Metilen mavisi ve rhodamine B'nin radyal olarak yönlendirilmiş ZnO nanoçubuklardan oluşan içi boş mikroküreler tarafından bozunması
Year 2023,
, 998 - 1006, 15.07.2023
Hasan Eskalen
,
Mustafa Kavgacı
Abstract
Çevre kirliliğine karşı çevre dostu etkili çözümler bulmak çok önemlidir. Çinko oksit (ZnO), iyi bir fotokatalizör olarak bilinir. Bu çalışmada solvotermal teknik kullanılarak ZnO mikroküreler sentezlenmiştir. ZnO mikrokürelerin yapısal, optik ve morfolojik özelliklerini değerlendirmek için X-ışını kırınımı (XRD), UV-Vis ve taramalı elektron mikroskobu (SEM) kullanıldı. ZnO'nun hegzagonal yapısı, XRD analiziyle belirlendi. ZnO'nun kristal boyutu, XRD desenleri kullanılarak hesaplandı ve Debye-Scherrer denklemi ile 44.27 nm, Williamson Hall modeli kullanılarak 32.39 nm ve Modifiye Scherrer formülü ile 9.92 nm olarak bulundu. Üretilen ZnO'nun SEM görüntüleri, altıgen nanoçubukların birleşmesiyle oluşan mikroküreler şeklinde bir yapıya sahip olduğunu ortaya koydu. Bu mikrokürelerin ortalama çapı 5.16 μm'dir. ZnO, 3.1 eV'lik bir bant aralığı enerjisine sahiptir. ZnO mikrokürelerin metilen mavisi ve Rhodamine B boyalarına karşı fotokatalitik aktiviteleri incelenmiştir. Güneş ışığı altında, 90 dakika sonunda metilen mavisi ve 120 dakika sonra Rhodamine B için fotokatalitik giderme oranları sırasıyla %98.95 ve %98.62’dir.
Supporting Institution
Kahramanmaraş Sütçü İmam Üniversitesi
Project Number
2020/3-7 YLS, 2022/6-4 YLS
References
- M. Binsabt, V. Sagar, J. Singh, M. Rawat and M. Shaban, Green Synthesis of CS-TiO2 NPs for Efficient Photocatalytic Degradation of Methylene Blue Dye. Polymers, 14, 2677, 2022. https://doi.org/ 10.3390/polym14132677.
- N. Madima, K.K. Kefeni, S.B. Mishra, A.K. Mishra and A.T. Kuvarega, Fabrication of magnetic recoverable Fe3O4/TiO2 heterostructure for photocatalytic degradation of rhodamine B dye. Inorganic Chemistry Communications, 145, 109966, 2022. https://doi.org/10.1016/j.inoche.2022.109966.
- Y. Yang, H. Khan, S. Gao, A.K. Khalil, N. Ali, A. Khan, P.L. Show, M. Bilal and H. Khan, Fabrication, characterization, and photocatalytic degradation potential of chitosan-conjugated manganese magnetic nano-biocomposite for emerging dye pollutants. Chemosphere, 306, 135647, 2022. https://doi.org/10.1016/j.chemosphere.2022.135647.
- G.D. Okçu, H.E. Ökten and A. Yalçuk, The review study on removal of pesticides in photocatalysis and biological treatment hybrid process. Niğde Ömer Halisdemir University Journal of Engineering Sciences, 8, 675–688, 2019. https://doi.org/ 10.28948/ngumuh.598101.
- S. Sugashini, T. Gomathi, R.A. Devi, P.N. Sudha, K. Rambabu and F. Banat, Nanochitosan/carboxymethyl cellulose/TiO2 biocomposite for visible-light-induced photocatalytic degradation of crystal violet dye. Environmental Research, 204, 112047, 2022. https://doi.org/10.1016/j.envres.2021.112047.
- N. Qutub, P. Singh, S. Sabir, S. Sagadevan and W.C. Oh, Enhanced photocatalytic degradation of Acid Blue dye using CdS/TiO2 nanocomposite. Scientific Reports, 12:1, 5759, 2022. https://doi.org/ 10.1038/s41598-022-09479-0.
- C.B. Özkal and S.M. Pagano, Evaluation of antibiotics and antibiotic resistant bacteria removal by photo-catalysis. Niğde Ömer Halisdemir University Journal of Engineering Sciences, 5, 1–18, 2016.
- S.A. Kumar, M. Jarvin, S.S.R. Inbanathan, A. Umar, N.P. Lalla, N.Y. Dzade, H. Algadi, Q.I. Rahman and S. Baskoutas, Facile green synthesis of magnesium oxide nanoparticles using tea (Camellia sinensis) extract for efficient photocatalytic degradation of methylene blue dye. Environmental Technology Innovation, 28, 102746, 2022. https://doi.org/10.1016/j.eti.2022. 102746.
- A. Zia, A.B. Naveed, A. Javaid, M.F. Ehsan and A. Mahmood, Facile Synthesis of ZnSe/Co3O4 Heterostructure Nanocomposites for the Photocatalytic Degradation of Congo Red Dye. Catalysts, 2, 1184, 2022. https://doi.org/10.3390/catal12101184.
- S.Ü. Odabaşı, S.H. Altin and H. Büyükgüngör, Occurence, fate and removal of micropollutants from aquatic environment with advanced oxidation processes. Niğde Ömer Halisdemir University Journal of Engineering Sciences, 9, 57–71, 2020. https://doi.org/10.28948/ngumuh.526064.
- K. Arya, A. Kumar, A. Sharma, S. Singh, S.K. Sharma, S.K. Mehta and R. Kataria, A Hybrid Nanocomposite of Coordination Polymer and rGO for Photocatalytic Degradation of Safranin-O Dye Under Visible Light Irradiation. Topics in Catalysis, 65, 1924–1937, 2022. https://doi.org/10.1007/S11244-022-01701-7.
- A. M. Naji, I. Y. Mohammed, S.H. Mohammed, M.K.A. Mohammed, D.S. Ahmed, M.S. Jabir and A. M. Rheima, Photocatalytic degradation of methylene blue dye using F doped ZnO/polyvinyl alcohol nanocomposites. Materials Letters, 322, 132473, 2022. https://doi.org/10.1016/j.matlet.2022.132473.
- G. Easwaran, J.S. Packialakshmi, A. Syed, A.M. Elgorban, M. Vijayan, K. Sivakumar, K. Bhuvaneswari, G. Palanisamy and J. Lee, Silica nanoparticles derived from Arundo donax L. ash composite with Titanium dioxide nanoparticles as an efficient nanocomposite for photocatalytic degradation dye. Chemosphere, 307, 135951, 2022. https://doi.org/10.1016/j.chemosphere.2022.135951.
- Y. Wang, X. Li, N. Wang, X. Quan and Y. Chen, Controllable synthesis of ZnO nanoflowers and their morphology-dependent photocatalytic activities. Separation and Purification Technology, 62, 727–732, 2008. https://doi.org/10.1016/j.seppur.2008.03.035.
- H. Eskalen, Ş. Özğan, Ü. Alver and S. Kerli, Electro-optical properties of liquid crystals composite with zinc oxide nanoparticles. Acta Physica Polonica A, 127, 756–760, 2015. https://doi.org/10.12693/aphyspola.127.756.
- A. Das, P. M. Kumar, M. Bhagavathiachari and R.G. Nair, Shape selective flower-like ZnO nanostructures prepared via structure-directing reagent free methods for efficient photocatalytic performance. Materials Science and Engineering: B, 269, 115149, 2021. https://doi.org/10.1016/j.mseb.2021.115149.
- R. Vinayagam, S. Pai, T. Varadavenkatesan, A. Pugazhendhi and R. Selvaraj, Characterization and photocatalytic activity of ZnO nanoflowers synthesized using Bridelia retusa leaf extract. Applied Nanoscience, 1, 1–10, 2021.https://doi.org/10.1007/S13204-021-01816-5.
- A. Mohammadzadeh, M. Khoshghadam-Pireyousefan, B. Shokrianfard-Ravasjan, M. Azadbeh, H. Rashedi, M. Dibazar and A. Mostafaei, Synergetic photocatalytic effect of high purity ZnO pod shaped nanostructures with H2O2 on methylene blue dye degradation. Journal Alloys and Compounds, 845, 156333, 2020. https://doi.org/10.1016/j.jallcom.2020. 156333.
- F.H. Abdullah, N.H.H. Abu Bakar and M. Abu Bakar, Low temperature biosynthesis of crystalline zinc oxide nanoparticles from Musa acuminata peel extract for visible-light degradation of methylene blue. Optik, 206, 164279, 2020. https://doi.org/10.1016/j.ijleo.2020. 164279.
- P.A. Luque, H.E. Garrafa-Gálvez, C.A. García-Maro and C.A. Soto-Robles, Study of the optical properties of ZnO semiconductor nanoparticles using Origanum vulgare and its effect in Rhodamine B degradation. Optik, 258, 168937, 2022. https://doi.org/ 10.1016/j.ijleo.2022.168937.
- V.K. Landge, S.H. Sonawane, M. Sivakumar, S.S. Sonawane, G. Uday Bhaskar Babu and G. Boczkaj, S-scheme heterojunction Bi2O3-ZnO/Bentonite clay composite with enhanced photocatalytic performance. Sustainable Energy Technologies and Assessments, 45, 101194, 2021. https://doi.org/10.1016/J.SETA.2021. 101194.
- N. Yudasari, I.K.H. Dinata, C.J. Shearer, P.H. Blanco-Sanchez, W.P. Tresna Isnaeni, M.M. Suliyanti and H. Trilaksana, Laser-assisted deposition of Ag on self-sourced growth ZnO nanorods as reusable photocatalysts for water purification. Inorganic Chemistry Communications, 146, 110065, 2022. https://doi.org/10.1016/j.inoche.2022.110065.
- J. Maalmarugan, R.Z. Ferin, G. Joesna, A. Mustafa, M.G. Mohamed, M. Bououdina, D. Sankar, M. Vimalan and K. SenthilKannan, In situ grown ZnO nanoparticles using Begonia leaves–dielectric, magnetic, filter utility and tribological properties for mechano-electronic applications. Applied Physics A, 128, 217, 2022. https://doi.org/10.1007/s00339-022-05371-w.
- H. Oudghiri-Hassani, S. Rakass, F.T. Al Wadaani, K.J. Al-ghamdi, A. Omer, M. Messali and M. Abboudi, Synthesis, characterization and photocatalytic activity of α-Bi2O3 nanoparticles. Journal of Taibah University for Science, 9, 508–512, 2018. https://doi.org/ 10.1016/j.jtusci.2015.01.009.
- A. Boumezoued, K. Guergouri, R. Barille, D. Rechem and Z. Mourad, Synthesis and characterization of ZnO-based nano-powders: study of the effect of sintering temperature on the performance of ZnO–Bi2O3 varistors. Journal of Materials Science: Materials in Electronics, 32, 3125–3139, 2021. https://doi.org/10.1007/S10854-020-05062 -3.
- M. Qayoom and G.N. Dar, Crystallite Size and Compressive Lattice Strain in NiFe2O4 Nanoparticles as Calculated in Terms of Various Models: Influence of Annealing Temperature. International Journal of Self-Propagating High-Temperature Synthesis, 29, 213–219, 2020. https://doi.org/10.3103/S1061386220040111.
- L. Zhou, Z. Han, G.D. Li and Z. Zhao, Template-free synthesis and photocatalytic activity of hierarchical hollow ZnO microspheres composed of radially aligned nanorods. Journal of Physics and Chemistry of Solids, 148, 109719, 2021. https://doi.org/10.1016/j.jpcs.2020. 109719.
- D.T.C. Nguyen, H.T.N. Le, T.T. Nguyen, T.T.T. Nguyen, L.G. Bach, T.D. Nguyen and T.V. Tran, Multifunctional ZnO nanoparticles bio-fabricated from Canna indica L. flowers for seed germination, adsorption, and photocatalytic degradation of organic dyes. Journal of Hazardous Materials, 420, 126586, 2021. https://doi.org/10.1016/j.jhazmat.2021.126586.
- J. Ridwan, J. Yunas, A.A. Umar and A.A. Mohd Raub, Hydrothermal Grow of Cu doped ZnO Nanorods for Large Spectrum Photocatalyst. 2021 IEEE Regional Symposium on Micro and Nanoelectronics, 108–111, 2021. https://doi.org/10.1109/RSM52397.2021. 9511572.
- R. Kalia, Pushpendra, R.K. Kunchala, S.N. Achary and B.S. Naidu, New insights on photocatalytic hydrogen evolution of ZnFe2−xGaxO4 (0 ≤ x ≤ 2) solid solutions: Role of oxygen vacancy and ZnO segregated phase. Journal of Alloys Compounds, 875, 159905, 2021. https://doi.org/10.1016/j.jallcom.2021.159905.
- K. Lefatshe, C.M. Muiva and L.P. Kebaabetswe, Extraction of nanocellulose and in-situ casting of ZnO/cellulose nanocomposite with enhanced photocatalytic and antibacterial activity. Carbohydrate Polymers, 164, 301–308, 2017. https://doi.org/ 10.1016/j.carbpol.2017.02.020.
- M.A. Abu-Dalo, S.A. Al-Rosan and B.A. Albiss, Photocatalytic, Photocatalytic Degradation of Methylene Blue Using Polymeric Membranes Based on Cellulose Acetate Impregnated with ZnO Nanostructures. Polymers, 13, 3451, 2021. https://doi.org/10.3390/polym13193451.
- Y.J. Shim, V. Soshnikova, G. Anandapadmanaban, R. Mathiyalagan, Z.E.J. Perez, J. Markus, Y. Ju Kim, V. Castro-Aceituno and D.C. Yang, Zinc oxide nanoparticles synthesized by Suaeda japonica Makino and their photocatalytic degradation of methylene blue. Optik, 182, 1015–1020, 2019. https://doi.org/ 10.1016/j.ijleo.2018.11.144.
- M. N. M. Nor and M. Shamsuddin, Biosynthesis of zinc oxide nanoparticles using Ficus Auriculata (elephant ear fig) leaf extract and their photocatalytic activity. eProceedings Chemistry, 1, 79–83, 2016.
- T. Varadavenkatesan, E. Lyubchik, S. Pai, A. Pugazhendhi, R. Vinayagam and R. Selvaraj, Photocatalytic degradation of Rhodamine B by zinc oxide nanoparticles synthesized using the leaf extract of Cyanometra ramiflora. Journal of Photochemistry Photobiology B: Biology, 199, 111621, 2019. https://doi.org/10.1016/j.photobiol.2019.111621.
- M.A. Al-Bedairy and H.A.H. Alshamsi, Environmentally Friendly Preparation of Zinc Oxide, Study Catalytic Performance of Photodegradation by Sunlight for Rhodamine B Dye. Eurasian Journal of Analytical Chemistry, 13, 72, 2018. https://doi.org/10.29333/ejac/101785.
- H.A. Alshamsi and A.A. Jaffer, New Hibiscus Sabdariffa L petals extract based Green synthesis of zinc oxide nanoparticles for photocatalytic degradation of Rhodamine B dye under solar light. AIP Conference Proceedings, 2394, 040017, 2022. https://doi.org/10.1063/5.0121228.
- H. Li, J. Liu, C. Wang, H. Yang and X. Xue, Oxygen vacancies-enriched and porous hierarchical structures of ZnO microspheres with improved photocatalytic performance. Vacuum, 199, 110891, 2022. https://doi.org/10.1016/j.vacuum.2022.110891.
- S. Wang, P. Kuang, B. Cheng, J. Yu and C. Jiang, ZnO hierarchical microsphere for enhanced photocatalytic activity. Journal of Alloys Compounds, 741, 622–632, 2018. https://doi.org/10.1016/j.jallcom.2018.01.141.
- A. Lei, B. Qu, W. Zhou, Y. Wang, Q. Zhang and B. Zou, Facile synthesis and enhanced photocatalytic activity of hierarchical porous ZnO microspheres. Materials Letters, 66, 72–75, 2012. https://doi.org/10.1016/j.matlet.2011.08.011.
- Y. Su, J. Li, Z. Luo, B. Lu and P. Li, Microstructure, growth process and enhanced photocatalytic activity of flower-like ZnO particles. RSC Advances, 6, 7403–7408, 2016. https://doi.org/10.1039/C5RA24492G.
- E. M. Samsudin, S. N. Goh, T.W. Yeong, T. T. Ling, S. B. Abd Hamid and J. C. Juan, Evaluation on the Photocatalytic Degradation Activity of Reactive Blue 4 using Pure Anatase Nano-TiO2. Sains Malaysiana, 44, 1011–1019, 2015.
Degradation of methylene blue and rhodamine B by hollow ZnO microspheres formed of radially oriented nanorods
Year 2023,
, 998 - 1006, 15.07.2023
Hasan Eskalen
,
Mustafa Kavgacı
Abstract
It is crucial to find effective solutions to environmental contamination that are also ecologically friendly. Zinc oxide (ZnO) is well-known as a promising photocatalyst. In this work, ZnO microspheres were synthesized using the solvothermal technique. X-ray diffraction (XRD), UV-Vis, and scanning electron microscopy (SEM) were used to evaluate the structural, optical, and morphological features of ZnO microspheres. The hexagonal structure of ZnO was determined using XRD analysis. The crystal size of ZnO was calculated using XRD patterns and was found to be 44.27 nm by the Debye-Scherrer equation, 32.39 nm by using the Williamson Hall model, and 9.92 nm by the Modified Scherrer formula. The SEM pictures of the manufactured ZnO revealed that it has a shape in the form of microspheres formed by the conjunction of hexagonal nanorods. The average diameter of these microspheres is 5.16 μm. ZnO has a band gap energy of 3.1 eV. The photocatalytic activities of ZnO microspheres against methylene blue and Rhodamine B dyes were examined. Under sunlight, photocatalytic removal rates for methylene blue after 90 minutes and Rhodamine B after 120 minutes were 98.95% and 98.62%, respectively.
Project Number
2020/3-7 YLS, 2022/6-4 YLS
References
- M. Binsabt, V. Sagar, J. Singh, M. Rawat and M. Shaban, Green Synthesis of CS-TiO2 NPs for Efficient Photocatalytic Degradation of Methylene Blue Dye. Polymers, 14, 2677, 2022. https://doi.org/ 10.3390/polym14132677.
- N. Madima, K.K. Kefeni, S.B. Mishra, A.K. Mishra and A.T. Kuvarega, Fabrication of magnetic recoverable Fe3O4/TiO2 heterostructure for photocatalytic degradation of rhodamine B dye. Inorganic Chemistry Communications, 145, 109966, 2022. https://doi.org/10.1016/j.inoche.2022.109966.
- Y. Yang, H. Khan, S. Gao, A.K. Khalil, N. Ali, A. Khan, P.L. Show, M. Bilal and H. Khan, Fabrication, characterization, and photocatalytic degradation potential of chitosan-conjugated manganese magnetic nano-biocomposite for emerging dye pollutants. Chemosphere, 306, 135647, 2022. https://doi.org/10.1016/j.chemosphere.2022.135647.
- G.D. Okçu, H.E. Ökten and A. Yalçuk, The review study on removal of pesticides in photocatalysis and biological treatment hybrid process. Niğde Ömer Halisdemir University Journal of Engineering Sciences, 8, 675–688, 2019. https://doi.org/ 10.28948/ngumuh.598101.
- S. Sugashini, T. Gomathi, R.A. Devi, P.N. Sudha, K. Rambabu and F. Banat, Nanochitosan/carboxymethyl cellulose/TiO2 biocomposite for visible-light-induced photocatalytic degradation of crystal violet dye. Environmental Research, 204, 112047, 2022. https://doi.org/10.1016/j.envres.2021.112047.
- N. Qutub, P. Singh, S. Sabir, S. Sagadevan and W.C. Oh, Enhanced photocatalytic degradation of Acid Blue dye using CdS/TiO2 nanocomposite. Scientific Reports, 12:1, 5759, 2022. https://doi.org/ 10.1038/s41598-022-09479-0.
- C.B. Özkal and S.M. Pagano, Evaluation of antibiotics and antibiotic resistant bacteria removal by photo-catalysis. Niğde Ömer Halisdemir University Journal of Engineering Sciences, 5, 1–18, 2016.
- S.A. Kumar, M. Jarvin, S.S.R. Inbanathan, A. Umar, N.P. Lalla, N.Y. Dzade, H. Algadi, Q.I. Rahman and S. Baskoutas, Facile green synthesis of magnesium oxide nanoparticles using tea (Camellia sinensis) extract for efficient photocatalytic degradation of methylene blue dye. Environmental Technology Innovation, 28, 102746, 2022. https://doi.org/10.1016/j.eti.2022. 102746.
- A. Zia, A.B. Naveed, A. Javaid, M.F. Ehsan and A. Mahmood, Facile Synthesis of ZnSe/Co3O4 Heterostructure Nanocomposites for the Photocatalytic Degradation of Congo Red Dye. Catalysts, 2, 1184, 2022. https://doi.org/10.3390/catal12101184.
- S.Ü. Odabaşı, S.H. Altin and H. Büyükgüngör, Occurence, fate and removal of micropollutants from aquatic environment with advanced oxidation processes. Niğde Ömer Halisdemir University Journal of Engineering Sciences, 9, 57–71, 2020. https://doi.org/10.28948/ngumuh.526064.
- K. Arya, A. Kumar, A. Sharma, S. Singh, S.K. Sharma, S.K. Mehta and R. Kataria, A Hybrid Nanocomposite of Coordination Polymer and rGO for Photocatalytic Degradation of Safranin-O Dye Under Visible Light Irradiation. Topics in Catalysis, 65, 1924–1937, 2022. https://doi.org/10.1007/S11244-022-01701-7.
- A. M. Naji, I. Y. Mohammed, S.H. Mohammed, M.K.A. Mohammed, D.S. Ahmed, M.S. Jabir and A. M. Rheima, Photocatalytic degradation of methylene blue dye using F doped ZnO/polyvinyl alcohol nanocomposites. Materials Letters, 322, 132473, 2022. https://doi.org/10.1016/j.matlet.2022.132473.
- G. Easwaran, J.S. Packialakshmi, A. Syed, A.M. Elgorban, M. Vijayan, K. Sivakumar, K. Bhuvaneswari, G. Palanisamy and J. Lee, Silica nanoparticles derived from Arundo donax L. ash composite with Titanium dioxide nanoparticles as an efficient nanocomposite for photocatalytic degradation dye. Chemosphere, 307, 135951, 2022. https://doi.org/10.1016/j.chemosphere.2022.135951.
- Y. Wang, X. Li, N. Wang, X. Quan and Y. Chen, Controllable synthesis of ZnO nanoflowers and their morphology-dependent photocatalytic activities. Separation and Purification Technology, 62, 727–732, 2008. https://doi.org/10.1016/j.seppur.2008.03.035.
- H. Eskalen, Ş. Özğan, Ü. Alver and S. Kerli, Electro-optical properties of liquid crystals composite with zinc oxide nanoparticles. Acta Physica Polonica A, 127, 756–760, 2015. https://doi.org/10.12693/aphyspola.127.756.
- A. Das, P. M. Kumar, M. Bhagavathiachari and R.G. Nair, Shape selective flower-like ZnO nanostructures prepared via structure-directing reagent free methods for efficient photocatalytic performance. Materials Science and Engineering: B, 269, 115149, 2021. https://doi.org/10.1016/j.mseb.2021.115149.
- R. Vinayagam, S. Pai, T. Varadavenkatesan, A. Pugazhendhi and R. Selvaraj, Characterization and photocatalytic activity of ZnO nanoflowers synthesized using Bridelia retusa leaf extract. Applied Nanoscience, 1, 1–10, 2021.https://doi.org/10.1007/S13204-021-01816-5.
- A. Mohammadzadeh, M. Khoshghadam-Pireyousefan, B. Shokrianfard-Ravasjan, M. Azadbeh, H. Rashedi, M. Dibazar and A. Mostafaei, Synergetic photocatalytic effect of high purity ZnO pod shaped nanostructures with H2O2 on methylene blue dye degradation. Journal Alloys and Compounds, 845, 156333, 2020. https://doi.org/10.1016/j.jallcom.2020. 156333.
- F.H. Abdullah, N.H.H. Abu Bakar and M. Abu Bakar, Low temperature biosynthesis of crystalline zinc oxide nanoparticles from Musa acuminata peel extract for visible-light degradation of methylene blue. Optik, 206, 164279, 2020. https://doi.org/10.1016/j.ijleo.2020. 164279.
- P.A. Luque, H.E. Garrafa-Gálvez, C.A. García-Maro and C.A. Soto-Robles, Study of the optical properties of ZnO semiconductor nanoparticles using Origanum vulgare and its effect in Rhodamine B degradation. Optik, 258, 168937, 2022. https://doi.org/ 10.1016/j.ijleo.2022.168937.
- V.K. Landge, S.H. Sonawane, M. Sivakumar, S.S. Sonawane, G. Uday Bhaskar Babu and G. Boczkaj, S-scheme heterojunction Bi2O3-ZnO/Bentonite clay composite with enhanced photocatalytic performance. Sustainable Energy Technologies and Assessments, 45, 101194, 2021. https://doi.org/10.1016/J.SETA.2021. 101194.
- N. Yudasari, I.K.H. Dinata, C.J. Shearer, P.H. Blanco-Sanchez, W.P. Tresna Isnaeni, M.M. Suliyanti and H. Trilaksana, Laser-assisted deposition of Ag on self-sourced growth ZnO nanorods as reusable photocatalysts for water purification. Inorganic Chemistry Communications, 146, 110065, 2022. https://doi.org/10.1016/j.inoche.2022.110065.
- J. Maalmarugan, R.Z. Ferin, G. Joesna, A. Mustafa, M.G. Mohamed, M. Bououdina, D. Sankar, M. Vimalan and K. SenthilKannan, In situ grown ZnO nanoparticles using Begonia leaves–dielectric, magnetic, filter utility and tribological properties for mechano-electronic applications. Applied Physics A, 128, 217, 2022. https://doi.org/10.1007/s00339-022-05371-w.
- H. Oudghiri-Hassani, S. Rakass, F.T. Al Wadaani, K.J. Al-ghamdi, A. Omer, M. Messali and M. Abboudi, Synthesis, characterization and photocatalytic activity of α-Bi2O3 nanoparticles. Journal of Taibah University for Science, 9, 508–512, 2018. https://doi.org/ 10.1016/j.jtusci.2015.01.009.
- A. Boumezoued, K. Guergouri, R. Barille, D. Rechem and Z. Mourad, Synthesis and characterization of ZnO-based nano-powders: study of the effect of sintering temperature on the performance of ZnO–Bi2O3 varistors. Journal of Materials Science: Materials in Electronics, 32, 3125–3139, 2021. https://doi.org/10.1007/S10854-020-05062 -3.
- M. Qayoom and G.N. Dar, Crystallite Size and Compressive Lattice Strain in NiFe2O4 Nanoparticles as Calculated in Terms of Various Models: Influence of Annealing Temperature. International Journal of Self-Propagating High-Temperature Synthesis, 29, 213–219, 2020. https://doi.org/10.3103/S1061386220040111.
- L. Zhou, Z. Han, G.D. Li and Z. Zhao, Template-free synthesis and photocatalytic activity of hierarchical hollow ZnO microspheres composed of radially aligned nanorods. Journal of Physics and Chemistry of Solids, 148, 109719, 2021. https://doi.org/10.1016/j.jpcs.2020. 109719.
- D.T.C. Nguyen, H.T.N. Le, T.T. Nguyen, T.T.T. Nguyen, L.G. Bach, T.D. Nguyen and T.V. Tran, Multifunctional ZnO nanoparticles bio-fabricated from Canna indica L. flowers for seed germination, adsorption, and photocatalytic degradation of organic dyes. Journal of Hazardous Materials, 420, 126586, 2021. https://doi.org/10.1016/j.jhazmat.2021.126586.
- J. Ridwan, J. Yunas, A.A. Umar and A.A. Mohd Raub, Hydrothermal Grow of Cu doped ZnO Nanorods for Large Spectrum Photocatalyst. 2021 IEEE Regional Symposium on Micro and Nanoelectronics, 108–111, 2021. https://doi.org/10.1109/RSM52397.2021. 9511572.
- R. Kalia, Pushpendra, R.K. Kunchala, S.N. Achary and B.S. Naidu, New insights on photocatalytic hydrogen evolution of ZnFe2−xGaxO4 (0 ≤ x ≤ 2) solid solutions: Role of oxygen vacancy and ZnO segregated phase. Journal of Alloys Compounds, 875, 159905, 2021. https://doi.org/10.1016/j.jallcom.2021.159905.
- K. Lefatshe, C.M. Muiva and L.P. Kebaabetswe, Extraction of nanocellulose and in-situ casting of ZnO/cellulose nanocomposite with enhanced photocatalytic and antibacterial activity. Carbohydrate Polymers, 164, 301–308, 2017. https://doi.org/ 10.1016/j.carbpol.2017.02.020.
- M.A. Abu-Dalo, S.A. Al-Rosan and B.A. Albiss, Photocatalytic, Photocatalytic Degradation of Methylene Blue Using Polymeric Membranes Based on Cellulose Acetate Impregnated with ZnO Nanostructures. Polymers, 13, 3451, 2021. https://doi.org/10.3390/polym13193451.
- Y.J. Shim, V. Soshnikova, G. Anandapadmanaban, R. Mathiyalagan, Z.E.J. Perez, J. Markus, Y. Ju Kim, V. Castro-Aceituno and D.C. Yang, Zinc oxide nanoparticles synthesized by Suaeda japonica Makino and their photocatalytic degradation of methylene blue. Optik, 182, 1015–1020, 2019. https://doi.org/ 10.1016/j.ijleo.2018.11.144.
- M. N. M. Nor and M. Shamsuddin, Biosynthesis of zinc oxide nanoparticles using Ficus Auriculata (elephant ear fig) leaf extract and their photocatalytic activity. eProceedings Chemistry, 1, 79–83, 2016.
- T. Varadavenkatesan, E. Lyubchik, S. Pai, A. Pugazhendhi, R. Vinayagam and R. Selvaraj, Photocatalytic degradation of Rhodamine B by zinc oxide nanoparticles synthesized using the leaf extract of Cyanometra ramiflora. Journal of Photochemistry Photobiology B: Biology, 199, 111621, 2019. https://doi.org/10.1016/j.photobiol.2019.111621.
- M.A. Al-Bedairy and H.A.H. Alshamsi, Environmentally Friendly Preparation of Zinc Oxide, Study Catalytic Performance of Photodegradation by Sunlight for Rhodamine B Dye. Eurasian Journal of Analytical Chemistry, 13, 72, 2018. https://doi.org/10.29333/ejac/101785.
- H.A. Alshamsi and A.A. Jaffer, New Hibiscus Sabdariffa L petals extract based Green synthesis of zinc oxide nanoparticles for photocatalytic degradation of Rhodamine B dye under solar light. AIP Conference Proceedings, 2394, 040017, 2022. https://doi.org/10.1063/5.0121228.
- H. Li, J. Liu, C. Wang, H. Yang and X. Xue, Oxygen vacancies-enriched and porous hierarchical structures of ZnO microspheres with improved photocatalytic performance. Vacuum, 199, 110891, 2022. https://doi.org/10.1016/j.vacuum.2022.110891.
- S. Wang, P. Kuang, B. Cheng, J. Yu and C. Jiang, ZnO hierarchical microsphere for enhanced photocatalytic activity. Journal of Alloys Compounds, 741, 622–632, 2018. https://doi.org/10.1016/j.jallcom.2018.01.141.
- A. Lei, B. Qu, W. Zhou, Y. Wang, Q. Zhang and B. Zou, Facile synthesis and enhanced photocatalytic activity of hierarchical porous ZnO microspheres. Materials Letters, 66, 72–75, 2012. https://doi.org/10.1016/j.matlet.2011.08.011.
- Y. Su, J. Li, Z. Luo, B. Lu and P. Li, Microstructure, growth process and enhanced photocatalytic activity of flower-like ZnO particles. RSC Advances, 6, 7403–7408, 2016. https://doi.org/10.1039/C5RA24492G.
- E. M. Samsudin, S. N. Goh, T.W. Yeong, T. T. Ling, S. B. Abd Hamid and J. C. Juan, Evaluation on the Photocatalytic Degradation Activity of Reactive Blue 4 using Pure Anatase Nano-TiO2. Sains Malaysiana, 44, 1011–1019, 2015.