Research Article
BibTex RIS Cite

Tasarlanmış çimento esaslı kompozit ile uçucu kül ve cüruf esaslı tasarlanmış geopolimer kompozitlerin mekanik ve mikroyapısal özellikleri

Year 2023, , 452 - 471, 15.04.2023
https://doi.org/10.28948/ngumuh.1186020

Abstract

Bu çalışmada, literatürde M45 kodu ile bilinen standart tasarlanmış çimento esaslı kompozite (ECC) benzer taşıma gücü ve deformasyon kapasitesine sahip bir uçucu kül+yüksek fırın cürufu (UK+YFC) esaslı tasarlanmış geopolimer kompozit (EGC) karışımının geliştirilmesi amaçlanmıştır. Bu amaçla ECC’nin yanı sıra farklı oranlarda UK ve YFC içeren iki farklı EGC karışımı geliştirilmiştir. Üretilen bu üç karışımın taze ve reolojik özelliklerinin yanı sıra basınç dayanımı, elastisite modülü, hava kurusu birim hacim ağırlığı, yapısal verimliliği, ultrasonik titreşim hızı (UTH), kırılma tokluğu ve eğilme performansı 7. ve 28. günlerde belirlenmiştir. Sonuçta, ECC’den çok daha yüksek basınç dayanımına ve sünekliğe sahip bir EGC karışımı elde edilmiştir. Ayrıca, artan YFC içeriğinin mekanik dayanımı ve tokluğu artırdığı ancak, sünekliği azalttığı tespit edimiştir. Bu durumun nedenleri XRD, TGA/DTA ve FTIR analizleri ile mikroyapısal olarak araştırılmıştır.

Supporting Institution

Niğde Ömer Halisdemir Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi

Project Number

MMT 2021/2-BAGEP

Thanks

Bu çalışma Niğde Ömer Halisdemir Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi tarafından MMT 2021/2-BAGEP no’lu ve ‘‘Sentetik Vollastonit İçeren Tasarlanmış Geopolimer Kompozitlerin Taze, Mekanik, Durabilite ve Boyutsal Stabilite Özellikleri’’ başlıklı proje ile desteklenmiştir.

References

  • Y. Ling, K. Wang, W. Li, G. Shi and P. Lu, Effect of slag on the mechanical properties and bond strength of fly ash-based engineered geopolymer composites. Composites Part B: Engineering, 164, 747–757, 2019. https://doi.org/10.1016/j.compositesb.2019.01.092.
  • J. Cai, J. Pan, J. Han, Y. Lin and Z. Sheng, Low-energy impact behavior of ambient cured engineered geopolymer composites. Ceramics International, 48, 9378–9389, 2022. https://doi.org/10.1016/j.ceramint. 2021.12.133.
  • V.C. Li and T. Kanda, Engineered cementitious composites for structural applications. Journal of Materials in Civil Engineering, 10 (2), 66–69. 1998.
  • H.J. Kong, S.G. Bike and V.C. Li, Development of a self-consolidating engineered cementitious composite employing electrosteric dispersion/stabilization. Cement and Concrete Composites, 25 (3), 301–309, 2003. https://doi.org/10.1016/S0958-9465(02)00057-4.
  • B. Nematollahi, J. Sanjayan and F.U.A. Shaikh, Tensile strain hardening behavior of PVA fiber-reinforced engineered geopolymer composite. Journal of Materials in Civil Engineering, 27 (10), 04015001, 2005. https://doi.org/10.1061/(ASCE)MT.1943-5533. 0001242.
  • J. Pan, J. Cai, H. Ma and C.K. Leung, Development of multiscale fiber-reinforced engineered cementitious composites with PVA Fiber and CaCO3 whisker. Journal of Materials in Civil Engineering, 30, 04018106, 2018. https://doi.org/10.1061/(ASCE)MT. 1943-5533.0002305.
  • V.C. Li, D.K. Mishra and H.C. Wu, Matrix design for pseudo-strain-hardening fibre reinforced cementitious composites. Materials and Structures, 28, 586–595, 1995.
  • S. Wang and V.C. Li, Engineered cementitious composites with high-volume fly ash. ACI Materials Journal 104 (3), 233–241, 2007. https://doi.org/ 10.1201/b15883 -8
  • C. Shi and A. Palomo, New cements for the 21st century: the pursuit of an alternative to Portland cement. Cement and Concrete Research, 41 (7), 750–763, 2011. https://doi.org/10.1016/j.cemconres.2011. 03.016.
  • M. Juenger, F. Winnefeld, J. Provis and J. Ideker, Advances in alternative cementitious binders. Cement and Concrete Research 41 (12),1232–1243, 2011. https://doi.org/10.1016/j.cemconres.2010.11.012.
  • J. Cai, J. Pan, J. Han, Y. Lin, and Z. Sheng, Impact behaviours of engineered geopolymer composite exposed to elevated temperatures. Construction and Building Materials, 312, 125421, 2021. https://doi.org/ 10.1016/j.conbuildmat.2021.125421.
  • B.-C. Lyu, C. Ding, L.-P. Guo, B.O. Chen, and A.-G. Wang, Basic performances and potential research problems of strain hardening geopolymer composites: A critical review. Construction and Building Materials, 287, 123030, 2021. https://doi.org/10.1016/ j.conbuildmat.2021.123030.
  • Y. Wang, Y. Wang, and M. Zhang, Effect of sand content on engineering properties of fly ash-slag based strain hardening geopolymer composites. Journal of Building Engineering, 34, 101951, 2021. https://doi. org/10.1016/j.jobe.2020.101951.
  • J. Davidovits, Environmentally driven geopolymer cement applications. in: Proceedings of 2002 Geopolymer Conference, Melbourne, Australia, 2002.
  • K. Chen, D. Wu, L. Xia, Q. Cai and Z. Zhang, Geopolymer concrete durability subjected to aggressive environments–A review of influence factors and comparison with ordinary Portland cement. Construction and Building Materials, 279, 122496, 2021. https://doi.org/10.1016/j.conbuildmat. 2021.122496.
  • P. Zhang, Y. Zheng, K. Wang, and J. Zhang, A review on properties of fresh and hardened geopolymer mortar. Composites Part B: Enginering, 152, 79–95, 2018. https://doi.org/10.1016/j.compositesb.2018.06. 031.
  • M. Zahid, N. Shafiq, S.N.A. Razak and R.F. Tufail, Investigating the effects of NaOH molarity and the geometry of PVA fibers on the post-cracking and the fracture behavior of engineered geopolymer composite. Construction and Building Materials, 265, 120295, 2020. https://doi.org/10.1016/j.conbuildmat. 2020.120295.
  • H.H. Nguyen, Q.H. Lương, J.I. Choi, R. Ranade, V.C. Li and B.Y. Lee, Ultra-ductile behavior of fly ash-based engineered geopolymer composites with a tensile strain capacity up to 13.7%. Cement and Concrete Composites, 122, 104133, 2021. https://doi.org/10.1016/j.cemconcomp.2021.104133.
  • A.C.C. Trindade, I. Curosu, M. Liebscher, V. Mechtcherine and F.A. Silva, On the mechanical performance of K- and Na-based strain-hardening geopolymer composites (SHGC) reinforced with PVA fibers. Construction and Building Materials, 248, 118558, 2020. https://doi.org/10.1016/j.con buildmat.2021.125649.
  • M. Ohno, and V.C. Li, An integrated design method of engineered geopolymer composite. Cement and Concrete Composites, 88, 73–85, 2018. https://doi.org /10.1016/j.cemconcomp.2018.02.001.
  • Y. Alrefaei and J.G. Dai, Tensile behavior and microstructure of hybrid fiber ambient cured one-part engineered geopolymer composites. Construction and Building Materials, 184, 419–431, 2018. https://doi. org/10.1016/j.conbuildmat.2018.07.012.
  • L.L. Kan, W.S. Wang, W.D. Liu, M. Wu, Development and characterization of fly ash based PVA fiber reinforced Engineered Geopolymer Composites incorporating metakaolin. Cement and Concrete Composites, 108, 103521, 2020. https://doi. org/10.1016/j.cemconcomp.2020.103521.
  • A.C.C. Trindade, A.A. Heravi, I. Curosu, M. Liebscher, F. de Andrade Silva and V. Mechtcherine, Tensile behavior of strain-hardening geopolymer composites (SHGC) under impact loading. Cement and Concrete Composites, 113, 103703, 2020. https:// doi.org/10.1016/j.cemconcomp.2020.103703.
  • M. Ohno and V.C. Li, A feasibility study of strain hardening fiber reinforced fly ash-based geopolymer composites. Construction and Building Materials, 57, 163–168, 2014. https://doi.org/10.1016/j.conbuildmat. 2014.02.005.
  • S.K. Nath, S. Maitra, S. Mukherjee and S. Kumar, Microstructural and morphological evolution of fly ash based geopolymers. Construction and Building Materials, 111, 758–765, 2016. https://doi.org/10.1016 /j.conbuildmat.2016.02.106.
  • Z. Li and S. Liu, Influence of slag as additive on compressive strength of fly-ash-based geopolymers. Journal of Materials in Civil Engineering, 19 (6), 470–474, 2007. https://doi.org/10.1061/(ASCE)0899-1561 (2007)19:6(470).
  • J. Chang, A study on the setting characteristics of sodium silicate-activated slag pastes. Cement and Concrete Research, 33(7), 1005–1011, 2003. https:// doi.org/10.1016/S0008-8846(02)01096-7.
  • S.K. Nath and S. Kumar, Influence of iron making slags on strength and microstructure of fly ash geopolymers. Construction and Building Materials, 38, 924–930, 2013. https://doi.org/10.1016/j.conbuild mat.2012.09.070.
  • P. Deb, P. Nath and P. Sarker, The effects of ground granulated blast-furnace slag blending with fly ash and activator content on the workability and strength properties of geopolymer concrete cured at ambient temperature. Materials and Design, 62, 32–39, 2014. https://doi.org/10.1016/j.matdes.2014.05. 001.
  • S.K. Nath, Geopolymerization behavior of ferrochrome slag and fly ash blends. Construction and Building Materials, 181, 487–494, 2018. https://doi. org/10.1016/j.conbuildmat.2018.06.070.
  • S.K. Nath and S. Kumar, Influence of granulated silico-manganese slag on compressive strength and microstructure of ambient cured alkali-activated fly ash binder. Waste and Biomass Valorization, 10 (7), 2045-2055, 2019. https://doi.org/10.1007/s12649-018-0213-1.
  • TS EN 197-1, Genel çimentolar - Bileşim, özellikler ve uygunluk kriterleri. Türk Standartları Enstitüsü, Ankara, 2002.
  • D. Hardjito, S.E. Wallah, D.M.J. Sumajouw and B.V. Rangan, On the development of fly ash-based geopolymer concrete. ACI Materials Journal, 101, 467–472, 2004. https://doi.org/10.14359/13485.
  • M.D.J. Sumajouw and B.V. Rangan, Low-calcium fly-ash-based geopolymer concrete. Faculty of Engineering, Curtin University of Technology. Perth, Australia, 2006.
  • P. Pavithra, M.S. Reddy, P. Dinakar, B.H. Rao, B.K. Satpathy and A.N. Mohanty, Effect of the Na2SiO3/NaOH ratio and NaOH molarity on the synthesis of fly ash-based geopolymer mortar. Geo-Chicago 2016. DOI: 10.1061/9780784480151.034.
  • A. Patra, M. Chowdhry and B. Prusty, Effect of synthesis parameters on the compressive strength of fly ash based geopolymer concrete. International Journal of Environment and Pollution, 3, 79–88, 2012.
  • V.C. Li, S. Wang and C. Wu, Tensile strain-hardening behavior of PVA-ECC. ACI Materials Journal, 98(6), 483–492, 2001. https://hdl.handle.net/2027.42/84671.
  • H.J. Kong, S. Bike and V.C. Li, Development of a self-consolidating engineered cementitious composite employing electrosteric dispersion/stabilization. Cement and Concrete Composites, 25, 301–309, 2003. https://doi.org/10.1016/S0958-9465(02)00057-4.
  • S. Kumar, R. Kumar and S.P. Mehrotra, Influence of granulated blast furnace slag on the reaction, structure and properties of fly ash based geopolymers. Journal of Materials Science, 45(3), 607–615, 2010. DOI 10.1007/s10853-009-3934-5.
  • J.G.S. van Jaarsveld, J.S.J. van Deventer and G.C. Lukey, The effect of composition and temperature on the properties of fly ash and kaolinite based geopolymers. Chemical Engineering Journal, 89, 63–73, 2002. https://doi.org/10.1016/S1385-8947(02)000 25-6.
  • J. Cai, X. Li, J. Tan and B. Vandevyvere, Thermal and compressive behaviors of fly ash and metakaolin-based geopolymers. Journal of Building Engineering, 30, 101307, 2020. https://doi.org/10.1016/j.jobe.2020. 101307.
  • L. Coppola, D. Coffetti, E. Crotti, R.D., Aversano and G. Gazzaniga, The influence of heat and steam curing on the properties of one-part fly ash/slag alkali activated materials: Preliminary results. AIP Conf. Pro. 2196, 020038, 2019.
  • M. Şahmaran, Z. Bilici, E. Özbay, T.K. Erdem, H.E. Yücel and M. Lachemi, Improving the workability and rheological properties of Engineered Cementitious Composites using factorial experimental design. Composites Part B: Engineering, 45, 356–368, 2013. https://doi.org/10.1016/j.compositesb.2012.08.015.
  • H.E. Yücel, H.Ö. Öz, M. Güneş and Y. Kaya, Rheological properties, strength characteristics and flexural performances of engineered cementitious composites incorporating synthetic wollastonite microfibers with two different high aspect ratios. Construction and Building Materials 306, 124921, 2021. https://doi.org/10.1016/j.conbuildmat.2021.124 921.
  • C.F. Ferraris, K. Obla and R. Hill, The influence of mineral admixtures on the rheology of cement paste and concrete. Cement and Concrete Research 31 (2), 245–255, 2001. https://doi.org/10.1016/S0008-8846 (00)00454-3.
  • M. Lachemi, K.M.A. Hossain, R. Patel, M. Shehata and N. Bouzoubaa, Influence of paste/ mortar rheology on the flow characteristics of high-volume fly ash self-consolidating concrete. Magazine and Concrete Research, 59 (7), 517–528, 2007. https://doi. org/10.1680/macr.2007.59.7.517.
  • E.H. Yang, M. Şahmaran, Y. Yang and V.C. Li, Rheological control in production of engineered cementitious composites. ACI Materials Journal, 106 (4), 357-366, 2009. https://doi.org/10.14359/56656
  • ASTM C109, Standard test method for compressive strength of hydraulic cement mortars (using 2-in. or [50-mm] cube specimens). American Society for Testing and Materials, ASTM International, West Conshohocken, United States, 2016.
  • ASTM C469, Standard test method for static modulus of elasticity and poisson’s ratio of concrete in compression. American Society for Testing and Materials, ASTM International, West Conshohocken, Pennsylvania, United States, 2014.
  • J.R. Del Viso, J.R. Carmona and G. Ruiz, Shape and size effects on the compressive strength of high-strength concrete. Cement and Concrete Research, 38 (3), 386-395, 2008. https://doi.org/10.1016/j.cemcon res.2007.09.020.
  • S. Sinaie, A. Heidarpour, X.L. Zhao and J.G. Sanjayan, Effect of size on the response of cylindrical concrete samples under cyclic loading. Construction and Building Materials, 84, 399-408, 2015. https://doi. org/10.1016/j.conbuildmat.2015.03.076.
  • F. Stochinoa, M. Valdesa, F. Mistrettaa and M. Sassu, Assessment of lightweight concrete properties under cryogenic temperatures: influence on the modulus of elasticity. Procedia Structural Integrity, 28, 1467–1472, 2020. https://doi.org/10.1016/ j.prostr.2020.10.120
  • B. Wu, C.H. Liu and Y. Yang, Size effect on compressive behaviors of normalstrength concrete cubes made from demolished concrete blocks and fresh concrete. Magazine of Concrete Research, 65 (19), 1155–1167, 2013. https://doi.org/10.1680/macr. 13.00053.
  • B. Wu, Y. Yu, Z. Chen and X. Zhao, Shape effect on compressive mechanical properties of compound concrete containing demolished concrete lumps. Construction and Building Materials, 187, 50–64, 2018. https://doi.org/10.1016/j.conbuildmat.2018.07. 086.
  • H. Yang, L. Lv, Z. Deng, et al., Residual compressive stress-strain relation of recycled aggregate concrete after exposure to high temperatures. Structural Concrete, 18 (3), 1-8, 2017. https://doi.org/10.1002/ suco.201500153.
  • ASTM C597, Standard test method for pulse velocity through concrete. American Society for Testing and Materials, ASTM International, West Conshohocken, Pennsylvania, United States, 2016.
  • IAEA, Guide book on non-destructive testing of concrete structures. Training Courses Series no. 17, International Atomic Energy Agency, Vienna, Austria, 2002.
  • ASTM E399, Test method for plane-strain fracture toughness of metallic materials. American Society for Testing and Materials, ASTM International, West Conshohocken, Pennsylvania, United States, 2003.
  • V.C. Li and Wu, H.C., Conditions for pseudo strain-hardening in fiber reinforced brittle matrix composites. Applied Mechanics Review (ASME), 45 (8), 390–398, 1992. https://hdl.handle.net/2027.42/ 84708.
  • S. Wang, and V.C. Li, High-early-strength engineered cementitious composites. ACI Material Journal, 103 (2), 97–105, 2006.
  • M.D. Lepech, V.C. Li, R.E. Robertson and G.A. Keoleian, Design of green engineered cementitious composites for ımproved sustainability. ACI Materials Journal, 105 (6), 567-575, 2008. https://hdl.handle.net/ 2027.42/84660.
  • M.D. Stults, R. Ranade, V.C. Li and T.S. Rushing, Mechanical effects of rice hush ash in ultra-high performance concretes: a matrix study. in Advances in Cement-Based Materials, Proc., International Conference on Advanced Concrete Materials, sayfa 21–28, Stellenbosch, South Africa, November 2009.
  • V.C. Li, ECC tailored composites through micromechanical modeling. fiber reinforced concrete: Present and the future edited by Banthia, N., Bentur, A. and Mufti, A. (Eds.)’’, CSCE, Montreal, 64-97, 1998.
  • M.H. Al-Majidi, A. Lampropoulos, A. Cundy and S. Meikle, Development of geopolymer mortar under ambient temperature for in situ applications. Construction and Building Materials, 120, 198–211. 2016. https://doi.org/10.1016/j.conbuildmat.2016.05. 085.
  • S.Y. Oderji, B. Chen, M.R. Ahmad and S.F.A. Shah, Fresh and hardened properties of one-part fly ash-based Geopolymer binders cured at room temperature: Effect of slag and alkali activators. Journal of Cleaner Production, 225, 1–10, 2019. https://doi.org/10.1016/ j.jclepro.2019.03.290.
  • K. Ganesan, K. Rajagopal and K. Thangavel, Rice hush ash blended cement: Assessment of optimal level of replacement for strength and permeability properties of concrete. Construction and Building Materials, 22 (8), 1675–1683, 2007. https://doi.org/10. 1016/j.conbuildmat.2007.06.011.
  • G.A. Rao, Investigations on the performance of silica fume-incorporated cement pastes and mortars. Cement and Concrete Reasearch, 33 (11), 1765–1770, 2003. https://doi.org/10.1016/S0008-8846(03)00171-6.
  • H. Temiz, M.M. Kose and S. Koksal, Effects of portland composite and composite cements on durability of mortar and permeability of concrete. Construction and Building Materials, 21 (6), 1170–1176, 2007. https://doi.org/10.1016/j.conbuildmat. 2006.06.011.
  • F. Škvára, T. Jílek and L. Kopecky´, Geopolymer materials based on fly ash. Ceramics Silikaty, 49 (3), 195–204, 2005.
  • A.M. Rashad, A comprehensive overview about the influence of different admixtures and additives on the properties of alkali-activated fly ash. Materials Design 53, 1005–1025, 2014. https://doi.org/10.1016/j. matdes.2013.07.074.
  • S. Saha and C. Rajasekaran, Enhancement of the properties of fly ash based geopolymer paste by incorporating ground granulated blast furnace slag. Construction and Building Materials,146, 615–620. 2017. https://doi.org/10.1016/j.conbuildmat.2017.04. 139.
  • J. Shang, J.G. Dai, T.J. Zhao, S.Y. Guo, P. Zhang and B. Mu, Alternation of traditional cement mortars using fly ash-based geopolymer mortars modified by slag. Journal of Cleaner Production 203, 746–756, 2018. https://doi.org/10.1016/j.jclepro.2018.08.255.
  • N.K. Lee and H.K. Lee, Setting and mechanical properties of alkali-activated fly ash/slag concrete manufactured at room temperature. Construction and Building Materials, 47, 1201–1209, 2013. https://doi. org/10.1016/j.conbuildmat.2013.05.107.
  • J. Temuujin, A. van Riessen and R. Williams, Influence of calcium compounds on the mechanical properties of fly ash geopolymer pastes. Journal of Hazardous Materials, 167 (1–3), 82–88, 2009. https:// doi.org/10.1016/j.jhazmat.2008.12.121.
  • I. Perna and T. Hanzlí cek, The setting time of a clay-slag geopolymer matrix: the influence of blast-furnace-slag addition and the mixing method. Journal of Cleaner Production, 112, 1150–1155, 2016. https:// doi.org/10.1016/j.jclepro.2015.05.069.
  • R. Gopalakrishnan and K. Chinnaraju, Durability of ambient cured alumina silicate concrete based on slag/fly ash blends against sulfate environment. Construction and Building Materials, 204, 70–83, 2019. https://doi.org/10.1016/j.conbuildmat.2019.01. 153.
  • M. Gesoğlu, E. Güneyisi, T. Özturan, H.Ö. Öz and D.S. Asaad, Permeation characteristics of self compacting concrete made with partially substitution of natural aggregates with rounded lightweight aggregates. Construction and Building Materials, 59, 1–9, 2014. https://doi.org/10.1016/j.conbuildmat. 2014.02.031.
  • S.A. Omer, R. Demirboga, W.H. Khushefati, Relationship between compressive strength and UPV of GGBFS based geopolymer mortars exposed to elevated temperatures. Construction and Building Materials, 94, 189–195, 2015. https://doi.org/10.1016/ j.conbuildmat.2015.07.006.
  • P. Nath and P.K. Sarker, Fracture properties of GGBFS-blended fly ash geopolymers concrete cured in ambient temperature. Materials and Structures, 50 (32), 2016. http://hdl.handle.net/20.500.11937/15620.
  • M.E. Gülşan, R. Alzeebaree, A.A. Rasheed, A. Niş and A.E. Kurtoğlu, Development of fly ash/slag based self-compacting geopolymer concrete using nano-silica and steel fiber. Construction and Building Materials, 211, 271–283, 2019. https://doi.org/10. 1016/j.conbuildmat.2019.03.228.
  • M. Sitarz, I. Hager and M. Choinska, Evolution of mechanical properties with time of fly-ash-based geopolymer mortars under the effect of granulated ground blast furnace slag addition. Energies, 13(1135), 2020. https://doi.org/10.3390/en13051135
  • H. Alanazi, J. Hu and Y.R. Kim, Effect of slag, silica fume, and metakaolin on properties and performance of alkali-activated fly ash cured at ambient temperature. Construction and Building Materials, 197, 747–756, 2019. https://doi.org/10.1016/j.con buildmat.2018.11.172.
  • X. Guo and X. Pan, Mechanical properties and mechanisms of fiber reinforced fly ash–steel slag based geopolymer mortar. Construction and Building Materials, 179, 633–664, 2018. https://doi.org/10. 1016/j.conbuildmat.2018.05.198.
  • N. Ismail, H. El-hassan and M. Asce, Development and characterization of fly ash – slag blended geopolymer mortar and lightweight concrete. Journal of Materials in Civil Engineering 30, 1–14, 2018. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002 209.
  • M. Sitarz, M. Urban and I. Hager, Rheology and mechanical properties of fly ashbased geopolymer mortars with ground granulated blast furnace slag addition. Energies, 13 (10), 2639, 2020. https://doi.org /10.3390/en13102639.
  • N.M. Altwair, M.M. Johari and S.S. Hashim, Flexural performance of green engineered cementitious composites containing high volume of palm oil fuel ash. Construction and Building Materials, 37, 518–525, 2012. https://doi.org/10.1016/j.conbuildmat. 2012.08.003.
  • M. Şahmaran, H.E. Yücel, S. Demirhan, M.T. Arık and V.C. Li, Combined effect of aggregate and mineral admixtures on tensile ductility of engineered cementitious composites. ACI Materials Journal, 109 (6), 627-638, 2012.
  • M. Şahmaran, M. Lachemi, K.M. Hossain, R. Ranade and V.C. Li, Influence of aggregate type and size on ductility and mechanical properties of engineered cementitious composites. ACI Materials Journal, 106 (3), 308–316, 2009. https://aperta.ulakbim.gov.tr// record/42333.
  • S.M. Mustakim, S.K. Das, J. Mishra, A. Aftab, T.S. Alomayri, H.S. Assaedi and C.R. Kaze, Improvement in fresh, mechanical and microstructural properties of fly ash- blast furnace slag based geopolymer concrete by addition of nano and micro silica. Silicon, 13, 2415–2428, 2021.
  • S. Luhar, S. Chaudhary and I. Luhar, Thermal resistance of fly ash based rubberized geopolymer concrete. Journal of Building Engineering, 19, 420–428, 2018. https://doi.org/10.1016/j.jobe.2018.05.025.
  • H.Ö. Öz, H.E. Yücel, M. Güneş and T.Ş. Köker, Fly-ash-based geopolymer composites incorporating cold-bonded lightweight fly ash aggregates. Construction and Building Materials, 272, 121963, 2021. https:// doi.org/10.1016/j.conbuildmat.2020.121963.
  • M. Sivasakthi, R. Jeyalakshmi, N.P. Rajamane and R. Jose, Thermal and structural micro analysis of micro silica blended fly ash based geopolymer composites. Journal of Non-Crystalline Solids, 499, 117–130, 2018. https://doi.org/10.1016/j.jnoncrysol.2018.07. 027
  • V.K.J. Bohra, R. Nerella, S.R.C. Madduru and P. Rohith, Microstructural characterization of fly ash based geopolymers. Materıals Transactions, 2020.
  • G.M. Kim, et al., Heavy metal leaching, CO2 uptake & mechanical characteristics of carbonated porous concrete with alkali-activated slag & bottom ash. International Journal of Concrete Structures and Materials, 9 (3), 283–294, 2015. https://doi.org/10. 1007/s40069-015-0111-x.
  • M. Ben Haha, B. Lothenbach, G. Le Saout and F. Winnefeld, Influence of slag chemistry on the hydration of alkali-activated blast-furnace slag – Part I: Effect of MgO. Cement and Concrete Research, 41, 955–963, 2011. https://doi.org/10.1016/j.cemconres. 2011.05.002.
  • A. Gruskovnjak, B. Lothenbach, F. Winnefeld, B. Münch, R. Figi, S. Ko, M. Adler and U. Mäder, Quantification of hydration phases in supersulphated cements : review and new approaches. Advances in Cement Research, 23 (6), 265–275, 2011. https://doi. org/10.1680/adcr.2011. 23.6.265.
  • E. Kanezaki, Thermal behavior of the hydrotalcite-like layered structure of Mg and Al-layered double hydroxides with interlayer carbonate by means of in situ powder HTXRD and DTA/TG. Solid State Ionics, 106 (3–4), 279–284, 1998. https://doi.org/10.1016/ S0167-2738(97)00494-3.
  • K. Rozov, U. Berner, C. Taviot-Gueho, F. Leroux, G. Renaudin, D. Kulik and L.W. Diamond, Synthesis and characterization of the LDH hydrotalcite–pyroaurite solid-solution series. Cement and Concrete Research, 40, 1248–1254, 2010. https://doi.org/10.1016/j.cem conres.2009.08.031.
  • B. Lothenbach and A. Gruskovnjak, Hydration of alkali-activated slag: thermodynamic modelling. Advances in Cement Research, 19, 81–92, 2007. https://doi.org/10.1680/adcr.2007.19.2.81.
  • E. Adesanya, K. Ohenoja, A. Di Maria, P. Kinnunen and M. Illikainen, Alternative alkali-activator from steel making waste for one-part alkali-activated slag. Journal of Cleaner Production, 274, 123020, 2020. https://doi.org/10.1016/ j.jclepro.2020.123020.
  • P. Zhang and Q.-F. Li, Durability of high performance concrete composites containing silica fume. Proceedings of the IMechE, 227, 343–349, 2013. https://doi.org/10.1177/1464420712460617.
  • R.B. Barnes, Infrared spectra and organic chemistry. Review of Scientific Instruments, 7, 265–271, 1936. https://doi.org/10.1063/1.1752148.
  • W.K.W. Lee and J.S.J. van Deventer, Use of infrared spectroscopy to study geopolymerization of heterogeneous amorphous alumino silicates. American Chemical Society, 19 (21), 8726–8734, 2003. https:// doi.org/10.1021/la026127e.
  • P.I.K. Onorato, M.N. Alexander, C.W. Struck, G.W. Tasker and D.R. Uhlmann, Bridging and non bridging oxygen-atoms in alkali aluminosilicate glasses. Journal of the American Ceramic Society, 68, 148–150, 1985. https://doi.org/10.1111/j.1151-2916.1985. tb15223.x.
  • T. Takei, K. Kato, A. Meguro and M. Chikazawa, Infrared spectra of geminal and novel triple hydroxyl groups on silica surface. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 150, 77–84, 1999.
  • A. Palomo, M.W. Grutzeck and M.T., Blanco Alkali-activated fly ashes: a cement for the future. Cement and Concrete Research, 29 (8), 1323–1329, 1999. https://doi.org/10.1016/S0008-8846(98)00243-9.
  • D. Ren, C. Yan, P. Duan, Z. Zhang, L. Li and Z. Yan, Durability performances of wollastonite, tremolite and basalt fiber-reinforced metakaolin geopolymer composites under sulfate and chloride attack. Construction and Building Materials, 134, 56–66, 2017. https://doi.org/10.1016/ j.conbuildmat.2016.12. 103.
  • J. Xiang, L. Liu, Y. He, N. Zhang and X. Cui, Early mechanical properties and microstructural evolution of slag/metakaolin-based geopolymers exposed to karst water. Cement and Concrete Composites, 99, 140–150, 2019. https://doi.org/10.1016/j.cemconcomp. 2019.03.009.
  • C.A. Rosas-Casarez, S.P. Arredondo-Rea, A. Cruz-Enríquez, R. Corral-Higuera, M.J. Pellegrini-Cervantes, J.M. Gómez-Soberón and T.J. Medina-Serna, Influence of size reduction of fly ash particles by grinding on the chemical properties of geopolymers. Applied Sciences, 8 (365), 2018.
  • F. Puartes, M. Palacios and T. Vazquez, Carbonation process of alkali-activated slag mortars. Journal Material Science, 41, 3071–3082, 2006. http://dx.doi.org/10.1007/s10853-005-1821-2.
  • E. Kapeluszna, Ł. Kotwica, A. Różycka and Ł. Gołek, Incorporation of Al in C-A-S-H gels with various Ca/Si and Al/Si ratio: microstructural and structural characteristics with DTA/TG, XRD, FTIR and TEM analysis. Construction and Building Materials, 155, 643–653, 2017. https://doi.org/10.1016 /j.conbuildmat.2017.08.091.
  • Y.Y. Ge, X.M. Cui, Y. Kong, Z.L. Li, He, Y. and Q.Q. Zhou, Porous geopolymeric spheres for removal of Cu(II) from aqueous solution: synthesis and evaluation. Journal of Hazardous Materials, 283, 244–251, 2015. https://doi.org/10.1016/j.jhazmat.2014.09. 038.
  • M. Palacios and F. Puartes, Effect of carbonation on alkali-activated slag paste. Journal of the American Ceramic Society, 89 (10), 3211–3221, 2006. https://doi.org/10.1111/j.1551-2916.2006.01214.x.
  • V.F. Barbosa, K.J. MacKenzie and C. Thaumaturgo, Synthesis and characterisation of materials based on inorganic polymers of alumina and silica: sodium polysialate polymers. International Journal of Inorganic Materials, 2 (4), 309–317, 2000. https://doi.org/10.1016/S1466-6049(00)00041-6.
  • W. Mozgawa and J. Deja, Spectroscopic studies of alkaline activated slag geopolymers. Journal of Molecular Structure, 924–926 (30), 434–441, 2009.
  • P. Yu, R.J. Kirkpatrick, B. Poe, P.F. McMillan and X.D. Cong, Structure of calcium silicate hydrate (C-S-H): near-, mid-, and far-infrared spectroscopy. Journal of the American Ceramic Society, 82 (3), 742–748, 1999.
  • N. Li, N. Farzadnia and C.J. Shi, Microstructural changes in alkali-activated slag mortars induced by accelerated carbonation. Cement and Concrete Research, 100 (9), 214–226, 2017. https://doi.org/10. 1016/j.cemconres.2017.07.008.

Mechanical and microstructural properties of engineered cementitious composite with fly ash and slag-based engineered geopolymer composites

Year 2023, , 452 - 471, 15.04.2023
https://doi.org/10.28948/ngumuh.1186020

Abstract

In this study, it was aimed to develop a fly ash+blast furnace slag (FA+BFS)-based engineered geopolymer composite (EGC) mixture having similar bearing strength and deformation capacity to the standard engineered cementitious composite (ECC) known with the M45 code in the literature. For this purpose, in addition to ECC, two different EGC mixtures incorporating different ratios of FA and BFS were produced. The compressive strength, modulus of elasticity, air dry unit volume weight, structural efficiency, ultrasonic pulse velocity (UPV), fracture toughness and flexural performance were determined on the 7th and 28th day as well as the fresh and rheological properties of these three mixtures. Finally, an EGC mixture having much higher compressive strength and ductility was obtained than that of ECC. Moreover, it was determined that increasing amount of BFS improved mechanical strength and toughness, but decreased ductility. The reasons of these situations were investigated microstructurally by XRD, TGA/DTA and FTIR analyzes.

Project Number

MMT 2021/2-BAGEP

References

  • Y. Ling, K. Wang, W. Li, G. Shi and P. Lu, Effect of slag on the mechanical properties and bond strength of fly ash-based engineered geopolymer composites. Composites Part B: Engineering, 164, 747–757, 2019. https://doi.org/10.1016/j.compositesb.2019.01.092.
  • J. Cai, J. Pan, J. Han, Y. Lin and Z. Sheng, Low-energy impact behavior of ambient cured engineered geopolymer composites. Ceramics International, 48, 9378–9389, 2022. https://doi.org/10.1016/j.ceramint. 2021.12.133.
  • V.C. Li and T. Kanda, Engineered cementitious composites for structural applications. Journal of Materials in Civil Engineering, 10 (2), 66–69. 1998.
  • H.J. Kong, S.G. Bike and V.C. Li, Development of a self-consolidating engineered cementitious composite employing electrosteric dispersion/stabilization. Cement and Concrete Composites, 25 (3), 301–309, 2003. https://doi.org/10.1016/S0958-9465(02)00057-4.
  • B. Nematollahi, J. Sanjayan and F.U.A. Shaikh, Tensile strain hardening behavior of PVA fiber-reinforced engineered geopolymer composite. Journal of Materials in Civil Engineering, 27 (10), 04015001, 2005. https://doi.org/10.1061/(ASCE)MT.1943-5533. 0001242.
  • J. Pan, J. Cai, H. Ma and C.K. Leung, Development of multiscale fiber-reinforced engineered cementitious composites with PVA Fiber and CaCO3 whisker. Journal of Materials in Civil Engineering, 30, 04018106, 2018. https://doi.org/10.1061/(ASCE)MT. 1943-5533.0002305.
  • V.C. Li, D.K. Mishra and H.C. Wu, Matrix design for pseudo-strain-hardening fibre reinforced cementitious composites. Materials and Structures, 28, 586–595, 1995.
  • S. Wang and V.C. Li, Engineered cementitious composites with high-volume fly ash. ACI Materials Journal 104 (3), 233–241, 2007. https://doi.org/ 10.1201/b15883 -8
  • C. Shi and A. Palomo, New cements for the 21st century: the pursuit of an alternative to Portland cement. Cement and Concrete Research, 41 (7), 750–763, 2011. https://doi.org/10.1016/j.cemconres.2011. 03.016.
  • M. Juenger, F. Winnefeld, J. Provis and J. Ideker, Advances in alternative cementitious binders. Cement and Concrete Research 41 (12),1232–1243, 2011. https://doi.org/10.1016/j.cemconres.2010.11.012.
  • J. Cai, J. Pan, J. Han, Y. Lin, and Z. Sheng, Impact behaviours of engineered geopolymer composite exposed to elevated temperatures. Construction and Building Materials, 312, 125421, 2021. https://doi.org/ 10.1016/j.conbuildmat.2021.125421.
  • B.-C. Lyu, C. Ding, L.-P. Guo, B.O. Chen, and A.-G. Wang, Basic performances and potential research problems of strain hardening geopolymer composites: A critical review. Construction and Building Materials, 287, 123030, 2021. https://doi.org/10.1016/ j.conbuildmat.2021.123030.
  • Y. Wang, Y. Wang, and M. Zhang, Effect of sand content on engineering properties of fly ash-slag based strain hardening geopolymer composites. Journal of Building Engineering, 34, 101951, 2021. https://doi. org/10.1016/j.jobe.2020.101951.
  • J. Davidovits, Environmentally driven geopolymer cement applications. in: Proceedings of 2002 Geopolymer Conference, Melbourne, Australia, 2002.
  • K. Chen, D. Wu, L. Xia, Q. Cai and Z. Zhang, Geopolymer concrete durability subjected to aggressive environments–A review of influence factors and comparison with ordinary Portland cement. Construction and Building Materials, 279, 122496, 2021. https://doi.org/10.1016/j.conbuildmat. 2021.122496.
  • P. Zhang, Y. Zheng, K. Wang, and J. Zhang, A review on properties of fresh and hardened geopolymer mortar. Composites Part B: Enginering, 152, 79–95, 2018. https://doi.org/10.1016/j.compositesb.2018.06. 031.
  • M. Zahid, N. Shafiq, S.N.A. Razak and R.F. Tufail, Investigating the effects of NaOH molarity and the geometry of PVA fibers on the post-cracking and the fracture behavior of engineered geopolymer composite. Construction and Building Materials, 265, 120295, 2020. https://doi.org/10.1016/j.conbuildmat. 2020.120295.
  • H.H. Nguyen, Q.H. Lương, J.I. Choi, R. Ranade, V.C. Li and B.Y. Lee, Ultra-ductile behavior of fly ash-based engineered geopolymer composites with a tensile strain capacity up to 13.7%. Cement and Concrete Composites, 122, 104133, 2021. https://doi.org/10.1016/j.cemconcomp.2021.104133.
  • A.C.C. Trindade, I. Curosu, M. Liebscher, V. Mechtcherine and F.A. Silva, On the mechanical performance of K- and Na-based strain-hardening geopolymer composites (SHGC) reinforced with PVA fibers. Construction and Building Materials, 248, 118558, 2020. https://doi.org/10.1016/j.con buildmat.2021.125649.
  • M. Ohno, and V.C. Li, An integrated design method of engineered geopolymer composite. Cement and Concrete Composites, 88, 73–85, 2018. https://doi.org /10.1016/j.cemconcomp.2018.02.001.
  • Y. Alrefaei and J.G. Dai, Tensile behavior and microstructure of hybrid fiber ambient cured one-part engineered geopolymer composites. Construction and Building Materials, 184, 419–431, 2018. https://doi. org/10.1016/j.conbuildmat.2018.07.012.
  • L.L. Kan, W.S. Wang, W.D. Liu, M. Wu, Development and characterization of fly ash based PVA fiber reinforced Engineered Geopolymer Composites incorporating metakaolin. Cement and Concrete Composites, 108, 103521, 2020. https://doi. org/10.1016/j.cemconcomp.2020.103521.
  • A.C.C. Trindade, A.A. Heravi, I. Curosu, M. Liebscher, F. de Andrade Silva and V. Mechtcherine, Tensile behavior of strain-hardening geopolymer composites (SHGC) under impact loading. Cement and Concrete Composites, 113, 103703, 2020. https:// doi.org/10.1016/j.cemconcomp.2020.103703.
  • M. Ohno and V.C. Li, A feasibility study of strain hardening fiber reinforced fly ash-based geopolymer composites. Construction and Building Materials, 57, 163–168, 2014. https://doi.org/10.1016/j.conbuildmat. 2014.02.005.
  • S.K. Nath, S. Maitra, S. Mukherjee and S. Kumar, Microstructural and morphological evolution of fly ash based geopolymers. Construction and Building Materials, 111, 758–765, 2016. https://doi.org/10.1016 /j.conbuildmat.2016.02.106.
  • Z. Li and S. Liu, Influence of slag as additive on compressive strength of fly-ash-based geopolymers. Journal of Materials in Civil Engineering, 19 (6), 470–474, 2007. https://doi.org/10.1061/(ASCE)0899-1561 (2007)19:6(470).
  • J. Chang, A study on the setting characteristics of sodium silicate-activated slag pastes. Cement and Concrete Research, 33(7), 1005–1011, 2003. https:// doi.org/10.1016/S0008-8846(02)01096-7.
  • S.K. Nath and S. Kumar, Influence of iron making slags on strength and microstructure of fly ash geopolymers. Construction and Building Materials, 38, 924–930, 2013. https://doi.org/10.1016/j.conbuild mat.2012.09.070.
  • P. Deb, P. Nath and P. Sarker, The effects of ground granulated blast-furnace slag blending with fly ash and activator content on the workability and strength properties of geopolymer concrete cured at ambient temperature. Materials and Design, 62, 32–39, 2014. https://doi.org/10.1016/j.matdes.2014.05. 001.
  • S.K. Nath, Geopolymerization behavior of ferrochrome slag and fly ash blends. Construction and Building Materials, 181, 487–494, 2018. https://doi. org/10.1016/j.conbuildmat.2018.06.070.
  • S.K. Nath and S. Kumar, Influence of granulated silico-manganese slag on compressive strength and microstructure of ambient cured alkali-activated fly ash binder. Waste and Biomass Valorization, 10 (7), 2045-2055, 2019. https://doi.org/10.1007/s12649-018-0213-1.
  • TS EN 197-1, Genel çimentolar - Bileşim, özellikler ve uygunluk kriterleri. Türk Standartları Enstitüsü, Ankara, 2002.
  • D. Hardjito, S.E. Wallah, D.M.J. Sumajouw and B.V. Rangan, On the development of fly ash-based geopolymer concrete. ACI Materials Journal, 101, 467–472, 2004. https://doi.org/10.14359/13485.
  • M.D.J. Sumajouw and B.V. Rangan, Low-calcium fly-ash-based geopolymer concrete. Faculty of Engineering, Curtin University of Technology. Perth, Australia, 2006.
  • P. Pavithra, M.S. Reddy, P. Dinakar, B.H. Rao, B.K. Satpathy and A.N. Mohanty, Effect of the Na2SiO3/NaOH ratio and NaOH molarity on the synthesis of fly ash-based geopolymer mortar. Geo-Chicago 2016. DOI: 10.1061/9780784480151.034.
  • A. Patra, M. Chowdhry and B. Prusty, Effect of synthesis parameters on the compressive strength of fly ash based geopolymer concrete. International Journal of Environment and Pollution, 3, 79–88, 2012.
  • V.C. Li, S. Wang and C. Wu, Tensile strain-hardening behavior of PVA-ECC. ACI Materials Journal, 98(6), 483–492, 2001. https://hdl.handle.net/2027.42/84671.
  • H.J. Kong, S. Bike and V.C. Li, Development of a self-consolidating engineered cementitious composite employing electrosteric dispersion/stabilization. Cement and Concrete Composites, 25, 301–309, 2003. https://doi.org/10.1016/S0958-9465(02)00057-4.
  • S. Kumar, R. Kumar and S.P. Mehrotra, Influence of granulated blast furnace slag on the reaction, structure and properties of fly ash based geopolymers. Journal of Materials Science, 45(3), 607–615, 2010. DOI 10.1007/s10853-009-3934-5.
  • J.G.S. van Jaarsveld, J.S.J. van Deventer and G.C. Lukey, The effect of composition and temperature on the properties of fly ash and kaolinite based geopolymers. Chemical Engineering Journal, 89, 63–73, 2002. https://doi.org/10.1016/S1385-8947(02)000 25-6.
  • J. Cai, X. Li, J. Tan and B. Vandevyvere, Thermal and compressive behaviors of fly ash and metakaolin-based geopolymers. Journal of Building Engineering, 30, 101307, 2020. https://doi.org/10.1016/j.jobe.2020. 101307.
  • L. Coppola, D. Coffetti, E. Crotti, R.D., Aversano and G. Gazzaniga, The influence of heat and steam curing on the properties of one-part fly ash/slag alkali activated materials: Preliminary results. AIP Conf. Pro. 2196, 020038, 2019.
  • M. Şahmaran, Z. Bilici, E. Özbay, T.K. Erdem, H.E. Yücel and M. Lachemi, Improving the workability and rheological properties of Engineered Cementitious Composites using factorial experimental design. Composites Part B: Engineering, 45, 356–368, 2013. https://doi.org/10.1016/j.compositesb.2012.08.015.
  • H.E. Yücel, H.Ö. Öz, M. Güneş and Y. Kaya, Rheological properties, strength characteristics and flexural performances of engineered cementitious composites incorporating synthetic wollastonite microfibers with two different high aspect ratios. Construction and Building Materials 306, 124921, 2021. https://doi.org/10.1016/j.conbuildmat.2021.124 921.
  • C.F. Ferraris, K. Obla and R. Hill, The influence of mineral admixtures on the rheology of cement paste and concrete. Cement and Concrete Research 31 (2), 245–255, 2001. https://doi.org/10.1016/S0008-8846 (00)00454-3.
  • M. Lachemi, K.M.A. Hossain, R. Patel, M. Shehata and N. Bouzoubaa, Influence of paste/ mortar rheology on the flow characteristics of high-volume fly ash self-consolidating concrete. Magazine and Concrete Research, 59 (7), 517–528, 2007. https://doi. org/10.1680/macr.2007.59.7.517.
  • E.H. Yang, M. Şahmaran, Y. Yang and V.C. Li, Rheological control in production of engineered cementitious composites. ACI Materials Journal, 106 (4), 357-366, 2009. https://doi.org/10.14359/56656
  • ASTM C109, Standard test method for compressive strength of hydraulic cement mortars (using 2-in. or [50-mm] cube specimens). American Society for Testing and Materials, ASTM International, West Conshohocken, United States, 2016.
  • ASTM C469, Standard test method for static modulus of elasticity and poisson’s ratio of concrete in compression. American Society for Testing and Materials, ASTM International, West Conshohocken, Pennsylvania, United States, 2014.
  • J.R. Del Viso, J.R. Carmona and G. Ruiz, Shape and size effects on the compressive strength of high-strength concrete. Cement and Concrete Research, 38 (3), 386-395, 2008. https://doi.org/10.1016/j.cemcon res.2007.09.020.
  • S. Sinaie, A. Heidarpour, X.L. Zhao and J.G. Sanjayan, Effect of size on the response of cylindrical concrete samples under cyclic loading. Construction and Building Materials, 84, 399-408, 2015. https://doi. org/10.1016/j.conbuildmat.2015.03.076.
  • F. Stochinoa, M. Valdesa, F. Mistrettaa and M. Sassu, Assessment of lightweight concrete properties under cryogenic temperatures: influence on the modulus of elasticity. Procedia Structural Integrity, 28, 1467–1472, 2020. https://doi.org/10.1016/ j.prostr.2020.10.120
  • B. Wu, C.H. Liu and Y. Yang, Size effect on compressive behaviors of normalstrength concrete cubes made from demolished concrete blocks and fresh concrete. Magazine of Concrete Research, 65 (19), 1155–1167, 2013. https://doi.org/10.1680/macr. 13.00053.
  • B. Wu, Y. Yu, Z. Chen and X. Zhao, Shape effect on compressive mechanical properties of compound concrete containing demolished concrete lumps. Construction and Building Materials, 187, 50–64, 2018. https://doi.org/10.1016/j.conbuildmat.2018.07. 086.
  • H. Yang, L. Lv, Z. Deng, et al., Residual compressive stress-strain relation of recycled aggregate concrete after exposure to high temperatures. Structural Concrete, 18 (3), 1-8, 2017. https://doi.org/10.1002/ suco.201500153.
  • ASTM C597, Standard test method for pulse velocity through concrete. American Society for Testing and Materials, ASTM International, West Conshohocken, Pennsylvania, United States, 2016.
  • IAEA, Guide book on non-destructive testing of concrete structures. Training Courses Series no. 17, International Atomic Energy Agency, Vienna, Austria, 2002.
  • ASTM E399, Test method for plane-strain fracture toughness of metallic materials. American Society for Testing and Materials, ASTM International, West Conshohocken, Pennsylvania, United States, 2003.
  • V.C. Li and Wu, H.C., Conditions for pseudo strain-hardening in fiber reinforced brittle matrix composites. Applied Mechanics Review (ASME), 45 (8), 390–398, 1992. https://hdl.handle.net/2027.42/ 84708.
  • S. Wang, and V.C. Li, High-early-strength engineered cementitious composites. ACI Material Journal, 103 (2), 97–105, 2006.
  • M.D. Lepech, V.C. Li, R.E. Robertson and G.A. Keoleian, Design of green engineered cementitious composites for ımproved sustainability. ACI Materials Journal, 105 (6), 567-575, 2008. https://hdl.handle.net/ 2027.42/84660.
  • M.D. Stults, R. Ranade, V.C. Li and T.S. Rushing, Mechanical effects of rice hush ash in ultra-high performance concretes: a matrix study. in Advances in Cement-Based Materials, Proc., International Conference on Advanced Concrete Materials, sayfa 21–28, Stellenbosch, South Africa, November 2009.
  • V.C. Li, ECC tailored composites through micromechanical modeling. fiber reinforced concrete: Present and the future edited by Banthia, N., Bentur, A. and Mufti, A. (Eds.)’’, CSCE, Montreal, 64-97, 1998.
  • M.H. Al-Majidi, A. Lampropoulos, A. Cundy and S. Meikle, Development of geopolymer mortar under ambient temperature for in situ applications. Construction and Building Materials, 120, 198–211. 2016. https://doi.org/10.1016/j.conbuildmat.2016.05. 085.
  • S.Y. Oderji, B. Chen, M.R. Ahmad and S.F.A. Shah, Fresh and hardened properties of one-part fly ash-based Geopolymer binders cured at room temperature: Effect of slag and alkali activators. Journal of Cleaner Production, 225, 1–10, 2019. https://doi.org/10.1016/ j.jclepro.2019.03.290.
  • K. Ganesan, K. Rajagopal and K. Thangavel, Rice hush ash blended cement: Assessment of optimal level of replacement for strength and permeability properties of concrete. Construction and Building Materials, 22 (8), 1675–1683, 2007. https://doi.org/10. 1016/j.conbuildmat.2007.06.011.
  • G.A. Rao, Investigations on the performance of silica fume-incorporated cement pastes and mortars. Cement and Concrete Reasearch, 33 (11), 1765–1770, 2003. https://doi.org/10.1016/S0008-8846(03)00171-6.
  • H. Temiz, M.M. Kose and S. Koksal, Effects of portland composite and composite cements on durability of mortar and permeability of concrete. Construction and Building Materials, 21 (6), 1170–1176, 2007. https://doi.org/10.1016/j.conbuildmat. 2006.06.011.
  • F. Škvára, T. Jílek and L. Kopecky´, Geopolymer materials based on fly ash. Ceramics Silikaty, 49 (3), 195–204, 2005.
  • A.M. Rashad, A comprehensive overview about the influence of different admixtures and additives on the properties of alkali-activated fly ash. Materials Design 53, 1005–1025, 2014. https://doi.org/10.1016/j. matdes.2013.07.074.
  • S. Saha and C. Rajasekaran, Enhancement of the properties of fly ash based geopolymer paste by incorporating ground granulated blast furnace slag. Construction and Building Materials,146, 615–620. 2017. https://doi.org/10.1016/j.conbuildmat.2017.04. 139.
  • J. Shang, J.G. Dai, T.J. Zhao, S.Y. Guo, P. Zhang and B. Mu, Alternation of traditional cement mortars using fly ash-based geopolymer mortars modified by slag. Journal of Cleaner Production 203, 746–756, 2018. https://doi.org/10.1016/j.jclepro.2018.08.255.
  • N.K. Lee and H.K. Lee, Setting and mechanical properties of alkali-activated fly ash/slag concrete manufactured at room temperature. Construction and Building Materials, 47, 1201–1209, 2013. https://doi. org/10.1016/j.conbuildmat.2013.05.107.
  • J. Temuujin, A. van Riessen and R. Williams, Influence of calcium compounds on the mechanical properties of fly ash geopolymer pastes. Journal of Hazardous Materials, 167 (1–3), 82–88, 2009. https:// doi.org/10.1016/j.jhazmat.2008.12.121.
  • I. Perna and T. Hanzlí cek, The setting time of a clay-slag geopolymer matrix: the influence of blast-furnace-slag addition and the mixing method. Journal of Cleaner Production, 112, 1150–1155, 2016. https:// doi.org/10.1016/j.jclepro.2015.05.069.
  • R. Gopalakrishnan and K. Chinnaraju, Durability of ambient cured alumina silicate concrete based on slag/fly ash blends against sulfate environment. Construction and Building Materials, 204, 70–83, 2019. https://doi.org/10.1016/j.conbuildmat.2019.01. 153.
  • M. Gesoğlu, E. Güneyisi, T. Özturan, H.Ö. Öz and D.S. Asaad, Permeation characteristics of self compacting concrete made with partially substitution of natural aggregates with rounded lightweight aggregates. Construction and Building Materials, 59, 1–9, 2014. https://doi.org/10.1016/j.conbuildmat. 2014.02.031.
  • S.A. Omer, R. Demirboga, W.H. Khushefati, Relationship between compressive strength and UPV of GGBFS based geopolymer mortars exposed to elevated temperatures. Construction and Building Materials, 94, 189–195, 2015. https://doi.org/10.1016/ j.conbuildmat.2015.07.006.
  • P. Nath and P.K. Sarker, Fracture properties of GGBFS-blended fly ash geopolymers concrete cured in ambient temperature. Materials and Structures, 50 (32), 2016. http://hdl.handle.net/20.500.11937/15620.
  • M.E. Gülşan, R. Alzeebaree, A.A. Rasheed, A. Niş and A.E. Kurtoğlu, Development of fly ash/slag based self-compacting geopolymer concrete using nano-silica and steel fiber. Construction and Building Materials, 211, 271–283, 2019. https://doi.org/10. 1016/j.conbuildmat.2019.03.228.
  • M. Sitarz, I. Hager and M. Choinska, Evolution of mechanical properties with time of fly-ash-based geopolymer mortars under the effect of granulated ground blast furnace slag addition. Energies, 13(1135), 2020. https://doi.org/10.3390/en13051135
  • H. Alanazi, J. Hu and Y.R. Kim, Effect of slag, silica fume, and metakaolin on properties and performance of alkali-activated fly ash cured at ambient temperature. Construction and Building Materials, 197, 747–756, 2019. https://doi.org/10.1016/j.con buildmat.2018.11.172.
  • X. Guo and X. Pan, Mechanical properties and mechanisms of fiber reinforced fly ash–steel slag based geopolymer mortar. Construction and Building Materials, 179, 633–664, 2018. https://doi.org/10. 1016/j.conbuildmat.2018.05.198.
  • N. Ismail, H. El-hassan and M. Asce, Development and characterization of fly ash – slag blended geopolymer mortar and lightweight concrete. Journal of Materials in Civil Engineering 30, 1–14, 2018. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002 209.
  • M. Sitarz, M. Urban and I. Hager, Rheology and mechanical properties of fly ashbased geopolymer mortars with ground granulated blast furnace slag addition. Energies, 13 (10), 2639, 2020. https://doi.org /10.3390/en13102639.
  • N.M. Altwair, M.M. Johari and S.S. Hashim, Flexural performance of green engineered cementitious composites containing high volume of palm oil fuel ash. Construction and Building Materials, 37, 518–525, 2012. https://doi.org/10.1016/j.conbuildmat. 2012.08.003.
  • M. Şahmaran, H.E. Yücel, S. Demirhan, M.T. Arık and V.C. Li, Combined effect of aggregate and mineral admixtures on tensile ductility of engineered cementitious composites. ACI Materials Journal, 109 (6), 627-638, 2012.
  • M. Şahmaran, M. Lachemi, K.M. Hossain, R. Ranade and V.C. Li, Influence of aggregate type and size on ductility and mechanical properties of engineered cementitious composites. ACI Materials Journal, 106 (3), 308–316, 2009. https://aperta.ulakbim.gov.tr// record/42333.
  • S.M. Mustakim, S.K. Das, J. Mishra, A. Aftab, T.S. Alomayri, H.S. Assaedi and C.R. Kaze, Improvement in fresh, mechanical and microstructural properties of fly ash- blast furnace slag based geopolymer concrete by addition of nano and micro silica. Silicon, 13, 2415–2428, 2021.
  • S. Luhar, S. Chaudhary and I. Luhar, Thermal resistance of fly ash based rubberized geopolymer concrete. Journal of Building Engineering, 19, 420–428, 2018. https://doi.org/10.1016/j.jobe.2018.05.025.
  • H.Ö. Öz, H.E. Yücel, M. Güneş and T.Ş. Köker, Fly-ash-based geopolymer composites incorporating cold-bonded lightweight fly ash aggregates. Construction and Building Materials, 272, 121963, 2021. https:// doi.org/10.1016/j.conbuildmat.2020.121963.
  • M. Sivasakthi, R. Jeyalakshmi, N.P. Rajamane and R. Jose, Thermal and structural micro analysis of micro silica blended fly ash based geopolymer composites. Journal of Non-Crystalline Solids, 499, 117–130, 2018. https://doi.org/10.1016/j.jnoncrysol.2018.07. 027
  • V.K.J. Bohra, R. Nerella, S.R.C. Madduru and P. Rohith, Microstructural characterization of fly ash based geopolymers. Materıals Transactions, 2020.
  • G.M. Kim, et al., Heavy metal leaching, CO2 uptake & mechanical characteristics of carbonated porous concrete with alkali-activated slag & bottom ash. International Journal of Concrete Structures and Materials, 9 (3), 283–294, 2015. https://doi.org/10. 1007/s40069-015-0111-x.
  • M. Ben Haha, B. Lothenbach, G. Le Saout and F. Winnefeld, Influence of slag chemistry on the hydration of alkali-activated blast-furnace slag – Part I: Effect of MgO. Cement and Concrete Research, 41, 955–963, 2011. https://doi.org/10.1016/j.cemconres. 2011.05.002.
  • A. Gruskovnjak, B. Lothenbach, F. Winnefeld, B. Münch, R. Figi, S. Ko, M. Adler and U. Mäder, Quantification of hydration phases in supersulphated cements : review and new approaches. Advances in Cement Research, 23 (6), 265–275, 2011. https://doi. org/10.1680/adcr.2011. 23.6.265.
  • E. Kanezaki, Thermal behavior of the hydrotalcite-like layered structure of Mg and Al-layered double hydroxides with interlayer carbonate by means of in situ powder HTXRD and DTA/TG. Solid State Ionics, 106 (3–4), 279–284, 1998. https://doi.org/10.1016/ S0167-2738(97)00494-3.
  • K. Rozov, U. Berner, C. Taviot-Gueho, F. Leroux, G. Renaudin, D. Kulik and L.W. Diamond, Synthesis and characterization of the LDH hydrotalcite–pyroaurite solid-solution series. Cement and Concrete Research, 40, 1248–1254, 2010. https://doi.org/10.1016/j.cem conres.2009.08.031.
  • B. Lothenbach and A. Gruskovnjak, Hydration of alkali-activated slag: thermodynamic modelling. Advances in Cement Research, 19, 81–92, 2007. https://doi.org/10.1680/adcr.2007.19.2.81.
  • E. Adesanya, K. Ohenoja, A. Di Maria, P. Kinnunen and M. Illikainen, Alternative alkali-activator from steel making waste for one-part alkali-activated slag. Journal of Cleaner Production, 274, 123020, 2020. https://doi.org/10.1016/ j.jclepro.2020.123020.
  • P. Zhang and Q.-F. Li, Durability of high performance concrete composites containing silica fume. Proceedings of the IMechE, 227, 343–349, 2013. https://doi.org/10.1177/1464420712460617.
  • R.B. Barnes, Infrared spectra and organic chemistry. Review of Scientific Instruments, 7, 265–271, 1936. https://doi.org/10.1063/1.1752148.
  • W.K.W. Lee and J.S.J. van Deventer, Use of infrared spectroscopy to study geopolymerization of heterogeneous amorphous alumino silicates. American Chemical Society, 19 (21), 8726–8734, 2003. https:// doi.org/10.1021/la026127e.
  • P.I.K. Onorato, M.N. Alexander, C.W. Struck, G.W. Tasker and D.R. Uhlmann, Bridging and non bridging oxygen-atoms in alkali aluminosilicate glasses. Journal of the American Ceramic Society, 68, 148–150, 1985. https://doi.org/10.1111/j.1151-2916.1985. tb15223.x.
  • T. Takei, K. Kato, A. Meguro and M. Chikazawa, Infrared spectra of geminal and novel triple hydroxyl groups on silica surface. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 150, 77–84, 1999.
  • A. Palomo, M.W. Grutzeck and M.T., Blanco Alkali-activated fly ashes: a cement for the future. Cement and Concrete Research, 29 (8), 1323–1329, 1999. https://doi.org/10.1016/S0008-8846(98)00243-9.
  • D. Ren, C. Yan, P. Duan, Z. Zhang, L. Li and Z. Yan, Durability performances of wollastonite, tremolite and basalt fiber-reinforced metakaolin geopolymer composites under sulfate and chloride attack. Construction and Building Materials, 134, 56–66, 2017. https://doi.org/10.1016/ j.conbuildmat.2016.12. 103.
  • J. Xiang, L. Liu, Y. He, N. Zhang and X. Cui, Early mechanical properties and microstructural evolution of slag/metakaolin-based geopolymers exposed to karst water. Cement and Concrete Composites, 99, 140–150, 2019. https://doi.org/10.1016/j.cemconcomp. 2019.03.009.
  • C.A. Rosas-Casarez, S.P. Arredondo-Rea, A. Cruz-Enríquez, R. Corral-Higuera, M.J. Pellegrini-Cervantes, J.M. Gómez-Soberón and T.J. Medina-Serna, Influence of size reduction of fly ash particles by grinding on the chemical properties of geopolymers. Applied Sciences, 8 (365), 2018.
  • F. Puartes, M. Palacios and T. Vazquez, Carbonation process of alkali-activated slag mortars. Journal Material Science, 41, 3071–3082, 2006. http://dx.doi.org/10.1007/s10853-005-1821-2.
  • E. Kapeluszna, Ł. Kotwica, A. Różycka and Ł. Gołek, Incorporation of Al in C-A-S-H gels with various Ca/Si and Al/Si ratio: microstructural and structural characteristics with DTA/TG, XRD, FTIR and TEM analysis. Construction and Building Materials, 155, 643–653, 2017. https://doi.org/10.1016 /j.conbuildmat.2017.08.091.
  • Y.Y. Ge, X.M. Cui, Y. Kong, Z.L. Li, He, Y. and Q.Q. Zhou, Porous geopolymeric spheres for removal of Cu(II) from aqueous solution: synthesis and evaluation. Journal of Hazardous Materials, 283, 244–251, 2015. https://doi.org/10.1016/j.jhazmat.2014.09. 038.
  • M. Palacios and F. Puartes, Effect of carbonation on alkali-activated slag paste. Journal of the American Ceramic Society, 89 (10), 3211–3221, 2006. https://doi.org/10.1111/j.1551-2916.2006.01214.x.
  • V.F. Barbosa, K.J. MacKenzie and C. Thaumaturgo, Synthesis and characterisation of materials based on inorganic polymers of alumina and silica: sodium polysialate polymers. International Journal of Inorganic Materials, 2 (4), 309–317, 2000. https://doi.org/10.1016/S1466-6049(00)00041-6.
  • W. Mozgawa and J. Deja, Spectroscopic studies of alkaline activated slag geopolymers. Journal of Molecular Structure, 924–926 (30), 434–441, 2009.
  • P. Yu, R.J. Kirkpatrick, B. Poe, P.F. McMillan and X.D. Cong, Structure of calcium silicate hydrate (C-S-H): near-, mid-, and far-infrared spectroscopy. Journal of the American Ceramic Society, 82 (3), 742–748, 1999.
  • N. Li, N. Farzadnia and C.J. Shi, Microstructural changes in alkali-activated slag mortars induced by accelerated carbonation. Cement and Concrete Research, 100 (9), 214–226, 2017. https://doi.org/10. 1016/j.cemconres.2017.07.008.
There are 117 citations in total.

Details

Primary Language Turkish
Subjects Civil Engineering
Journal Section Civil Engineering
Authors

Hatice Öznur Öz 0000-0003-3568-1689

Muhammet Güneş 0000-0001-6788-788X

Project Number MMT 2021/2-BAGEP
Publication Date April 15, 2023
Submission Date October 8, 2022
Acceptance Date February 14, 2023
Published in Issue Year 2023

Cite

APA Öz, H. Ö., & Güneş, M. (2023). Tasarlanmış çimento esaslı kompozit ile uçucu kül ve cüruf esaslı tasarlanmış geopolimer kompozitlerin mekanik ve mikroyapısal özellikleri. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 12(2), 452-471. https://doi.org/10.28948/ngumuh.1186020
AMA Öz HÖ, Güneş M. Tasarlanmış çimento esaslı kompozit ile uçucu kül ve cüruf esaslı tasarlanmış geopolimer kompozitlerin mekanik ve mikroyapısal özellikleri. NÖHÜ Müh. Bilim. Derg. April 2023;12(2):452-471. doi:10.28948/ngumuh.1186020
Chicago Öz, Hatice Öznur, and Muhammet Güneş. “Tasarlanmış çimento Esaslı Kompozit Ile uçucu kül Ve cüruf Esaslı tasarlanmış Geopolimer Kompozitlerin Mekanik Ve mikroyapısal özellikleri”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 12, no. 2 (April 2023): 452-71. https://doi.org/10.28948/ngumuh.1186020.
EndNote Öz HÖ, Güneş M (April 1, 2023) Tasarlanmış çimento esaslı kompozit ile uçucu kül ve cüruf esaslı tasarlanmış geopolimer kompozitlerin mekanik ve mikroyapısal özellikleri. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 12 2 452–471.
IEEE H. Ö. Öz and M. Güneş, “Tasarlanmış çimento esaslı kompozit ile uçucu kül ve cüruf esaslı tasarlanmış geopolimer kompozitlerin mekanik ve mikroyapısal özellikleri”, NÖHÜ Müh. Bilim. Derg., vol. 12, no. 2, pp. 452–471, 2023, doi: 10.28948/ngumuh.1186020.
ISNAD Öz, Hatice Öznur - Güneş, Muhammet. “Tasarlanmış çimento Esaslı Kompozit Ile uçucu kül Ve cüruf Esaslı tasarlanmış Geopolimer Kompozitlerin Mekanik Ve mikroyapısal özellikleri”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 12/2 (April 2023), 452-471. https://doi.org/10.28948/ngumuh.1186020.
JAMA Öz HÖ, Güneş M. Tasarlanmış çimento esaslı kompozit ile uçucu kül ve cüruf esaslı tasarlanmış geopolimer kompozitlerin mekanik ve mikroyapısal özellikleri. NÖHÜ Müh. Bilim. Derg. 2023;12:452–471.
MLA Öz, Hatice Öznur and Muhammet Güneş. “Tasarlanmış çimento Esaslı Kompozit Ile uçucu kül Ve cüruf Esaslı tasarlanmış Geopolimer Kompozitlerin Mekanik Ve mikroyapısal özellikleri”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, vol. 12, no. 2, 2023, pp. 452-71, doi:10.28948/ngumuh.1186020.
Vancouver Öz HÖ, Güneş M. Tasarlanmış çimento esaslı kompozit ile uçucu kül ve cüruf esaslı tasarlanmış geopolimer kompozitlerin mekanik ve mikroyapısal özellikleri. NÖHÜ Müh. Bilim. Derg. 2023;12(2):452-71.

download