Research Article
BibTex RIS Cite

Vaporizing foil actuator welding prototype manufacturing and applications risk analysis

Year 2023, , 1079 - 1091, 15.10.2023
https://doi.org/10.28948/ngumuh.1241634

Abstract

This study was conducted to examine risk levels for Vaporizing Foil Actuator Welding (VFAW) prototype manufacturing and applications. A risk analysis was carried out by using the L-type matrix method to detect hazards and risks in newly developing VFAW applications. 60 risks were identified for VFAW, 37 of which were high and 23 were moderate. To reduce the risk and occupational accidents to the lowest possible level; a measuring instrument that can continuously monitor current and voltage values, a remote detonation system and a discharge mechanism have been added to the prototype system. Thanks to the measures taken the situations that may result in serious accidents, fire, explosion, loss of limb, and even death that may occur during the experiment have been brought under control and VFAW applications have been made safer.

Project Number

222M455, ENSTİTÜ.21.001

References

  • K. Horozoğlu, İş kazalarının iş sağlığı ve güvenliği açısından analizi, Karabük University Journal of Institute of Social Sciences, 8(2), 265-281, 2019.
  • R. Malomane, I. Musonda, C. S. Okoro, The opportunities and challenges associated with the implementation of fourth industrial revolution technologies to manage health and safety, International Journal of Environmental Research and Public Health, 19(2),846, 2022. doi:10.3390/ijerph19020846
  • R. İ. Dosun, Çelik konstrüksiyon imalatı yapan bir iş yerinde iş sağlığı ve güvenliği ve risk analizi çalışması, Master Thesis, Institute of Health Sciences, Istanbul Yeni Yüzyıl University, Istanbul, 2018.
  • N. Panchanatham, V. Jayalakshmi, A study on employee safety and workplace hazards in relation to performance of jewellery manufacturing industries, Journal of Contemporary Research in Management, 11(3), 1, 2016.
  • Z. Aziz, Bir metal işleme işletmesinde iş güvenliği ve risk analizi, Master Thesis, Institute of Science and Technology, Çanakkale Onsekiz Mart University, 2019.
  • S. Alçin, Üretim Için Yeni Bir Izlek: Sanayi 4.0., Journal of life Economics, 3(2), 19-30, 2016.
  • E. Ünal, İmalat sektöründe iş güvenliği ve risk analizi, Master Thesis, Trakya University, Institute of Science and Technology, 2014.
  • M. Erdaş, Metal imalat sektörü iş sağlığı ve güvenliği risklerinin değerlendirilmesi, Ph.D. Thesis, Ankara Yıldırım Beyazıt University, Institute of Science and Technology, 2020.
  • T. Teker, D. Gençdoğan, Türkiye’de kaynakçılık mesleğinde meydana gelen iş kazaları ve güvenlik önlemleri, Journal of Engineering Sciences of Adiyaman University, 7(12), 34-44, 2020.
  • G. Serin, M. Çuhadar, İş güvenliği ve sağlığı yönetim sistemi, Journal of Technical Sciences, 5(2), 44-59, 2015.
  • M. K. Harris, Welding health and safety: a field guide for oehs professionals, Welding Health and Safety: A Field Guide for OEHS Professionals, AIHA, Virginia, 2002.
  • F. Golbabaei, M. Khadem, Air pollution in welding processes—assessment and control methods, Current Air Quality Issues, 33-63, 2015. doi:10.5772/59793.
  • D. A. Lombardi et al., 2005. Welding Related Occupational Eye Injuries: A Narrative Analysis, Injury Prevention, 11(3), 174-179. doi:10.1136/ip.2004.007088
  • V. P. Sudhashree et al., New technologies, new hazards: need for evidence base: a report on the health status and safety measures in a biotechnology factory in bangalore, Indian Journal of Community Medicine, 32(3), 178, 2007.
  • S. Karamik, U.Seker, İşletmelerde, İş güvenliğinin verimlilik üzerine etkilerinin değerlendirilmesi. Gazi University Journal of Science Part C: Design and Technology, 3(4), 575-584, 2015.
  • A. Turan, Kaynak işlerinde iş güvenliği, Welding Congress IX. National Congress and Exhibition Proceedings, Engineer and Machinery, 57, 673, 411-422, 2015.
  • B. Gulhan, M. Ilhan, E. Civil, Occupational accidents and affecting factors of metal industry in a factory in Ankara, Turkish Journal of Public Health, 10(2), 76-85, 2012.10.20518/tjph.173067.https://doi.org/10.20518/tjph.173067
  • K. Misiurek, B. Misiurek, Methodology of improving occupational safety in the construction industry on the basis of the twi program, Safety science, 92, 225-231, 2017. 10.1016/j.ssci.2016.10.017
  • D.Ç. Taşdemir, Risk değerlendirme metodolojileri: belirlenen nitel yöntemler, Uluslararası Sosyal ve Beşerî Bilimler Kongresi Kongre Kitabı, 60-65, 2021.
  • M.B. Wanjari, P. Wankhede, Occupational hazards associated with welding work that influence health status of welders, International Journal of Current Research and Review, 12(23), 51-55, 2020. DOI: http://dx.doi .org/10.31782/IJCRR.2020.122303
  • N. A. Shuaib et al., Assessing risks and control measures on a welding workshop in Malaysia, In AIP Conference Proceedings, Vol. 2339, No. 1, p. 020218). AIP Publishing LLC, 2021. DOI: https://doi.org/10.1063/5.0044249
  • Y.O. Tagurum et al., Awareness of occupational hazards and utilization of PPE amongst welders in jos metropolis, Nigeria, International Journal of Research in Medical Sciences, 6(7), 2227-2233, 2018. DOI: http://dx.doi.org/10.18203/2320-6012.ijrms20182808
  • S. Ersoy, E. Ç. Kaya, Bir kamu üniversitesi gıda mühendisliği laboratuvarları risk analiz uygulaması, Gümüşhane Üniversitesi Sağlık Bilimleri Dergisi, 8(4), 411-423, 2019.
  • D. Celayir, İç denetim ve risk değerlendirme, Yalın yayıncılık, Editör Hatice Bahtiyar, İstanbul, 2021.
  • G. Caner Akın et al., Yeni bir risk değerlendirme yöntemi ile tersane işletmelerinin sınıflandırılması, Busıness & Management Studıes: An Internatıonal Journal, 8 (1), pp. 2372-2384, 2020. doi: http://dx.doi .org/10.15295/bmij.v8i1.1349
  • S. Selçuk, H. H. Selim, Mücevherat sektöründe kullanılan iş sağlığı ve güvenliği risk analiz yöntemlerinden l tipi matris yöntemi, İstanbul Ticaret Üniversitesi Teknoloji ve Uygulamalı Bilimler Dergisi, 1(1), 21-27, 2018.
  • G.C. William and M.A. Levine. Classification of wire explosions. Journal of applied physics 31.7 (1960): 1298-1298. https://doi.org/10.1063/1.1735823
  • R.C. Weingart, et al. Acceleration of thin flyers by exploding metal foils: application to initiation studies.[PETN, TATB, PBX-7404, NM]. No. UCRL-77610; CONF-760805-10. California Univ., Livermore (USA). Lawrence Livermore Lab., 1976.
  • A. Vivek et al., Vaporizing foil actuator: a tool for collision welding, Journal of Materials Processing Technology, 213(12), 2304-2311, 2013. https://doi.org/ 10.1016/j.jmatprotec.2013.07.006
  • M.E. Önder, Servet common health and safety unit, hazard and risk assessment procedure, Adana. 'Personal communication', 2022.
  • F. Salguero-Caparrós et al., Management of legal compliance in occupational health and safety. a literature review, Safety Science, 121, 111-118,2020. doi :10.10 16/j.ssci.2019.08.033
  • A. Vivek et al., Accessing collision welding process window for titanium/copper welds with vaporizing foil actuators and grooved targets, Journal of Materials Processing Technology, 214(8), 1583-1589, 2014. DOİ: https://doi.org/10.1016/j.jmatprotec.2014.03.007
  • A. Vivek et al., Solid state impact welding of bmg and copper by vaporizing foil actuator welding, Materials Science and Engineering: A, 634, 14-19, 2015. DOİ: https://doi.org/10.1016/j.msea.2015.03.012
  • S. R. Hansen, A. Vivek, G. S. Daehn, Impact welding of aluminum alloys 6061 and 5052 by vaporizing foil actuators: heat-affected zone size and peel strength, Journal of Manufacturing Science and Engineering, 137(5), 2015. doi: https://doi.org/10.1115/1.4030934
  • M. Hahn et al., Vaporizing foil actuator welding as a competing technology to magnetic pulse welding, Journal of Materials Processing Technology, 230, 8-20, 2016. doi:https://doi.org/10.1016/j.jmatprotec.2015.11 .010
  • D. Pereira et al., Magnetic pulse welding: machine optimisation for aluminium tubular joints production. Science and Technology of Welding and Joining, 23.2 (2018):172-179. doi:https://doi.org/10.1080/13621718 .2017.1355425
  • M. Watanabe, et al. Interfacial microstructure of aluminum/metallic glass lap joints fabricated by magnetic pulse welding. Mater Trans. 2009;50(6):1279–1285. doi:https://doi.org/10.23 20/ matertrans.ME200835
  • Y. Lu et al., Dissimilar metal joining of aluminium to zinc-coated steel by ultrasonic plus resistance spot welding–microstructure and mechanical properties. Science and Technology of Welding and Joining 25.3 (2020): 218-227. doi: https://doi.org/10.1080/ 136217 18.2019.1667051
  • K. Sajun Prasad, et al. Recent Developments of Vaporizing Foil Actuator Technique for Manufacturing Applications. In: Forming the Future: Proceedings of the 13th International Conference on the Technology of Plasticity. Springer International Publishing, 2021. p. 1341-1350.
  • A. Vivek, and G. S. Daehn. Vaporizing foil actuator: a versatile tool for high energy-rate metal working. Procedia Engineering 81 (2014): 2129-2134. doi: https://doi.org/10.1016/j.proeng.2014.10.297
  • B., Liu, A. Vivek, G.S. Daehn, Joining sheet aluminum AA6061-T4 to cast magnesium AM60B by vaporizing foil actuator welding: input energy, interface, and strength, Journal of Manufacturing Processes, 30, 75-82, 2017. doi: https://doi.org/10.1016/j. jmapro. 2017 .09.008
  • S. Chen et al., Interfacial characteristics of Ti/Al joint by vaporizing foil actuator welding, Journal of Materials Processing Technology, 263, 73-81, 2019. doi: https://doi.org/10.1016/j.jmatprotec.2018.08.004
  • Z. Meng et al., Joining performance and microstructure of the 2024/7075 aluminium alloys welded joints by vaporizing foil actuator welding, Journal of Wuhan University of Technology-Mater. Sci. Ed., 34(2), 368-372, 2019. DOI: https: //doi. org/10.1007/s11595-019-2061-7
  • Department of Defence (DoD), Standard Practice for System Safety, MILSTD-882D, 2000.

Buharlaştırılmış folyo aktüatör kaynağı prototip imalatı ve uygulamaları risk analizi

Year 2023, , 1079 - 1091, 15.10.2023
https://doi.org/10.28948/ngumuh.1241634

Abstract

Bu çalışma, Buharlaştırılmış Folyo Aktüatör Kaynağı (VFAW) prototip üretimi ve uygulamaları için risk düzeylerini incelemek amacıyla gerçekleştirilmiştir. Yeni geliştirilen VFAW uygulamalarında tehlike ve risklerin tespiti için L tipi matris yöntemi kullanılarak risk analizi yapılmıştır. VFAW için 37'si yüksek ve 23'ü orta olmak üzere 60 risk belirlendi. Riski ve iş kazalarını mümkün olan en düşük seviyeye indirmek için; prototip sisteme akım ve gerilim değerlerini sürekli takip edebilen ölçü aleti, uzaktan patlatma sistemi ve deşarj mekanizması eklenmiştir. Alınan önlemler sayesinde deney sırasında oluşabilecek ciddi kaza, yangın, patlama, uzuv kaybı ve hatta ölümle sonuçlanabilecek durumlar kontrol altına alınmış ve VFAW uygulamaları daha güvenli hale getirilmiştir.

Supporting Institution

TÜBİTAK ,Tarsus Üniversitesi Bilimsel Araştırma Projeleri (BAP) Koordinasyon Birimi

Project Number

222M455, ENSTİTÜ.21.001

Thanks

DESTEKELRİNDEN DOLAYI TÜBİTAK VE TARSUS ÜNİVERSİTESİ BAP BİRİMİNE TEŞEKKÜRLERİMİZİ SUNARIZ.

References

  • K. Horozoğlu, İş kazalarının iş sağlığı ve güvenliği açısından analizi, Karabük University Journal of Institute of Social Sciences, 8(2), 265-281, 2019.
  • R. Malomane, I. Musonda, C. S. Okoro, The opportunities and challenges associated with the implementation of fourth industrial revolution technologies to manage health and safety, International Journal of Environmental Research and Public Health, 19(2),846, 2022. doi:10.3390/ijerph19020846
  • R. İ. Dosun, Çelik konstrüksiyon imalatı yapan bir iş yerinde iş sağlığı ve güvenliği ve risk analizi çalışması, Master Thesis, Institute of Health Sciences, Istanbul Yeni Yüzyıl University, Istanbul, 2018.
  • N. Panchanatham, V. Jayalakshmi, A study on employee safety and workplace hazards in relation to performance of jewellery manufacturing industries, Journal of Contemporary Research in Management, 11(3), 1, 2016.
  • Z. Aziz, Bir metal işleme işletmesinde iş güvenliği ve risk analizi, Master Thesis, Institute of Science and Technology, Çanakkale Onsekiz Mart University, 2019.
  • S. Alçin, Üretim Için Yeni Bir Izlek: Sanayi 4.0., Journal of life Economics, 3(2), 19-30, 2016.
  • E. Ünal, İmalat sektöründe iş güvenliği ve risk analizi, Master Thesis, Trakya University, Institute of Science and Technology, 2014.
  • M. Erdaş, Metal imalat sektörü iş sağlığı ve güvenliği risklerinin değerlendirilmesi, Ph.D. Thesis, Ankara Yıldırım Beyazıt University, Institute of Science and Technology, 2020.
  • T. Teker, D. Gençdoğan, Türkiye’de kaynakçılık mesleğinde meydana gelen iş kazaları ve güvenlik önlemleri, Journal of Engineering Sciences of Adiyaman University, 7(12), 34-44, 2020.
  • G. Serin, M. Çuhadar, İş güvenliği ve sağlığı yönetim sistemi, Journal of Technical Sciences, 5(2), 44-59, 2015.
  • M. K. Harris, Welding health and safety: a field guide for oehs professionals, Welding Health and Safety: A Field Guide for OEHS Professionals, AIHA, Virginia, 2002.
  • F. Golbabaei, M. Khadem, Air pollution in welding processes—assessment and control methods, Current Air Quality Issues, 33-63, 2015. doi:10.5772/59793.
  • D. A. Lombardi et al., 2005. Welding Related Occupational Eye Injuries: A Narrative Analysis, Injury Prevention, 11(3), 174-179. doi:10.1136/ip.2004.007088
  • V. P. Sudhashree et al., New technologies, new hazards: need for evidence base: a report on the health status and safety measures in a biotechnology factory in bangalore, Indian Journal of Community Medicine, 32(3), 178, 2007.
  • S. Karamik, U.Seker, İşletmelerde, İş güvenliğinin verimlilik üzerine etkilerinin değerlendirilmesi. Gazi University Journal of Science Part C: Design and Technology, 3(4), 575-584, 2015.
  • A. Turan, Kaynak işlerinde iş güvenliği, Welding Congress IX. National Congress and Exhibition Proceedings, Engineer and Machinery, 57, 673, 411-422, 2015.
  • B. Gulhan, M. Ilhan, E. Civil, Occupational accidents and affecting factors of metal industry in a factory in Ankara, Turkish Journal of Public Health, 10(2), 76-85, 2012.10.20518/tjph.173067.https://doi.org/10.20518/tjph.173067
  • K. Misiurek, B. Misiurek, Methodology of improving occupational safety in the construction industry on the basis of the twi program, Safety science, 92, 225-231, 2017. 10.1016/j.ssci.2016.10.017
  • D.Ç. Taşdemir, Risk değerlendirme metodolojileri: belirlenen nitel yöntemler, Uluslararası Sosyal ve Beşerî Bilimler Kongresi Kongre Kitabı, 60-65, 2021.
  • M.B. Wanjari, P. Wankhede, Occupational hazards associated with welding work that influence health status of welders, International Journal of Current Research and Review, 12(23), 51-55, 2020. DOI: http://dx.doi .org/10.31782/IJCRR.2020.122303
  • N. A. Shuaib et al., Assessing risks and control measures on a welding workshop in Malaysia, In AIP Conference Proceedings, Vol. 2339, No. 1, p. 020218). AIP Publishing LLC, 2021. DOI: https://doi.org/10.1063/5.0044249
  • Y.O. Tagurum et al., Awareness of occupational hazards and utilization of PPE amongst welders in jos metropolis, Nigeria, International Journal of Research in Medical Sciences, 6(7), 2227-2233, 2018. DOI: http://dx.doi.org/10.18203/2320-6012.ijrms20182808
  • S. Ersoy, E. Ç. Kaya, Bir kamu üniversitesi gıda mühendisliği laboratuvarları risk analiz uygulaması, Gümüşhane Üniversitesi Sağlık Bilimleri Dergisi, 8(4), 411-423, 2019.
  • D. Celayir, İç denetim ve risk değerlendirme, Yalın yayıncılık, Editör Hatice Bahtiyar, İstanbul, 2021.
  • G. Caner Akın et al., Yeni bir risk değerlendirme yöntemi ile tersane işletmelerinin sınıflandırılması, Busıness & Management Studıes: An Internatıonal Journal, 8 (1), pp. 2372-2384, 2020. doi: http://dx.doi .org/10.15295/bmij.v8i1.1349
  • S. Selçuk, H. H. Selim, Mücevherat sektöründe kullanılan iş sağlığı ve güvenliği risk analiz yöntemlerinden l tipi matris yöntemi, İstanbul Ticaret Üniversitesi Teknoloji ve Uygulamalı Bilimler Dergisi, 1(1), 21-27, 2018.
  • G.C. William and M.A. Levine. Classification of wire explosions. Journal of applied physics 31.7 (1960): 1298-1298. https://doi.org/10.1063/1.1735823
  • R.C. Weingart, et al. Acceleration of thin flyers by exploding metal foils: application to initiation studies.[PETN, TATB, PBX-7404, NM]. No. UCRL-77610; CONF-760805-10. California Univ., Livermore (USA). Lawrence Livermore Lab., 1976.
  • A. Vivek et al., Vaporizing foil actuator: a tool for collision welding, Journal of Materials Processing Technology, 213(12), 2304-2311, 2013. https://doi.org/ 10.1016/j.jmatprotec.2013.07.006
  • M.E. Önder, Servet common health and safety unit, hazard and risk assessment procedure, Adana. 'Personal communication', 2022.
  • F. Salguero-Caparrós et al., Management of legal compliance in occupational health and safety. a literature review, Safety Science, 121, 111-118,2020. doi :10.10 16/j.ssci.2019.08.033
  • A. Vivek et al., Accessing collision welding process window for titanium/copper welds with vaporizing foil actuators and grooved targets, Journal of Materials Processing Technology, 214(8), 1583-1589, 2014. DOİ: https://doi.org/10.1016/j.jmatprotec.2014.03.007
  • A. Vivek et al., Solid state impact welding of bmg and copper by vaporizing foil actuator welding, Materials Science and Engineering: A, 634, 14-19, 2015. DOİ: https://doi.org/10.1016/j.msea.2015.03.012
  • S. R. Hansen, A. Vivek, G. S. Daehn, Impact welding of aluminum alloys 6061 and 5052 by vaporizing foil actuators: heat-affected zone size and peel strength, Journal of Manufacturing Science and Engineering, 137(5), 2015. doi: https://doi.org/10.1115/1.4030934
  • M. Hahn et al., Vaporizing foil actuator welding as a competing technology to magnetic pulse welding, Journal of Materials Processing Technology, 230, 8-20, 2016. doi:https://doi.org/10.1016/j.jmatprotec.2015.11 .010
  • D. Pereira et al., Magnetic pulse welding: machine optimisation for aluminium tubular joints production. Science and Technology of Welding and Joining, 23.2 (2018):172-179. doi:https://doi.org/10.1080/13621718 .2017.1355425
  • M. Watanabe, et al. Interfacial microstructure of aluminum/metallic glass lap joints fabricated by magnetic pulse welding. Mater Trans. 2009;50(6):1279–1285. doi:https://doi.org/10.23 20/ matertrans.ME200835
  • Y. Lu et al., Dissimilar metal joining of aluminium to zinc-coated steel by ultrasonic plus resistance spot welding–microstructure and mechanical properties. Science and Technology of Welding and Joining 25.3 (2020): 218-227. doi: https://doi.org/10.1080/ 136217 18.2019.1667051
  • K. Sajun Prasad, et al. Recent Developments of Vaporizing Foil Actuator Technique for Manufacturing Applications. In: Forming the Future: Proceedings of the 13th International Conference on the Technology of Plasticity. Springer International Publishing, 2021. p. 1341-1350.
  • A. Vivek, and G. S. Daehn. Vaporizing foil actuator: a versatile tool for high energy-rate metal working. Procedia Engineering 81 (2014): 2129-2134. doi: https://doi.org/10.1016/j.proeng.2014.10.297
  • B., Liu, A. Vivek, G.S. Daehn, Joining sheet aluminum AA6061-T4 to cast magnesium AM60B by vaporizing foil actuator welding: input energy, interface, and strength, Journal of Manufacturing Processes, 30, 75-82, 2017. doi: https://doi.org/10.1016/j. jmapro. 2017 .09.008
  • S. Chen et al., Interfacial characteristics of Ti/Al joint by vaporizing foil actuator welding, Journal of Materials Processing Technology, 263, 73-81, 2019. doi: https://doi.org/10.1016/j.jmatprotec.2018.08.004
  • Z. Meng et al., Joining performance and microstructure of the 2024/7075 aluminium alloys welded joints by vaporizing foil actuator welding, Journal of Wuhan University of Technology-Mater. Sci. Ed., 34(2), 368-372, 2019. DOI: https: //doi. org/10.1007/s11595-019-2061-7
  • Department of Defence (DoD), Standard Practice for System Safety, MILSTD-882D, 2000.
There are 44 citations in total.

Details

Primary Language English
Subjects Electrical Engineering
Journal Section Articles
Authors

Ganime Tuğba Önder 0000-0002-7504-7394

Mustafa Kemal Külekci 0000-0002-5829-3489

Project Number 222M455, ENSTİTÜ.21.001
Early Pub Date October 6, 2023
Publication Date October 15, 2023
Submission Date January 24, 2023
Acceptance Date July 28, 2023
Published in Issue Year 2023

Cite

APA Önder, G. T., & Külekci, M. K. (2023). Vaporizing foil actuator welding prototype manufacturing and applications risk analysis. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 12(4), 1079-1091. https://doi.org/10.28948/ngumuh.1241634
AMA Önder GT, Külekci MK. Vaporizing foil actuator welding prototype manufacturing and applications risk analysis. NÖHÜ Müh. Bilim. Derg. October 2023;12(4):1079-1091. doi:10.28948/ngumuh.1241634
Chicago Önder, Ganime Tuğba, and Mustafa Kemal Külekci. “Vaporizing Foil Actuator Welding Prototype Manufacturing and Applications Risk Analysis”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 12, no. 4 (October 2023): 1079-91. https://doi.org/10.28948/ngumuh.1241634.
EndNote Önder GT, Külekci MK (October 1, 2023) Vaporizing foil actuator welding prototype manufacturing and applications risk analysis. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 12 4 1079–1091.
IEEE G. T. Önder and M. K. Külekci, “Vaporizing foil actuator welding prototype manufacturing and applications risk analysis”, NÖHÜ Müh. Bilim. Derg., vol. 12, no. 4, pp. 1079–1091, 2023, doi: 10.28948/ngumuh.1241634.
ISNAD Önder, Ganime Tuğba - Külekci, Mustafa Kemal. “Vaporizing Foil Actuator Welding Prototype Manufacturing and Applications Risk Analysis”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 12/4 (October 2023), 1079-1091. https://doi.org/10.28948/ngumuh.1241634.
JAMA Önder GT, Külekci MK. Vaporizing foil actuator welding prototype manufacturing and applications risk analysis. NÖHÜ Müh. Bilim. Derg. 2023;12:1079–1091.
MLA Önder, Ganime Tuğba and Mustafa Kemal Külekci. “Vaporizing Foil Actuator Welding Prototype Manufacturing and Applications Risk Analysis”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, vol. 12, no. 4, 2023, pp. 1079-91, doi:10.28948/ngumuh.1241634.
Vancouver Önder GT, Külekci MK. Vaporizing foil actuator welding prototype manufacturing and applications risk analysis. NÖHÜ Müh. Bilim. Derg. 2023;12(4):1079-91.

download