Research Article
BibTex RIS Cite

Effect of nano diamond addition on mechanical and corrosion properties of Mg-3Sn-2Y alloy

Year 2023, , 1007 - 1012, 15.07.2023
https://doi.org/10.28948/ngumuh.1256604

Abstract

Magnesium is an important candidate for biodegradable implant applications due to its biocompatibility. Magnesium alloys degrade very rapidly in the body as a result of corrosion reactions. This degrades the mechanical properties of the alloy and causes the implant to deform. For this reason, researchers have been intensively supplementing magnesium alloys with Nanoparticles for the past few years and trying to improve their mechanical properties. Because it is known that nano-sized materials have superior properties compared to micro-sized materials. In this study, using Mg-3Sn-2Y alloy as matrix and with the addition of 1 wt.% nano diamond, nanocomposites were produced by gravity casting method. Tensile and macro hardness tests were performed on the alloy and nano composite samples and these results were supported by optical microscope (OM), field scanning electron microscopy (FE-SEM) and EDS analysis. It was observed that the hardness and tensile strength of the alloy increased with the addition of nano diamond. Corrosion tests were also carried out and Tafel curves were obtained. As a result of the corrosion tests, it was observed that the addition of nano diamonds improved the corrosion resistance of the alloy.

References

  • Y. Eren, A. Gökçe, F. Findik, H. Ozkan and İ. Osman, Mechanical properties and electrochemical behavior of porous Ti-Nb biomaterials, Journal of the Mechanical Behavior of Biomedical Materials 87, 59–67, 2018. https://doi.org/10.1016/j.jmbbm.2018.07.018.
  • Z.Q. Zhang, Y.X. Yang, J.A. Li, R.C. Zeng and S.K. Guan, Advances in coatings on magnesium alloys for cardiovascular stents – A review, Bioactive Materials 6, 4729–4757,2021. https://doi.org/10.1016/j.bioactmat.2021.04.044.
  • N. Li and Y. Zheng, Novel Magnesium Alloys Developed for Biomedical Application: A Review, Journal Materials Science Technology 29, 489–502, 2013. https://doi.org/10.1016/j.jmst.2013.02.005.
  • M. Shahin, K. Munir, C. Wen and Y. Li, Magnesium matrix nanocomposites for orthopedic applications : A review from mechanical , corrosion , and biological perspectives, Acta Biomaterialia 96, 1–19, 2019. https://doi.org/10.1016/j.actbio.2019.06.007.
  • N.T. Kirkland, M.P. Staiger, D. Nisbet, C.H.J. Davies and N. Birbilis, Performance-driven design of biocompatible Mg alloys, Journal of Materials, 63, 28–34, 2011. https://doi.org/10.1007/s11837-011-0089-z.
  • W. Wang, H. Wu, R. Zan, Y. Sun, C. Blawert, S. Zhang, J. Ni, M.L. Zheludkevich and X. Zhang, Microstructure controls the corrosion behavior of a lean biodegradable Mg–2Zn alloy, Acta Biomaterialia 107, 349–361, 2020. https://doi.org/10.1016/j.actbio.2020.02.040.
  • S. Zhang, X. Zhang, C. Zhao, J. Li, Y. Song, C. Xie, H. Tao, Y. Zhang, Y. He, Y. Jiang and Y. Bian, Research on an Mg-Zn alloy as a degradable biomaterial, Acta Biomaterialia 6, 626–640, 2010. https://doi.org/ 10.1016/j.actbio.2009.06.028.
  • C. Zhao, F. Pan, S. Zhao, H. Pan, K. Song and A. Tang, Preparation and characterization of as-extruded Mg-Sn alloys for orthopedic applications, Materials and Design, 70, 60–67, 2015. https://doi.org/10.1016/j.matdes.2014.12.041.
  • J. Kubásek, D. Vojtěch, J. Lipov and T. Ruml, Structure, mechanical properties, corrosion behavior and cytotoxicity of biodegradable Mg-X (X = Sn, Ga, In) alloys, Materials Science and Engineering C, 33 2421–2432, 2013. https://doi.org/10.1016/j.msec.2013.02.005.
  • C. Zhao, F. Pan, S. Zhao, H. Pan, K. Song and A. Tang, Microstructure, corrosion behavior and cytotoxicity of biodegradable Mg-Sn implant alloys prepared by sub-rapid solidification, Materials Science and Engineering C, 54, 245–251, 2015. https://doi.org/10.1016/j.msec.2015.05.042.
  • Y. Chen, J. Dou, H. Yu and C. Chen, Degradable magnesium-based alloys for biomedical applications: The role of critical alloying elements, Journal of Biomaterials Applications 33, 1348–1372, 2019. https://doi.org/10.1177/0885328219834656.
  • Y.F. Zheng, X.N. Gu and F. Witte, Biodegradable metals, Materials Science and Engineering R: Reports. 77, 1–34, 2014. https://doi.org/10.1016/j.mser.2014.01.001.
  • D. Liu, D. Yang, X. Li and S. Hu, Mechanical properties, corrosion resistance and biocompatibilities of degradable Mg-RE alloys: A review, Journal of Materials Research Technology 8, 1538–1549, 2019. https://doi.org/10.1016/j.jmrt.2018.08.003.
  • M.C. Turhan, Q. Li, H. Jha, R.F. Singer and S. Virtanen, Corrosion behaviour of multiwall carbon nanotube/magnesium composites in 3.5% NaCl, Electrochimica Acta 56, 7141–7148, 2011. https://doi.org/10.1016/j.electacta.2011.05.082.
  • C.D. Li, X.J. Wang, W.Q. Liu, K. Wu, H.L. Shi, C. Ding, X.S. Hu and M.Y. Zheng, Microstructure and strengthening mechanism of carbon nanotubes reinforced magnesium matrix composite, Materials Science and Engineering A. 597, 264–269, 2014. https://doi.org/10.1016/j.msea.2014.01.008.
  • M. Razavi and Y. Huang, Effect of hydroxyapatite (HA) nanoparticles shape on biodegradation of Mg/HA nanocomposites processed by high shear solidification/equal channel angular extrusion route, Materials Letters 267, 127541, 2020. https://doi.org/10.1016/j.matlet.2020.127541.
  • D.B. Liu, Y. Huang and P.B. Prangnell, Microstructure and performance of a biodegradable Mg-1Ca-2Zn-1TCP composite fabricated by combined solidification and deformation processing, Materials Letters, 82, 7–9, 2012. https://doi.org/10.1016/j.matlet.2012.05.035.
  • C.S. Goh, J. Wei, L.C. Lee and M. Gupta, Properties and deformation behaviour of Mg-Y2O3 nanocomposites, Acta Materialia 55, 5115–5121, 2007. https://doi.org/10.1016/j.actamat.2007.05.032.
  • T. Lei, W. Tang, S.H. Cai, F.F. Feng and N.F. Li, On the corrosion behaviour of newly developed biodegradable Mg-based metal matrix composites produced by in situ reaction, Corrosion Science, 54, 270–277, 2012. https://doi.org/10.1016/j.corsci.2011.09.027.
  • M. Pozuelo, Y.W. Chang and J.M. Yang, Effect of diamondoids on the microstructure and mechanical behavior of nanostructured Mg-matrix nanocomposites, Materials Science and Engineering A, 633, 200–208, 2015. https://doi.org/10.1016/j.msea.2015.02.062.
  • H. Dieringa, L. Katsarou, R. Buzolin, G. Szakács, M. Horstmann, M. Wolff, C. Mendis, S. Vorozhtsov and D. StJohn, Ultrasound assisted casting of an AM60 based metal matrix nanocomposite, its properties, and recyclability, Metals (Basel). 388, 1-13 2017. https://doi.org/10.3390/met7100388.
  • M. Ali, M.A. Hussein and N. Al-Aqeeli, Magnesium-based composites and alloys for medical applications: A review of mechanical and corrosion properties, Journal of Alloys and Compounds, 792, 1162–1190, 2019. https://doi.org/10.1016/j.jallcom.2019.04.080.
  • A. Madhan Kumar, S. Fida Hassan, A.A. Sorour, M. Paramsothy and M. Gupta, Electrochemical Corrosion and In vitro Biocompatibility Performance of AZ31Mg/Al2O3 Nanocomposite in Simulated Body Fluid, Journal of Materials Engineering Performance, 27, 3419–3428, 2018. https://doi.org/10.1007/s11665-018-3448-x.
  • S.Z. Khalajabadi, M.R. Abdul Kadir, S. Izman and R. Ebrahimi-Kahrizsangi, Fabrication, bio-corrosion behavior and mechanical properties of a Mg/HA/MgO nanocomposite for biomedical applications, Material and Design 88, 1223–1233, 2015. https://doi.org/10.1016/j.matdes.2015.09.065.
  • R. Kaur and I. Badea, Nanodiamonds as novel nanomaterials for biomedical applications: Drug delivery and imaging systems, International Journal of Nanomedicine. 8, 203–220, 2013. https://doi.org/10.2147/IJN.S37348.
  • B.R. Lin, C.H. Chen, S. Kunuku, T.Y. Chen, T.Y. Hsiao, H. Niu and C.P. Lee, Fe Doped Magnetic Nanodiamonds Made by Ion Implantation as Contrast Agent for MRI, Science Report , 8, 1–6, 2018. https://doi.org/10.1038/s41598-018-25380-1.
  • H. Gong, B. Anasori, C.R. Dennison, K. Wang, E.C. Kumbur, R. Strich and J.G. Zhou, Fabrication, biodegradation behavior and cytotoxicity of Mg-nanodiamond composites for implant application, Journal of Material Science: Materials Medicine 26, 1–9, 2015. https://doi.org/10.1007/s10856-015-5441-3.
  • H. Fukuda, J.A. Szpunar, K. Kondoh and R. Chromik, The influence of carbon nanotubes on the corrosion behaviour of AZ31B magnesium alloy, Corrosion Science, 52, 3917–3923, 2010. https://doi.org/10.1016/j.corsci.2010.08.009.
  • N.N. Aung, W. Zhou, C.S. Goh, S.M.L. Nai and J. Wei, Effect of carbon nanotubes on corrosion of Mg-CNT composites, Corrosion Science, 52, 1551–1553, 2010. https://doi.org/10.1016/j.corsci.2010.02.025.
  • M.C. Zhao, M. Liu, G. Song and A. Atrens, Influence of the β-phase morphology on the corrosion of the Mg alloy AZ91, Corrosion Science, 50, 1939–1953, 2008. https://doi.org/10.1016/j.corsci.2008.04.010.
  • M. Gupta and N.M.L. Sharon, Magnesium, Magnesium Alloys, and Magnesium Composites, 2010. https://doi.org/10.1002/9780470905098.
  • H. Şevik, S. Özarslan and H. Dieringa, Assessment of the Mechanical and Corrosion Properties of Mg-1Zn-0.6Ca/Diamond Nanocomposites for Biomedical Applications, Nanomaterials. 12, 1–17, 2022. https://doi.org/10.3390/nano12244399.
  • X. Gu and Y. Zheng, A review on magnesium alloys as biodegradable materials, Frontier Material Science China. 4, 111–115, 2010. https://doi.org/10.1007/s11706-010-0024-1.
  • H. Gong, B. Anasori, C.R. Dennison, K. Wang, E.C. Kumbur, R. Strich and J.G. Zhou, Fabrication, biodegradation behavior and cytotoxicity of Mg-nanodiamond composites for implant application, Journal of Materials Science: Materials Medicine 26, 1–9, 2015. https://doi.org/10.1007/s10856-015-5441-3.

Nano elmas ilaveli Mg-3Sn-2Y alaşımının mekanik ve korozyon özelliklerinin incelenmesi

Year 2023, , 1007 - 1012, 15.07.2023
https://doi.org/10.28948/ngumuh.1256604

Abstract

Magnezyum biyo uyumluluğundan dolayı biyobozunur implant uygulamaları için önemli bir adaydır. Magnezyum alaşımları korozyon reaksiyonları sonucunda çok hızlıca vücut içerisinde bozunur. Bu durum alaşımın mekanik özelliklerini düşürür ve implantın deforme olmasına neden olur. Bu nedenle araştırmacılar geçtiğimiz bir kaç yıldır magnezyum alaşımlarına yoğun bir şekilde nanopartikül takviyesi yapmakta ve mekanik özellikleri iyileştirilmeye çalışılmaktadır. Çünkü nano boyuttaki malzemelerin mikro boyut ile karşılaştırıldığında daha üstün özelliklere sahip olduğu bilinmektedir. Bu çalışmada, Mg-3Sn-2Y alaşımı matriks olarak kullanılarak ve ağırlıkça %1 nano elmas ilavesi ile nanokompozit üretimi gravity döküm yöntemiyle gerçekleştirilmiştir. Üretilen alaşım ve nanokompozit numunelere çekme ve makro sertlik deneyleri gerçekleştirilmiş ve bu sonuçlar optik mikroskop (OM), alan taramalı elektron mikroskobu (FE-SEM) ve EDS analizleri ile desteklenmiştir. Alaşımın sertlik ve çekme mukavemetinin nano elmas ilavesi ile arttığı gözlenmiştir. Ayrıca korozyon testleri gerçekleştirilmiş ve Tafel eğrileri elde edilmiştir. Korozyon testleri sonucunda nano elmas ilavesinin alaşımın korozyon direncini iyileştirdiği görülmüştür.

References

  • Y. Eren, A. Gökçe, F. Findik, H. Ozkan and İ. Osman, Mechanical properties and electrochemical behavior of porous Ti-Nb biomaterials, Journal of the Mechanical Behavior of Biomedical Materials 87, 59–67, 2018. https://doi.org/10.1016/j.jmbbm.2018.07.018.
  • Z.Q. Zhang, Y.X. Yang, J.A. Li, R.C. Zeng and S.K. Guan, Advances in coatings on magnesium alloys for cardiovascular stents – A review, Bioactive Materials 6, 4729–4757,2021. https://doi.org/10.1016/j.bioactmat.2021.04.044.
  • N. Li and Y. Zheng, Novel Magnesium Alloys Developed for Biomedical Application: A Review, Journal Materials Science Technology 29, 489–502, 2013. https://doi.org/10.1016/j.jmst.2013.02.005.
  • M. Shahin, K. Munir, C. Wen and Y. Li, Magnesium matrix nanocomposites for orthopedic applications : A review from mechanical , corrosion , and biological perspectives, Acta Biomaterialia 96, 1–19, 2019. https://doi.org/10.1016/j.actbio.2019.06.007.
  • N.T. Kirkland, M.P. Staiger, D. Nisbet, C.H.J. Davies and N. Birbilis, Performance-driven design of biocompatible Mg alloys, Journal of Materials, 63, 28–34, 2011. https://doi.org/10.1007/s11837-011-0089-z.
  • W. Wang, H. Wu, R. Zan, Y. Sun, C. Blawert, S. Zhang, J. Ni, M.L. Zheludkevich and X. Zhang, Microstructure controls the corrosion behavior of a lean biodegradable Mg–2Zn alloy, Acta Biomaterialia 107, 349–361, 2020. https://doi.org/10.1016/j.actbio.2020.02.040.
  • S. Zhang, X. Zhang, C. Zhao, J. Li, Y. Song, C. Xie, H. Tao, Y. Zhang, Y. He, Y. Jiang and Y. Bian, Research on an Mg-Zn alloy as a degradable biomaterial, Acta Biomaterialia 6, 626–640, 2010. https://doi.org/ 10.1016/j.actbio.2009.06.028.
  • C. Zhao, F. Pan, S. Zhao, H. Pan, K. Song and A. Tang, Preparation and characterization of as-extruded Mg-Sn alloys for orthopedic applications, Materials and Design, 70, 60–67, 2015. https://doi.org/10.1016/j.matdes.2014.12.041.
  • J. Kubásek, D. Vojtěch, J. Lipov and T. Ruml, Structure, mechanical properties, corrosion behavior and cytotoxicity of biodegradable Mg-X (X = Sn, Ga, In) alloys, Materials Science and Engineering C, 33 2421–2432, 2013. https://doi.org/10.1016/j.msec.2013.02.005.
  • C. Zhao, F. Pan, S. Zhao, H. Pan, K. Song and A. Tang, Microstructure, corrosion behavior and cytotoxicity of biodegradable Mg-Sn implant alloys prepared by sub-rapid solidification, Materials Science and Engineering C, 54, 245–251, 2015. https://doi.org/10.1016/j.msec.2015.05.042.
  • Y. Chen, J. Dou, H. Yu and C. Chen, Degradable magnesium-based alloys for biomedical applications: The role of critical alloying elements, Journal of Biomaterials Applications 33, 1348–1372, 2019. https://doi.org/10.1177/0885328219834656.
  • Y.F. Zheng, X.N. Gu and F. Witte, Biodegradable metals, Materials Science and Engineering R: Reports. 77, 1–34, 2014. https://doi.org/10.1016/j.mser.2014.01.001.
  • D. Liu, D. Yang, X. Li and S. Hu, Mechanical properties, corrosion resistance and biocompatibilities of degradable Mg-RE alloys: A review, Journal of Materials Research Technology 8, 1538–1549, 2019. https://doi.org/10.1016/j.jmrt.2018.08.003.
  • M.C. Turhan, Q. Li, H. Jha, R.F. Singer and S. Virtanen, Corrosion behaviour of multiwall carbon nanotube/magnesium composites in 3.5% NaCl, Electrochimica Acta 56, 7141–7148, 2011. https://doi.org/10.1016/j.electacta.2011.05.082.
  • C.D. Li, X.J. Wang, W.Q. Liu, K. Wu, H.L. Shi, C. Ding, X.S. Hu and M.Y. Zheng, Microstructure and strengthening mechanism of carbon nanotubes reinforced magnesium matrix composite, Materials Science and Engineering A. 597, 264–269, 2014. https://doi.org/10.1016/j.msea.2014.01.008.
  • M. Razavi and Y. Huang, Effect of hydroxyapatite (HA) nanoparticles shape on biodegradation of Mg/HA nanocomposites processed by high shear solidification/equal channel angular extrusion route, Materials Letters 267, 127541, 2020. https://doi.org/10.1016/j.matlet.2020.127541.
  • D.B. Liu, Y. Huang and P.B. Prangnell, Microstructure and performance of a biodegradable Mg-1Ca-2Zn-1TCP composite fabricated by combined solidification and deformation processing, Materials Letters, 82, 7–9, 2012. https://doi.org/10.1016/j.matlet.2012.05.035.
  • C.S. Goh, J. Wei, L.C. Lee and M. Gupta, Properties and deformation behaviour of Mg-Y2O3 nanocomposites, Acta Materialia 55, 5115–5121, 2007. https://doi.org/10.1016/j.actamat.2007.05.032.
  • T. Lei, W. Tang, S.H. Cai, F.F. Feng and N.F. Li, On the corrosion behaviour of newly developed biodegradable Mg-based metal matrix composites produced by in situ reaction, Corrosion Science, 54, 270–277, 2012. https://doi.org/10.1016/j.corsci.2011.09.027.
  • M. Pozuelo, Y.W. Chang and J.M. Yang, Effect of diamondoids on the microstructure and mechanical behavior of nanostructured Mg-matrix nanocomposites, Materials Science and Engineering A, 633, 200–208, 2015. https://doi.org/10.1016/j.msea.2015.02.062.
  • H. Dieringa, L. Katsarou, R. Buzolin, G. Szakács, M. Horstmann, M. Wolff, C. Mendis, S. Vorozhtsov and D. StJohn, Ultrasound assisted casting of an AM60 based metal matrix nanocomposite, its properties, and recyclability, Metals (Basel). 388, 1-13 2017. https://doi.org/10.3390/met7100388.
  • M. Ali, M.A. Hussein and N. Al-Aqeeli, Magnesium-based composites and alloys for medical applications: A review of mechanical and corrosion properties, Journal of Alloys and Compounds, 792, 1162–1190, 2019. https://doi.org/10.1016/j.jallcom.2019.04.080.
  • A. Madhan Kumar, S. Fida Hassan, A.A. Sorour, M. Paramsothy and M. Gupta, Electrochemical Corrosion and In vitro Biocompatibility Performance of AZ31Mg/Al2O3 Nanocomposite in Simulated Body Fluid, Journal of Materials Engineering Performance, 27, 3419–3428, 2018. https://doi.org/10.1007/s11665-018-3448-x.
  • S.Z. Khalajabadi, M.R. Abdul Kadir, S. Izman and R. Ebrahimi-Kahrizsangi, Fabrication, bio-corrosion behavior and mechanical properties of a Mg/HA/MgO nanocomposite for biomedical applications, Material and Design 88, 1223–1233, 2015. https://doi.org/10.1016/j.matdes.2015.09.065.
  • R. Kaur and I. Badea, Nanodiamonds as novel nanomaterials for biomedical applications: Drug delivery and imaging systems, International Journal of Nanomedicine. 8, 203–220, 2013. https://doi.org/10.2147/IJN.S37348.
  • B.R. Lin, C.H. Chen, S. Kunuku, T.Y. Chen, T.Y. Hsiao, H. Niu and C.P. Lee, Fe Doped Magnetic Nanodiamonds Made by Ion Implantation as Contrast Agent for MRI, Science Report , 8, 1–6, 2018. https://doi.org/10.1038/s41598-018-25380-1.
  • H. Gong, B. Anasori, C.R. Dennison, K. Wang, E.C. Kumbur, R. Strich and J.G. Zhou, Fabrication, biodegradation behavior and cytotoxicity of Mg-nanodiamond composites for implant application, Journal of Material Science: Materials Medicine 26, 1–9, 2015. https://doi.org/10.1007/s10856-015-5441-3.
  • H. Fukuda, J.A. Szpunar, K. Kondoh and R. Chromik, The influence of carbon nanotubes on the corrosion behaviour of AZ31B magnesium alloy, Corrosion Science, 52, 3917–3923, 2010. https://doi.org/10.1016/j.corsci.2010.08.009.
  • N.N. Aung, W. Zhou, C.S. Goh, S.M.L. Nai and J. Wei, Effect of carbon nanotubes on corrosion of Mg-CNT composites, Corrosion Science, 52, 1551–1553, 2010. https://doi.org/10.1016/j.corsci.2010.02.025.
  • M.C. Zhao, M. Liu, G. Song and A. Atrens, Influence of the β-phase morphology on the corrosion of the Mg alloy AZ91, Corrosion Science, 50, 1939–1953, 2008. https://doi.org/10.1016/j.corsci.2008.04.010.
  • M. Gupta and N.M.L. Sharon, Magnesium, Magnesium Alloys, and Magnesium Composites, 2010. https://doi.org/10.1002/9780470905098.
  • H. Şevik, S. Özarslan and H. Dieringa, Assessment of the Mechanical and Corrosion Properties of Mg-1Zn-0.6Ca/Diamond Nanocomposites for Biomedical Applications, Nanomaterials. 12, 1–17, 2022. https://doi.org/10.3390/nano12244399.
  • X. Gu and Y. Zheng, A review on magnesium alloys as biodegradable materials, Frontier Material Science China. 4, 111–115, 2010. https://doi.org/10.1007/s11706-010-0024-1.
  • H. Gong, B. Anasori, C.R. Dennison, K. Wang, E.C. Kumbur, R. Strich and J.G. Zhou, Fabrication, biodegradation behavior and cytotoxicity of Mg-nanodiamond composites for implant application, Journal of Materials Science: Materials Medicine 26, 1–9, 2015. https://doi.org/10.1007/s10856-015-5441-3.
There are 34 citations in total.

Details

Primary Language Turkish
Subjects Material Production Technologies
Journal Section Materials and Metallurgical Engineering
Authors

Eren Üstün 0000-0002-6774-9193

Hüseyin Şevik 0000-0002-2065-412X

Early Pub Date May 29, 2023
Publication Date July 15, 2023
Submission Date February 27, 2023
Acceptance Date May 19, 2023
Published in Issue Year 2023

Cite

APA Üstün, E., & Şevik, H. (2023). Nano elmas ilaveli Mg-3Sn-2Y alaşımının mekanik ve korozyon özelliklerinin incelenmesi. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 12(3), 1007-1012. https://doi.org/10.28948/ngumuh.1256604
AMA Üstün E, Şevik H. Nano elmas ilaveli Mg-3Sn-2Y alaşımının mekanik ve korozyon özelliklerinin incelenmesi. NÖHÜ Müh. Bilim. Derg. July 2023;12(3):1007-1012. doi:10.28948/ngumuh.1256604
Chicago Üstün, Eren, and Hüseyin Şevik. “Nano Elmas Ilaveli Mg-3Sn-2Y alaşımının Mekanik Ve Korozyon özelliklerinin Incelenmesi”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 12, no. 3 (July 2023): 1007-12. https://doi.org/10.28948/ngumuh.1256604.
EndNote Üstün E, Şevik H (July 1, 2023) Nano elmas ilaveli Mg-3Sn-2Y alaşımının mekanik ve korozyon özelliklerinin incelenmesi. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 12 3 1007–1012.
IEEE E. Üstün and H. Şevik, “Nano elmas ilaveli Mg-3Sn-2Y alaşımının mekanik ve korozyon özelliklerinin incelenmesi”, NÖHÜ Müh. Bilim. Derg., vol. 12, no. 3, pp. 1007–1012, 2023, doi: 10.28948/ngumuh.1256604.
ISNAD Üstün, Eren - Şevik, Hüseyin. “Nano Elmas Ilaveli Mg-3Sn-2Y alaşımının Mekanik Ve Korozyon özelliklerinin Incelenmesi”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 12/3 (July 2023), 1007-1012. https://doi.org/10.28948/ngumuh.1256604.
JAMA Üstün E, Şevik H. Nano elmas ilaveli Mg-3Sn-2Y alaşımının mekanik ve korozyon özelliklerinin incelenmesi. NÖHÜ Müh. Bilim. Derg. 2023;12:1007–1012.
MLA Üstün, Eren and Hüseyin Şevik. “Nano Elmas Ilaveli Mg-3Sn-2Y alaşımının Mekanik Ve Korozyon özelliklerinin Incelenmesi”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, vol. 12, no. 3, 2023, pp. 1007-12, doi:10.28948/ngumuh.1256604.
Vancouver Üstün E, Şevik H. Nano elmas ilaveli Mg-3Sn-2Y alaşımının mekanik ve korozyon özelliklerinin incelenmesi. NÖHÜ Müh. Bilim. Derg. 2023;12(3):1007-12.

download