Kalıpçılıkta kullanılan soğuk iş takım çeliklerinin karşılaştırmalı performans analizi
Year 2023,
, 597 - 603, 15.04.2023
Aslan Ünal
,
Mehmet Masum Tünçay
,
Mustafa Kelami Şeşen
,
Oğuz Girit
Abstract
Çelik, metaller içerisinde en yaygın olarak kullanılanlardan biridir. Birçok farklı türü olan çeliklerden soğuk iş takım çelikleri (SİTÇ) özellikle kalıp sanayisinde sıklıkla tercih edilmektedir. Son zamanlarda geleneksel SİTÇ’e ek olarak yeni nesil SİTÇ de kullanıma sunulmuştur. Bu çalışma, geleneksel ve iki adet yeni nesil SİTÇ’in zımba malzemesi olarak elektrik motorunda kullanılan rotor laminasyon silisli saclarının şekillendirilmesinde kullanımı incelenmiştir. Yeni nesil SİTÇ’in geleneksele göre daha uzun ömürlü bir kullanım imkanı sunduğu tespit edilmiştir. İlgili çeliklerin mikroyapıları taramalı elektron mikroskopu (SEM) ve enerji dağılımlı X-ışını spektroskopisi (EDS) yardımıyla incelenmiştir ve oluşturabilecekleri karbür yapıları da FactSage® 8.2 termodinamik yazılım programı ile değerlendirilmiştir. Elde edilen sonuçlara göre yeni nesil SİTÇ’de hem ince ve homojen dağılımlı hem de çoklu karbür yapılarının oluştuğu görülmüştür. Niobyum ve Molibden açısından da zengin karbür yapıları ile birlikte homojen yapılı ince karbür yapılarının yeni nesil SİTÇ’in sahip olduğu uzun kullanım ömrünün nedeni olduğu düşünülmektedir.
Thanks
Çalışmalarımda destek olan ve Ar-Ge katkısı yapan MATİL A.Ş.’ye teşekkür ederim. SEM görüntülerinin alınmasında yardımcı olan Borçelik A.Ş. Sn. Ömer Yıldırım’a teşekkür ederim.
References
- K. H. Prabhudev, Handbook of Heat Treatment of Steels. McGraw-Hill, New Delhi, 1988.
- R. C. G. H. N. Gupta and A. Mittal, Manufacturing Processes. New Age International, New Delhi, 2009.
- M. Jeanneau and P. Pichant, The trends of steel products in the European automotive industry. Metallurgical Research and Technology, 97, 1399-1408, 2002. https://doi.org/10.1051/metal:2000118
- G. A. Roberts, R. Kennedy and G. Krauss, Tool Steels, 5th Edition. ASM International, 1998.
- ASTM G40-22a, Standard Terminology Relating to Wear and Erosion, ASTM International, 2022.
- J. A. Collins, Failure of Materials in Mechanical Design Analysis, Prediction, Prevention, 2nd ed. John Wiley, New York, 1993.
- A. Norrby, Nanotribological characterization of advanced tool steels, M.Sc. Thesis, Karlstads University, Sweeden, 2010.
- J. B. D. Viale, F. Chenou and G. Baron, Optimizing microstructure for high toughness cold-work tool steels, 6th International Tooling Conference, pp. 299-318, Karlstads, Sweden, 2002.
- I. Picas, Mechanical behaviour of tools, microstructure on fatigue, fracture and damage, Ph.D. Thesis, Universitat Politècnica de Catalunya, Spain, 2012.
- M. F. Ashby, Materials Selection in Mechanical Design. Elsevier Science, 2016.
- F. Mendi, Kesme kalıplarının bilgisayar yardımıyla tasarımı ve tasarım süresinin etüdü. Teknoloji, 127-137, 2001.
- L. Kirkhorn, V. Bushlya, M. Andersson and J. E. Ståhl, The influence of tool steel microstructure on friction in sheet metal forming. Wear, 302, 1268-1278, 2013. https://doi.org/10.1016/j.wear.2013.01.050
- D. A. Porter and K. E. Easterling, Phase Transformations in Metals and Alloys. Third Edition (Revised Reprint). Taylor & Francis, Cheltenham, 1992.
- K. Miao, Y. He, N. Zhu, J. Wang, X. Lu and L. Li, Coarsening of carbides during different heat treatment conditions. Journal of Alloys and Compounds, 622, 513-523, 2015. https://doi.org/10.1016/j.jallcom. 2014.10.115
- S. Farahany, M. Ziaie and N. A. Nordin, Effect of triple tempering temperature on microstructure, mechanical, and wear properties of K340 cold work tool steel. Journal of Materials Engineering and Performance, 2022. https://doi.org/10.1007/s11665-022-07791-4
- D. Casellas, J. Caro, S. Molas, J. M. Prado and I. Valls, Fracture toughness of carbides in tool steels evaluated by nanoindentation. Acta Materialia, 55, 4277-4286, 2007. https://doi.org/10.1016/j.actamat.2007.03.028
- G. Z. S.Wilmes, Effect of niobium and vanadium as alloying element in tool steels with high chromium content. 6th International Tooling Conference, pp. 269-287, Karlstadt, Sweeden, 2002.
- Y. Liu, Y. Jiang, J. Xing, R. Zhou and J. Feng, Mechanical properties and electronic structures of M23C6 (M = Fe, Cr, Mn)-type multicomponent carbides. Journal of Alloys and Compounds, 648, 874-880, 2015. https://doi.org/10.1016/j.jallcom.2015 .07.048
Comparative performance analysis of cold work tool steels used in mold industry
Year 2023,
, 597 - 603, 15.04.2023
Aslan Ünal
,
Mehmet Masum Tünçay
,
Mustafa Kelami Şeşen
,
Oğuz Girit
Abstract
Steel is one of the most widely used metals. Cold work tool steels (CWTS) are frequently preferred in the mold industry. Recently, in addition to traditional CWTS, new generation CWTS have been put into use. This study examines the use of traditional and two new generation CWTS as staple material in the pressing of rotors used in electric motors. It has been observed that the new generation CWTS offer a longer lifespan compared to the traditional ones. The microstructures were investigated using scanning electron microscope (SEM) and x-ray spectroscopy (EDS), and the carbide structures they could form were evaluated using FactSage® 8.2 thermodynamic software. It has been observed that both fine and evenly distributed and multiple carbide structures are formed in the new generation CWTS. The carbides in new generation CWTS were also rich in Niobium and Molybdenum. These were considered as the reasons for long service life of CWTS.
References
- K. H. Prabhudev, Handbook of Heat Treatment of Steels. McGraw-Hill, New Delhi, 1988.
- R. C. G. H. N. Gupta and A. Mittal, Manufacturing Processes. New Age International, New Delhi, 2009.
- M. Jeanneau and P. Pichant, The trends of steel products in the European automotive industry. Metallurgical Research and Technology, 97, 1399-1408, 2002. https://doi.org/10.1051/metal:2000118
- G. A. Roberts, R. Kennedy and G. Krauss, Tool Steels, 5th Edition. ASM International, 1998.
- ASTM G40-22a, Standard Terminology Relating to Wear and Erosion, ASTM International, 2022.
- J. A. Collins, Failure of Materials in Mechanical Design Analysis, Prediction, Prevention, 2nd ed. John Wiley, New York, 1993.
- A. Norrby, Nanotribological characterization of advanced tool steels, M.Sc. Thesis, Karlstads University, Sweeden, 2010.
- J. B. D. Viale, F. Chenou and G. Baron, Optimizing microstructure for high toughness cold-work tool steels, 6th International Tooling Conference, pp. 299-318, Karlstads, Sweden, 2002.
- I. Picas, Mechanical behaviour of tools, microstructure on fatigue, fracture and damage, Ph.D. Thesis, Universitat Politècnica de Catalunya, Spain, 2012.
- M. F. Ashby, Materials Selection in Mechanical Design. Elsevier Science, 2016.
- F. Mendi, Kesme kalıplarının bilgisayar yardımıyla tasarımı ve tasarım süresinin etüdü. Teknoloji, 127-137, 2001.
- L. Kirkhorn, V. Bushlya, M. Andersson and J. E. Ståhl, The influence of tool steel microstructure on friction in sheet metal forming. Wear, 302, 1268-1278, 2013. https://doi.org/10.1016/j.wear.2013.01.050
- D. A. Porter and K. E. Easterling, Phase Transformations in Metals and Alloys. Third Edition (Revised Reprint). Taylor & Francis, Cheltenham, 1992.
- K. Miao, Y. He, N. Zhu, J. Wang, X. Lu and L. Li, Coarsening of carbides during different heat treatment conditions. Journal of Alloys and Compounds, 622, 513-523, 2015. https://doi.org/10.1016/j.jallcom. 2014.10.115
- S. Farahany, M. Ziaie and N. A. Nordin, Effect of triple tempering temperature on microstructure, mechanical, and wear properties of K340 cold work tool steel. Journal of Materials Engineering and Performance, 2022. https://doi.org/10.1007/s11665-022-07791-4
- D. Casellas, J. Caro, S. Molas, J. M. Prado and I. Valls, Fracture toughness of carbides in tool steels evaluated by nanoindentation. Acta Materialia, 55, 4277-4286, 2007. https://doi.org/10.1016/j.actamat.2007.03.028
- G. Z. S.Wilmes, Effect of niobium and vanadium as alloying element in tool steels with high chromium content. 6th International Tooling Conference, pp. 269-287, Karlstadt, Sweeden, 2002.
- Y. Liu, Y. Jiang, J. Xing, R. Zhou and J. Feng, Mechanical properties and electronic structures of M23C6 (M = Fe, Cr, Mn)-type multicomponent carbides. Journal of Alloys and Compounds, 648, 874-880, 2015. https://doi.org/10.1016/j.jallcom.2015 .07.048