizörün potasyum borhidrür hidroliz tepkimesi üzerindeki katalitik etkisinin incelenmesi. Konya Mühendislik Bilimleri Dergisi, 9, 200-212, 2021. https://doi.org/10.36306/konjes.997368.
- D. Kilinc and O. Sahin, Ruthenium-Imine catalyzed KBH4 hydrolysis as an efficient hydrogen production system. International Journal of Hydrogen Energy, 46, 20984-20994, 2021. https://doi.org/10.1016/j.ijhydene. 2021.03.236.
- Ö. Şahin, A. Bozkurt, M. Yayla, H. Ç. Kazıcı and M. S. İzgi, As a highly efficient reduced graphene oxide-supported ternary catalysts for the fast hydrogen release from NaBH4. Graphene Technology, 5, 103-111, 2020. https://doi.org/10.1007/s41127-020-00036-y.
- D. Xu, H. Wang, Q. Guo and S. Ji, Catalytic behavior of carbon supported Ni–B, Co–B and Co–Ni–B in hydrogen generation by hydrolysis of KBH4. Fuel Processing Technology, 92, 1606-1610, 2011. https://doi.org/10.1016/j.fuproc.2011.04.006.
- E. Onat, Ö. Şahin, M. S. Izgi and S. Horoz, An efficient synergistic Co@ CQDs catalyst for hydrogen production from the hydrolysis of NH3BH3. Journal of Materials Science: Materials in Electronics, 32, 27251-27259, 2021. https://doi.org/10.1007/s10854-021-07094-9.
- M. Paladini, G. Arzac, V. Godinho, M. J. De Haro and A. Fernández, Supported Co catalysts prepared as thin films by magnetron sputtering for sodium borohydride and ammonia borane hydrolysis. Applied Catalysis B: Environmental, 158, 400-409, 2014. https://doi.org/10.1016/j.apcatb.2014.04.047.
Hydrogen production and process optimization using thin film nickel catalyst in KBH4 hydrolysis
Year 2022,
, 1097 - 1102, 14.10.2022
Meryem Sena Akkuş
Abstract
In this study, nickel was coated as a thin film on the slide by magnetron sputtering and used as a catalyst for alkali potassium borohydride hydrolysis. The effects of parameters such as ambient temperature, catalyst amount, wt% KBH4 ratio, volume of HCl and wt% NaOH ratio rate on the hydrogen production rate in the catalytic hydrolysis of potassium borohydride solution were investigated in detail by response surface method. Process optimization was done using central composite design and the efficiency of the parameters was determined by analysis of variance. As a result of the model created, the optimum parameters for the maximum HGR value; ambient temperature 55 ˚C; 13% KBH4; 0.6% NaOH; Determined as 9 mL of 0.5 M HCl. The maximum hydrogen generation rate was calculated as 92.8 L/min g.
References
- H. Ç. Kazıcı, M. S. İzgi and Ö. Şahin, A comprehensive study on the synthesis, characterization and mathematical modeling of nanostructured Co-based catalysts using different support materials for AB hydrolysis. Chemical Papers, 75, 2713-2725, 2021. https://doi.org/10.1007/s11696-021-01514-0.
- J. Ren, N. M. Musyoka, H. W. Langmi, M. Mathe and S. Liao, Current research trends and perspectives on materials-based hydrogen storage solutions: a critical review. International Journal of Hydrogen Energy, 42, 289-311, 2017. https://doi.org/10.1016/j.ijhydene. 2016.11.195.
- L. Ouyang, M. Liu, K. Chen, J. Liu, H. Wang and M. Zhu, Recent progress on hydrogen generation from the hydrolysis of light metals and hydrides. Journal of Alloys and Compounds, 164831, 2022. https://doi.org/10.1016/j.jallcom.2022.164831.
- P. Nikolaidis and A. Poullikkas, A comparative overview of hydrogen production processes. Renewable and sustainable energy reviews, 67, 597-611, 2017. https://doi.org/10.1016/j.rser.2016.09.044.
- I. Dincer and C. Acar, Review and evaluation of hydrogen production methods for better sustainability. International Journal of Hydrogen Energy, 40, 11094-11111, 2015. https://doi.org/10.1016/j.ijhydene.2014. 12.035.
- I. Dincer, Green methods for hydrogen production. International Journal of Hydrogen Energy, 37, 1954-1971, 2012. https://doi.org/10.1016/j.ijhydene.2011. 03.173.
- M. Balat, Possible methods for hydrogen production. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 31, 39-50, 2008. https://doi.org/10.1080/15567030701468068.
- Technical System Targets: Onboard Hydrogen Storage for Light-Duty Fuel Cell Vehicles 2022. https://www.energy.gov/sites/default/files/
2017/05/f34/fcto_myrdd_table_onboard_h2_storage_systems_doe_targets_ldv_1.pdf, Accessed 20 August 2022.
- M. S. Akkuş, H. B. Murathan, D. Ö. Özgür, G. Özkan and G. Özkan, New insights on the mechanism of vapour phase hydrolysis of sodium borohydride in a fed-batch reactor. International Journal of Hydrogen Energy, 43, 10734-10740, 2018. https://doi.org/ 10.1016/j.ijhydene.2018.01.177.
- A. Garron, D. Świerczyński, S. Bennici and A. Auroux, New insights into the mechanism of H2 generation through NaBH4 hydrolysis on Co-based nanocatalysts studied by differential reaction calorimetry. International Journal of Hydrogen Energy, 34, 1185-1199, 2009. https://doi.org/10.1016/j.ijhydene.2008. 11.027.
- N. Rusman and M. Dahari, A review on the current progress of metal hydrides material for solid-state hydrogen storage applications. International Journal of Hydrogen Energy, 41, 12108-12126, 2016. https://doi.org/10.1016/j.ijhydene.2016.05.244.
- I. Jain, P. Jain and A. Jain, Novel hydrogen storage materials: A review of lightweight complex hydrides. Journal of Alloys and Compounds, 503, 303-339, 2010. https://doi.org/10.1016/j.jallcom.2010.04.250.
- L. Damjanović, S. Bennici and A. Auroux, A direct measurement of the heat evolved during the sodium and potassium borohydride catalytic hydrolysis. Journal of Power Sources, 195, 3284-3292, 2010. https://doi.org/10.1016/j.jpowsour.2009.11.105.
- D. Kilinc and O. Sahin, High volume hydrogen evolution from KBH4 hydrolysis with palladium complex catalyst. Renewable Energy, 161, 257-264, 2020. https://doi.org/10.1016/j.renene.2020.06.035.
- D. Kılınc and Ö. Şahin, Metal-Schiff Base complex catalyst in KBH4 hydrolysis reaction for hydrogen production. International Journal of Hydrogen Energy, 44, 18848-18857, 2019. https://doi.org/ 10.1016/j.ijhydene.2019.01.229.
- P. J. Kelly and R. D. Arnell, Magnetron sputtering: a review of recent developments and applications. Vacuum, 56, 159-172, 2000. https://doi.org/10.1016/ S0042-207X(99)00189-X.
- L. Shaginyan, M. Mišina, S. Kadlec, L. Jastrabık, A. Mackova and V. Peřina, Mechanism of the film composition formation during magnetron sputtering of WTi. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 19, 2554-2566, 2001. https://doi.org/10.1116/1.1392401.
- M. Salih Keskin, Ö. Şahin and S. Horoz, Efficiency of TiO2-supported Ni-Mo-Ru–B catalyst for hydrogen production from potassium borohydride hydrolysis. Journal of the Australian Ceramic Society, 1-7, 2022. https://doi.org/10.1007/s41779-022-00755.
- C. Saka and A. Balbay, Fast and effective hydrogen production from ethanolysis and hydrolysis reactions of potassium borohydride using phosphoric acid. International Journal of Hydrogen Energy, 43, 19976-19983, 2018. https://doi.org/10.1016/j.ijhydene.2018. 09.048.
- O. Erhan, M. Aslan ve M. S. İzgi, Kobalt bazli bimetalik nanokatalizörün potasyum borhidrür hidroliz tepkimesi üzerindeki katalitik etkisinin incelenmesi. Konya Mühendislik Bilimleri Dergisi, 9, 200-212, 2021. https://doi.org/10.36306/konjes.997368.
- D. Kilinc and O. Sahin, Ruthenium-Imine catalyzed KBH4 hydrolysis as an efficient hydrogen production system. International Journal of Hydrogen Energy, 46, 20984-20994, 2021. https://doi.org/10.1016/j.ijhydene. 2021.03.236.
- Ö. Şahin, A. Bozkurt, M. Yayla, H. Ç. Kazıcı and M. S. İzgi, As a highly efficient reduced graphene oxide-supported ternary catalysts for the fast hydrogen release from NaBH4. Graphene Technology, 5, 103-111, 2020. https://doi.org/10.1007/s41127-020-00036-y.
- D. Xu, H. Wang, Q. Guo and S. Ji, Catalytic behavior of carbon supported Ni–B, Co–B and Co–Ni–B in hydrogen generation by hydrolysis of KBH4. Fuel Processing Technology, 92, 1606-1610, 2011. https://doi.org/10.1016/j.fuproc.2011.04.006.
- E. Onat, Ö. Şahin, M. S. Izgi and S. Horoz, An efficient synergistic Co@ CQDs catalyst for hydrogen production from the hydrolysis of NH3BH3. Journal of Materials Science: Materials in Electronics, 32, 27251-27259, 2021. https://doi.org/10.1007/s10854-021-07094-9.
- M. Paladini, G. Arzac, V. Godinho, M. J. De Haro and A. Fernández, Supported Co catalysts prepared as thin films by magnetron sputtering for sodium borohydride and ammonia borane hydrolysis. Applied Catalysis B: Environmental, 158, 400-409, 2014. https://doi.org/10.1016/j.apcatb.2014.04.047.