Research Article
BibTex RIS Cite

Hidroksiapatit kaplanmış Al2024'ün simüle edilmiş vücut sıvısında in-vitro korozyon performansı: Karşılaştırmalı bir çalışma

Year 2023, , 926 - 934, 15.07.2023
https://doi.org/10.28948/ngumuh.1263697

Abstract

Bu çalışmada, hidroksiapatit (HA) kaplamaların Al-Cu-Mg alaşımları (Al2024) üzerine uygulanabilirliği elektrokimyasal tekniklerle incelenmiştir. Kaplanan tabakaların yapısal karakterizasyonları SEM, EDS ve XRD test/analizleri ile incelenmiştir. Yüzey adezyon direnci ve elektrokimyasal bozunma davranışı, sırasıyla çizilme ve potansiyodinamik tarama (PDS) testleri ile test edilmiştir. Al2024 yüzeylerinde HA kaplamanın homojen bir yapıya sahip olduğu ancak kesit görüntülerinden bazı lokal bölgelerin yeterince HA ile kaplanamadığı görülmüştür. Ayrıca kaplama yüzeyleri, HA kaplamalara özgü mikro gözenekli morfolojiye sahip olduğu tespit edilmiştir. Kaplamanın çizilme testi sonuçlarından, kritik yük direncinin (Lc1), 12N’un biyomedikal uygulamalar için yeterli olacağı öngörülmüştür. Elektrokimyasal korozyon testleri, HA kaplamanın Al2024 alaşımının korozyon akımı yoğunluğunu (Icorr) ve korozyon oranını azalttığını ortaya çıkarmıştır (HA kaplı ve kaplanmamış Al2024 alaşımı için sırasıyla 0,885 ve 5,260 µA·cm-2). Ancak HA kaplama ile elde edilen düşük Icorr değerine rağmen hem Icorr hem de pasivasyon akım yoğunluğu (Ipass) değerlerinin (HA kaplama için 3,15 µA·cm-2, farklı titanyum türleri için 0.03 ila 0.08 µA·cm-2) olduğu gözlemlenmiş olup ticari titanyum alaşımlarına kıyasla yetersiz olduğu ortaya çıkarılmıştır.

References

  • Y. Huang, H. Qiao, X. Nian, X. Zhang, X. Zhang, G. Song, Z. Xu, H. Zhang and S. Han, Improving the bioactivity and corrosion resistance properties of electrodeposited hydroxyapatite coating by dual doping ofbivalent strontium and manganese ion. Surface and Coatings Technology, 291, 205–215, 2016. https://doi.org/10.1016/j.surfcoat.2016.02.042.
  • A. Montenero, G. Gnappi, F. Ferrari, M. Cesari, E. Salvioli, L. Mattogno, S. Kaciulis and M. Fini, Sol-gel derived hydroxyapatite coatings on titanium substrate. Journal of Materials Science, 35, 2791–2797, 2000. https://doi.org/10.1023/A:1004738900778.
  • J. S. Suwandi, R. E. M. Toes, T. Nikolic and B. O. Roep, Inducing tissue specific tolerance in autoimmune disease with tolerogenic dendritic cells. Clinical and Experimental Rheumatology, 33, 97–103, 2015. https://doi.org/10.1002/jbm.a.
  • X. Liu, P. K. Chu and C. Ding, Surface modification of titanium , titanium alloys , and related materials for biomedical applications. 47, 49–121, 2005. https://doi.org/10.1016/j.mser.2004.11.001.
  • J. B. Brunski. In Vivo Bone Response to Biomechanical Loading at the Bone/Dental-Implant Interface, Advances in Dental Research, 13, 99-119, 1999. https://doi.org/10.1177/089593749901300123.
  • M. Niinomi, Mechanical properties of biomedical titanium alloys. Materials Science and Engineering: A, 243, 231–236, 1998. https://doi.org/10.1016/S0921-5093(97)00806-X.
  • M. Topuz, B. Dikici, M. Gavgalı and Y. Yılmazer, Effect of hydroxyapatite:zirconia volume fraction ratio on mechanical and corrosive properties of Ti-matrix composite scaffolds. Transactions of Nonferrous Metals Society of China, 32, 882–894, 2022. https://doi.org/10.1016/s1003-6326(22)65840-0.
  • M. Topuz, B. Dikici, M. Gavgali and M. Kaseem, Processing of Ti/(HA+ZrO2) biocomposite and 50% porous hybrid scaffolds with low Young’s modulus by powder metallurgy: Comparing of structural, mechanical, and corrosion properties. Materials Today Communications, 29, 102813, 2021. https://doi.org/10.1016/j.mtcomm.2021.102813.
  • M. Niinomi, Recent research and development in titanium alloys for biomedical applications and healthcare goods. Science and Technology of Advanced Materials, 4, 445–454, 2003. https://doi.org/10.1016/j.stam.2003.09.002.
  • D. Raabe, D. Ponge, P. J. Uggowitzer, M. Roscher, M. Paolantonio, C. Liu, H. Antrekowitsch, E. Kozeschnik, D. Seidmann, B. Gault, F. De Geuser, A. Deschamps, C. Hutchinson, C. Liu, Z. Li, P. Prangnell, J. Robson, P. Shanthraj, S. Vakili, C. Sinclair, L. Bourgeois and S. Pogatscher, Making sustainable aluminum by recycling scrap: The science of “dirty” alloys. Progress in Materials Science, 128, 2022. https://doi.org/10.1016/j.pmatsci.2022.100947.
  • N. M. Siddesh Kumar, Dhruthi, G. K. Pramod, P. Samrat and M. Sadashiva, A Critical Review on Heat Treatment of Aluminium Alloys. Materials Today: Proceedings, 58, 71–79, 2022. https://doi.org/10.1016/j.matpr.2021.12.586.
  • M. Zarka, B. Dikici, M. Niinomi, K. V. Ezirmik, M. Nakai and M. Kaseem, The Ti3.6Nb1.0Ta0.2Zr0.2 coating on anodized aluminum by PVD: A potential candidate for short-time biomedical applications. Vacuum, 192, 110450, 2021. https://doi.org/10.1016/j.vacuum.2021.110450.
  • P. H. Setyarini, F. Gapsari and Purnomo, Fabrication of Aluminum Using Casting Method Made for Anodizing Process on Biomaterial Applications. IOP Conference Series: Materials Science and Engineering, 494, 2019.https://doi.org/10.1088/1757-899X/494/1/012063.
  • Ž. Petrović, A. Šarić, I. Despotović, J. Katić and M. Petković, Aluminum in dental implants: how to reduce a potential risk to patient´s health? Proc. 1st Corros. Mater. Degrad. Web Conf. (Basel, Switzerland: MDPI, 2021), p. 9933. https://doi.org/10.3390/CMDWC2021-09933.
  • C. Leyens and M. Peters, Titanium and its Alloys for Medical Applications. Titan. Titan. Alloy, pp. xix, 423, 2003. https://doi.org/10.1002/3527602119.
  • O. Prokopiev and I. Sevostianov, Dependence of the mechanical properties of sintered hydroxyapatite on the sintering temperature. Materials Science and Engineering A, 431, 218–227, 2006. https://doi.org/10.1016/j.msea.2006.05.158.
  • H. W. Kim, S. Y. Lee, C. J. Bae, Y. J. Noh, H. E. Kim, H. M. Kim and J. S. Ko, Porous ZrO2 bone scaffold coated with hydroxyapatite with fluorapatite intermediate layer. Biomaterials, 24, 3277–3284, 2003. https://doi.org/10.1016/S0142-9612(03)00162-5.
  • I. Bogdanoviciene, A. Beganskiene, K. Tõnsuaadu, J. Glaser, H.-J. Meyer and A. Kareiva, Calcium hydroxyapatite, Ca10(PO4)6(OH)2 ceramics prepared by aqueous sol–gel processing. Materials Research Bulletin, 41,1754–1762, 2006. https://doi.org/10.1016/j.materresbull.2006.02.016.
  • S. J. Kalita, A. Bhardwaj and H. A. Bhatt, Nanocrystalline calcium phosphate ceramics in biomedical engineering. Materials Science and Engineering C, 27, 441–449, 2007. https://doi.org/10.1016/j.msec.2006.05.018.
  • M. Enayati-Jazi, M. Solati-Hashjin, A. Nemati and F. Bakhshi, Synthesis and characterization of hydroxyapatite/titania nanocomposites using in situ precipitation technique. Superlattices and Microstructures, 51, 877–885, 2012. https://doi.org/10.1016/j.spmi.2012.02.013.
  • L. Zhou, G.-H. Lü, F.-F. Mao and S.-Z. Yang, Preparation of biomedical Ag incorporated hydroxyapatite/titania coatings on Ti6Al4V alloy by plasma electrolytic oxidation. Chinese Physics B, 23, 035205, 2014. https://doi.org/10.1088/1674-1056/23/3/035205.
  • A. Balamurugan, G. Balossier, S. Kannan, J. Michel, J. Faure and S. Rajeswari, Electrochemical and structural characterisation of zirconia reinforced hydroxyapatite bioceramic sol–gel coatings on surgical grade316L SS for biomedical applications. Ceramics International, 33, 605–614, 2007. https://doi.org/10.1016/j.ceramint.2005.11.011.
  • B. Y. Chou and E. Chang, Microstructural characterization of plasma-sprayed hydroxyapatite-10 wt% ZrO2 composite coating on titanium. Biomaterials, 20, 1823–1832, 1999. https://doi.org/10.1016/S0142-9612(99)00078-2.
  • K. Im, M. Kim, D. Kang, K. Kim, K. Kim and Y. Lee, Hydroxyapatite / Titania Hybrid Coatings on Titanium by Sol-Gel Process. Biomaterials Research, 10, 224–230, 2006.
  • R. R. Kumar and M. Wang, Functionally graded bioactive coatings of hydroxyapatite / titanium oxide composite system. Materials Letters, 55, 133–137, 2002. https://doi.org/10.1016/S0167-577X(01)00635-8.
  • Y. W. Gu, K. a. Khor, D. Pan and P. Cheang, Activity of plasma sprayed yttria stabilized zirconia reinforced hydroxyapatite/Ti-6Al-4V composite coatings in simulated body fluid. Biomaterials, 25, 3177–3185i, 2004. https://doi.org/10.1016/j.biomaterials.2003.09.101.
  • Y. T. Zhao, Z. Zhang, Q. X. Dai, D. Y. Lin and S. M. Li, Microstructure and bond strength of HA(+ZrO2+Y2O3)/Ti6Al4V composite coatings fabricated by RF magnetron sputtering. Surface and Coatings Technology, 200, 5354–5363, 2006. https://doi.org/10.1016/j.surfcoat.2005.06.010.
  • D. H. He, P. Wang, P. Liu, X. K. Liu, F. C. Ma and J. Zhao, HA coating fabricated by electrochemical deposition on modified Ti6Al4V alloy. Surface and Coatings Technology, 277, 203–209, 2015. https://doi.org/10.1016/j.surfcoat.2015.07.038.
  • S. Sonmez, B. Aksakal and B. Dikici, Corrosion protection of AA6061-T4 alloy by sol–gel derived micro and nano-scale hydroxyapatite (HA) coating. Journal of Sol-Gel Science and Technology, 63, 510–518, 2012. https://doi.org/10.1007/s10971-012-2813-8.
  • X. Liu, J. Sun, F. Zhou, Y. Yang, R. Chang, K. Qiu, Z. Pu, L. Li and Y. Zheng, Micro-alloying with Mn in Zn-Mg alloy for future biodegradable metals application. Materials and Design, 94, 95–104, 2016. https://doi.org/10.1016/j.matdes.2015.12.128.
  • X. Nie, A. Leyland and A. Matthews, Deposition of layered bioceramic hydroxyapatite/TiO2 coatings on titanium alloys using a hybrid technique of micro-arc oxidation and electrophoresis. Surface and Coatings Technology, 125, 407–414, 2000. https://doi.org/10.1016/S0257-8972(99)00612-X.
  • H. Farnoush, J. Aghazadeh Mohandesi and H. Çimenoğlu, Micro-scratch and corrosion behavior of functionally graded HA-TiO2 nanostructured composite coatings fabricated by electrophoretic deposition. Journal of the Mechanical Behavior of Biomedical Materials, 46, 31–40, 2015. https://doi.org/10.1016/j.jmbbm.2015.02.021.
  • K. H. Im, S. B. Lee, K. M. Kim and Y. K. Lee, Improvement of bonding strength to titanium surface by sol-gel derived hybrid coating of hydroxyapatite and titania by sol-gel process. Surface and Coatings Technology, 202, 1135–1138, 2007. https://doi.org/10.1016/j.surfcoat.2007.07.081.
  • S. Zhang, Z. Xianting, W. Yongsheng, C. Kui and W. Wenjian, Adhesion strength of sol-gel derived fluoridated hydroxyapatite coatings. Surface and Coatings Technology, 200, 6350–6354, 2006. https://doi.org/10.1016/j.surfcoat.2005.11.033.
  • D. Sidane, D. Chicot, S. Yala, S. Ziani, H. Khireddine, A. Iost and X. Decoopman, Study of the mechanical behavior and corrosion resistance of hydroxyapatite sol-gel thin coatings on 316 L stainless steel pre-coated with titania film. Thin Solid Films, 593, 71–80, 2015. https://doi.org/10.1016/j.tsf.2015.09.037.
  • H. U. Lee, Y. S. Jeong, S. Y. Park, S. Y. Jeong, H. G. Kim and C. R. Cho, Surface properties and cell response of fluoridated hydroxyapatite/TiO2 coated on Ti substrate. Current Applied Physics, 9, 528–533, 2009. https://doi.org/10.1016/j.cap.2008.03.020.
  • E. Mohseni, E. Zalnezhad and A. R. Bushroa, Comparative investigation on the adhesion of hydroxyapatite coating on Ti–6Al–4V implant: A review paper. International Journal of Adhesion and Adhesives, 48, 238–257, 2014. https://doi.org/10.1016/j.ijadhadh.2013.09.030.
  • K. Im, S. Lee, K. Kim and Y. Lee, Improvement of bonding strength to titanium surface by sol – gel derived hybrid coating of hydroxyapatite and titania by sol – gel process. 202, 1135–1138, 2007. https://doi.org/10.1016/j.surfcoat.2007.07.081.
  • H. W. Kim, H. E. Kim, V. Salih and J. C. Knowles, Hydroxyapatite and titania sol-gel composite coatings on titanium for hard tissue implants; mechanical and in vitro biological performance. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 72, 1–8, 2005. https://doi.org/10.1002/jbm.b.30073.
  • O. Yigit, B. Dikici, T. C. Senocak and N. Ozdemir, One-step synthesis of nano-hydroxyapatite/graphene nanosheet hybrid coatings on Ti6Al4V alloys by hydrothermal method and their in-vitro corrosion responses. Surface and Coatings Technology, 394, 125858, 2020. https://doi.org/10.1016/j.surfcoat.2020.125858.
  • M. Topuz, B. Dikici and M. Gavgali, Titanium-based composite scaffolds reinforced with hydroxyapatite-zirconia: Production, mechanical and in-vitro characterization. Journal of the Mechanical Behavior of Biomedical Materials, 118, 104480, 2021. https://doi.org/10.1016/j.jmbbm.2021.104480.
  • B. Dikici, M. Niinomi, M. Topuz, S. G. Koc and M. Nakai, Synthesis of biphasic calcium phosphate (BCP) coatings on β‒type titanium alloys reinforced with rutile-TiO2 compounds: adhesion resistance and in-vitrocorrosion. Journal of Sol-Gel Science and Technology, 87, 713–724, 2018. https://doi.org/10.1007/s10971-018-4755-2.
  • M. Topuz and B. Dikici, Two simple methods for surface modification of lithium disilicate dental blocks with hydroxyapatite. Research on Engineering Structures and Materials, 2019. https://doi.org/10.17515/resm2019.132me0506tn.
  • B. Dikici, M. Niinomi, M. Topuz, Y. Say, B. Aksakal, H. Yilmazer and M. Nakai, Synthesis and Characterization of Hydroxyapatite/TiO2 Coatings on the β-Type Titanium Alloys with Different Sintering Parameters using Sol-Gel Method. Protection of Metals and Physical Chemistry of Surfaces, 54, 457–462, 2018. https://doi.org/10.1134/S2070205118030255.
  • H. Miyazaki, I. Ushiroda, D. Itomura, T. Hirashita, N. Adachi and T. Ota, Thermal expansion of hydroxyapatite between - 100 °C and 50 °C. Materials Science and Engineering C, 29, 1463–1466, 2009. https://doi.org/10.1016/j.msec.2008.12.001.
  • F. Songur, B. Dikici, M. Niinomi and E. Arslan, The plasma electrolytic oxidation (PEO) coatings to enhance in-vitro corrosion resistance of Ti–29Nb–13Ta–4.6Zr alloys: The combined effect of duty cycle and thedeposition frequency. Surface and Coatings Technology, 374, 345–354, 2019. https://doi.org/10.1016/j.surfcoat.2019.06.025.
  • O. Yigit, B. Dikici, N. Ozdemir, E. Arslan, T. C. Senocak and N. Ozdemir, Plasma electrolytic oxidation of Ti-6Al-4V alloys in nHA/GNS containing electrolytes for biomedical applications: The combined effect ofthe deposition frequency and GNS weight percentage. Surface and Coatings Technology, 32, 127139, 2021. https://doi.org/10.1007/s10856-021-06514-w.
  • H. A. Hameed, H. A. Hasan and M. K. Alam, Evaluation of Corrosion Behavior by Measuring Passivation Current Density of Dental Implant Coated with Bioceramic Materials. BioMed Research International, 2021. https://doi.org/10.1155/2021/9934073.
  • K. A. Yasakau, M. L. Zheludkevich and M. G. S. Ferreira, Role of intermetallics in corrosion of aluminum alloys. Smart corrosion protection, Elsevier Ltd., 2018. https://doi.org/10.1016/B978-0-85709-346-2.00015-7.
  • G. E. L. Processing, Handbook of Sol-Gel Science and Technology: Processing, Characterization and Applications, Volumes I−III Set edited by Sumio Sakka (Professor Emeritus of Kyoto University). Kluwer AcademicPublishers: Boston, Dordrecht, London. 2005. lx + 1980 pp. 1500. Journal of the American Chemical Society, 127, 6135–6135, 2005. https://doi.org/10.1021/ja041056m.
  • D. Barnes, S. Johnson, R. Snell and S. Best, Using scratch testing to measure the adhesion strength of calcium phosphate coatings applied to poly(carbonate urethane) substrates. Journal of the Mechanical Behavior of Biomedical Materials, 6, 128–138, 2012. https://doi.org/10.1016/j.jmbbm.2011.10.010.

In-vitro corrosion performance of hydroxyapatite-coated Al2024 in simulated body fluid: A comparative study

Year 2023, , 926 - 934, 15.07.2023
https://doi.org/10.28948/ngumuh.1263697

Abstract

In this study, the applicability of hydroxyapatite (HA) coatings on Al-Cu-Mg alloys (Al2024) was investigated by electrochemical techniques. The structural characterizations of the coated layers were investigated by SEM, EDS, and XRD equipment. The surface adhesion resistance and electrochemical degradation behavior were tested by scratch and potentiodynamic scanning (PDS) tests, respectively. It was observed that the HA coating had a homogeneous structure on the Al2024 surfaces, but some local areas could not be adequately coated with HA from the cross-section images. Also, the coating surfaces were microporous morphology, which is specific to the HA coatings. From the scratch test results of the coating, it was predicted that the critical load resistance (Lc1), 12N, would be sufficient for biomedical applications. Electrochemical corrosion tests revealed that HA coating decreased the corrosion current density (Icorr) and corrosion rate of the Al2024 alloy (0.885 and 5.260 µA·cm-2 for HA-coated and uncoated Al2024 alloy, respectively). However, despite the low Icorr value obtained with HA coating, it was observed that both Icorr and passivation current density (Ipass) values (3.15 µA·cm-2 for HA coating, 0.03 to 0.08 µA·cm-2 for different types of titanium alloys) were insufficient when compared to commercial titanium alloys.

References

  • Y. Huang, H. Qiao, X. Nian, X. Zhang, X. Zhang, G. Song, Z. Xu, H. Zhang and S. Han, Improving the bioactivity and corrosion resistance properties of electrodeposited hydroxyapatite coating by dual doping ofbivalent strontium and manganese ion. Surface and Coatings Technology, 291, 205–215, 2016. https://doi.org/10.1016/j.surfcoat.2016.02.042.
  • A. Montenero, G. Gnappi, F. Ferrari, M. Cesari, E. Salvioli, L. Mattogno, S. Kaciulis and M. Fini, Sol-gel derived hydroxyapatite coatings on titanium substrate. Journal of Materials Science, 35, 2791–2797, 2000. https://doi.org/10.1023/A:1004738900778.
  • J. S. Suwandi, R. E. M. Toes, T. Nikolic and B. O. Roep, Inducing tissue specific tolerance in autoimmune disease with tolerogenic dendritic cells. Clinical and Experimental Rheumatology, 33, 97–103, 2015. https://doi.org/10.1002/jbm.a.
  • X. Liu, P. K. Chu and C. Ding, Surface modification of titanium , titanium alloys , and related materials for biomedical applications. 47, 49–121, 2005. https://doi.org/10.1016/j.mser.2004.11.001.
  • J. B. Brunski. In Vivo Bone Response to Biomechanical Loading at the Bone/Dental-Implant Interface, Advances in Dental Research, 13, 99-119, 1999. https://doi.org/10.1177/089593749901300123.
  • M. Niinomi, Mechanical properties of biomedical titanium alloys. Materials Science and Engineering: A, 243, 231–236, 1998. https://doi.org/10.1016/S0921-5093(97)00806-X.
  • M. Topuz, B. Dikici, M. Gavgalı and Y. Yılmazer, Effect of hydroxyapatite:zirconia volume fraction ratio on mechanical and corrosive properties of Ti-matrix composite scaffolds. Transactions of Nonferrous Metals Society of China, 32, 882–894, 2022. https://doi.org/10.1016/s1003-6326(22)65840-0.
  • M. Topuz, B. Dikici, M. Gavgali and M. Kaseem, Processing of Ti/(HA+ZrO2) biocomposite and 50% porous hybrid scaffolds with low Young’s modulus by powder metallurgy: Comparing of structural, mechanical, and corrosion properties. Materials Today Communications, 29, 102813, 2021. https://doi.org/10.1016/j.mtcomm.2021.102813.
  • M. Niinomi, Recent research and development in titanium alloys for biomedical applications and healthcare goods. Science and Technology of Advanced Materials, 4, 445–454, 2003. https://doi.org/10.1016/j.stam.2003.09.002.
  • D. Raabe, D. Ponge, P. J. Uggowitzer, M. Roscher, M. Paolantonio, C. Liu, H. Antrekowitsch, E. Kozeschnik, D. Seidmann, B. Gault, F. De Geuser, A. Deschamps, C. Hutchinson, C. Liu, Z. Li, P. Prangnell, J. Robson, P. Shanthraj, S. Vakili, C. Sinclair, L. Bourgeois and S. Pogatscher, Making sustainable aluminum by recycling scrap: The science of “dirty” alloys. Progress in Materials Science, 128, 2022. https://doi.org/10.1016/j.pmatsci.2022.100947.
  • N. M. Siddesh Kumar, Dhruthi, G. K. Pramod, P. Samrat and M. Sadashiva, A Critical Review on Heat Treatment of Aluminium Alloys. Materials Today: Proceedings, 58, 71–79, 2022. https://doi.org/10.1016/j.matpr.2021.12.586.
  • M. Zarka, B. Dikici, M. Niinomi, K. V. Ezirmik, M. Nakai and M. Kaseem, The Ti3.6Nb1.0Ta0.2Zr0.2 coating on anodized aluminum by PVD: A potential candidate for short-time biomedical applications. Vacuum, 192, 110450, 2021. https://doi.org/10.1016/j.vacuum.2021.110450.
  • P. H. Setyarini, F. Gapsari and Purnomo, Fabrication of Aluminum Using Casting Method Made for Anodizing Process on Biomaterial Applications. IOP Conference Series: Materials Science and Engineering, 494, 2019.https://doi.org/10.1088/1757-899X/494/1/012063.
  • Ž. Petrović, A. Šarić, I. Despotović, J. Katić and M. Petković, Aluminum in dental implants: how to reduce a potential risk to patient´s health? Proc. 1st Corros. Mater. Degrad. Web Conf. (Basel, Switzerland: MDPI, 2021), p. 9933. https://doi.org/10.3390/CMDWC2021-09933.
  • C. Leyens and M. Peters, Titanium and its Alloys for Medical Applications. Titan. Titan. Alloy, pp. xix, 423, 2003. https://doi.org/10.1002/3527602119.
  • O. Prokopiev and I. Sevostianov, Dependence of the mechanical properties of sintered hydroxyapatite on the sintering temperature. Materials Science and Engineering A, 431, 218–227, 2006. https://doi.org/10.1016/j.msea.2006.05.158.
  • H. W. Kim, S. Y. Lee, C. J. Bae, Y. J. Noh, H. E. Kim, H. M. Kim and J. S. Ko, Porous ZrO2 bone scaffold coated with hydroxyapatite with fluorapatite intermediate layer. Biomaterials, 24, 3277–3284, 2003. https://doi.org/10.1016/S0142-9612(03)00162-5.
  • I. Bogdanoviciene, A. Beganskiene, K. Tõnsuaadu, J. Glaser, H.-J. Meyer and A. Kareiva, Calcium hydroxyapatite, Ca10(PO4)6(OH)2 ceramics prepared by aqueous sol–gel processing. Materials Research Bulletin, 41,1754–1762, 2006. https://doi.org/10.1016/j.materresbull.2006.02.016.
  • S. J. Kalita, A. Bhardwaj and H. A. Bhatt, Nanocrystalline calcium phosphate ceramics in biomedical engineering. Materials Science and Engineering C, 27, 441–449, 2007. https://doi.org/10.1016/j.msec.2006.05.018.
  • M. Enayati-Jazi, M. Solati-Hashjin, A. Nemati and F. Bakhshi, Synthesis and characterization of hydroxyapatite/titania nanocomposites using in situ precipitation technique. Superlattices and Microstructures, 51, 877–885, 2012. https://doi.org/10.1016/j.spmi.2012.02.013.
  • L. Zhou, G.-H. Lü, F.-F. Mao and S.-Z. Yang, Preparation of biomedical Ag incorporated hydroxyapatite/titania coatings on Ti6Al4V alloy by plasma electrolytic oxidation. Chinese Physics B, 23, 035205, 2014. https://doi.org/10.1088/1674-1056/23/3/035205.
  • A. Balamurugan, G. Balossier, S. Kannan, J. Michel, J. Faure and S. Rajeswari, Electrochemical and structural characterisation of zirconia reinforced hydroxyapatite bioceramic sol–gel coatings on surgical grade316L SS for biomedical applications. Ceramics International, 33, 605–614, 2007. https://doi.org/10.1016/j.ceramint.2005.11.011.
  • B. Y. Chou and E. Chang, Microstructural characterization of plasma-sprayed hydroxyapatite-10 wt% ZrO2 composite coating on titanium. Biomaterials, 20, 1823–1832, 1999. https://doi.org/10.1016/S0142-9612(99)00078-2.
  • K. Im, M. Kim, D. Kang, K. Kim, K. Kim and Y. Lee, Hydroxyapatite / Titania Hybrid Coatings on Titanium by Sol-Gel Process. Biomaterials Research, 10, 224–230, 2006.
  • R. R. Kumar and M. Wang, Functionally graded bioactive coatings of hydroxyapatite / titanium oxide composite system. Materials Letters, 55, 133–137, 2002. https://doi.org/10.1016/S0167-577X(01)00635-8.
  • Y. W. Gu, K. a. Khor, D. Pan and P. Cheang, Activity of plasma sprayed yttria stabilized zirconia reinforced hydroxyapatite/Ti-6Al-4V composite coatings in simulated body fluid. Biomaterials, 25, 3177–3185i, 2004. https://doi.org/10.1016/j.biomaterials.2003.09.101.
  • Y. T. Zhao, Z. Zhang, Q. X. Dai, D. Y. Lin and S. M. Li, Microstructure and bond strength of HA(+ZrO2+Y2O3)/Ti6Al4V composite coatings fabricated by RF magnetron sputtering. Surface and Coatings Technology, 200, 5354–5363, 2006. https://doi.org/10.1016/j.surfcoat.2005.06.010.
  • D. H. He, P. Wang, P. Liu, X. K. Liu, F. C. Ma and J. Zhao, HA coating fabricated by electrochemical deposition on modified Ti6Al4V alloy. Surface and Coatings Technology, 277, 203–209, 2015. https://doi.org/10.1016/j.surfcoat.2015.07.038.
  • S. Sonmez, B. Aksakal and B. Dikici, Corrosion protection of AA6061-T4 alloy by sol–gel derived micro and nano-scale hydroxyapatite (HA) coating. Journal of Sol-Gel Science and Technology, 63, 510–518, 2012. https://doi.org/10.1007/s10971-012-2813-8.
  • X. Liu, J. Sun, F. Zhou, Y. Yang, R. Chang, K. Qiu, Z. Pu, L. Li and Y. Zheng, Micro-alloying with Mn in Zn-Mg alloy for future biodegradable metals application. Materials and Design, 94, 95–104, 2016. https://doi.org/10.1016/j.matdes.2015.12.128.
  • X. Nie, A. Leyland and A. Matthews, Deposition of layered bioceramic hydroxyapatite/TiO2 coatings on titanium alloys using a hybrid technique of micro-arc oxidation and electrophoresis. Surface and Coatings Technology, 125, 407–414, 2000. https://doi.org/10.1016/S0257-8972(99)00612-X.
  • H. Farnoush, J. Aghazadeh Mohandesi and H. Çimenoğlu, Micro-scratch and corrosion behavior of functionally graded HA-TiO2 nanostructured composite coatings fabricated by electrophoretic deposition. Journal of the Mechanical Behavior of Biomedical Materials, 46, 31–40, 2015. https://doi.org/10.1016/j.jmbbm.2015.02.021.
  • K. H. Im, S. B. Lee, K. M. Kim and Y. K. Lee, Improvement of bonding strength to titanium surface by sol-gel derived hybrid coating of hydroxyapatite and titania by sol-gel process. Surface and Coatings Technology, 202, 1135–1138, 2007. https://doi.org/10.1016/j.surfcoat.2007.07.081.
  • S. Zhang, Z. Xianting, W. Yongsheng, C. Kui and W. Wenjian, Adhesion strength of sol-gel derived fluoridated hydroxyapatite coatings. Surface and Coatings Technology, 200, 6350–6354, 2006. https://doi.org/10.1016/j.surfcoat.2005.11.033.
  • D. Sidane, D. Chicot, S. Yala, S. Ziani, H. Khireddine, A. Iost and X. Decoopman, Study of the mechanical behavior and corrosion resistance of hydroxyapatite sol-gel thin coatings on 316 L stainless steel pre-coated with titania film. Thin Solid Films, 593, 71–80, 2015. https://doi.org/10.1016/j.tsf.2015.09.037.
  • H. U. Lee, Y. S. Jeong, S. Y. Park, S. Y. Jeong, H. G. Kim and C. R. Cho, Surface properties and cell response of fluoridated hydroxyapatite/TiO2 coated on Ti substrate. Current Applied Physics, 9, 528–533, 2009. https://doi.org/10.1016/j.cap.2008.03.020.
  • E. Mohseni, E. Zalnezhad and A. R. Bushroa, Comparative investigation on the adhesion of hydroxyapatite coating on Ti–6Al–4V implant: A review paper. International Journal of Adhesion and Adhesives, 48, 238–257, 2014. https://doi.org/10.1016/j.ijadhadh.2013.09.030.
  • K. Im, S. Lee, K. Kim and Y. Lee, Improvement of bonding strength to titanium surface by sol – gel derived hybrid coating of hydroxyapatite and titania by sol – gel process. 202, 1135–1138, 2007. https://doi.org/10.1016/j.surfcoat.2007.07.081.
  • H. W. Kim, H. E. Kim, V. Salih and J. C. Knowles, Hydroxyapatite and titania sol-gel composite coatings on titanium for hard tissue implants; mechanical and in vitro biological performance. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 72, 1–8, 2005. https://doi.org/10.1002/jbm.b.30073.
  • O. Yigit, B. Dikici, T. C. Senocak and N. Ozdemir, One-step synthesis of nano-hydroxyapatite/graphene nanosheet hybrid coatings on Ti6Al4V alloys by hydrothermal method and their in-vitro corrosion responses. Surface and Coatings Technology, 394, 125858, 2020. https://doi.org/10.1016/j.surfcoat.2020.125858.
  • M. Topuz, B. Dikici and M. Gavgali, Titanium-based composite scaffolds reinforced with hydroxyapatite-zirconia: Production, mechanical and in-vitro characterization. Journal of the Mechanical Behavior of Biomedical Materials, 118, 104480, 2021. https://doi.org/10.1016/j.jmbbm.2021.104480.
  • B. Dikici, M. Niinomi, M. Topuz, S. G. Koc and M. Nakai, Synthesis of biphasic calcium phosphate (BCP) coatings on β‒type titanium alloys reinforced with rutile-TiO2 compounds: adhesion resistance and in-vitrocorrosion. Journal of Sol-Gel Science and Technology, 87, 713–724, 2018. https://doi.org/10.1007/s10971-018-4755-2.
  • M. Topuz and B. Dikici, Two simple methods for surface modification of lithium disilicate dental blocks with hydroxyapatite. Research on Engineering Structures and Materials, 2019. https://doi.org/10.17515/resm2019.132me0506tn.
  • B. Dikici, M. Niinomi, M. Topuz, Y. Say, B. Aksakal, H. Yilmazer and M. Nakai, Synthesis and Characterization of Hydroxyapatite/TiO2 Coatings on the β-Type Titanium Alloys with Different Sintering Parameters using Sol-Gel Method. Protection of Metals and Physical Chemistry of Surfaces, 54, 457–462, 2018. https://doi.org/10.1134/S2070205118030255.
  • H. Miyazaki, I. Ushiroda, D. Itomura, T. Hirashita, N. Adachi and T. Ota, Thermal expansion of hydroxyapatite between - 100 °C and 50 °C. Materials Science and Engineering C, 29, 1463–1466, 2009. https://doi.org/10.1016/j.msec.2008.12.001.
  • F. Songur, B. Dikici, M. Niinomi and E. Arslan, The plasma electrolytic oxidation (PEO) coatings to enhance in-vitro corrosion resistance of Ti–29Nb–13Ta–4.6Zr alloys: The combined effect of duty cycle and thedeposition frequency. Surface and Coatings Technology, 374, 345–354, 2019. https://doi.org/10.1016/j.surfcoat.2019.06.025.
  • O. Yigit, B. Dikici, N. Ozdemir, E. Arslan, T. C. Senocak and N. Ozdemir, Plasma electrolytic oxidation of Ti-6Al-4V alloys in nHA/GNS containing electrolytes for biomedical applications: The combined effect ofthe deposition frequency and GNS weight percentage. Surface and Coatings Technology, 32, 127139, 2021. https://doi.org/10.1007/s10856-021-06514-w.
  • H. A. Hameed, H. A. Hasan and M. K. Alam, Evaluation of Corrosion Behavior by Measuring Passivation Current Density of Dental Implant Coated with Bioceramic Materials. BioMed Research International, 2021. https://doi.org/10.1155/2021/9934073.
  • K. A. Yasakau, M. L. Zheludkevich and M. G. S. Ferreira, Role of intermetallics in corrosion of aluminum alloys. Smart corrosion protection, Elsevier Ltd., 2018. https://doi.org/10.1016/B978-0-85709-346-2.00015-7.
  • G. E. L. Processing, Handbook of Sol-Gel Science and Technology: Processing, Characterization and Applications, Volumes I−III Set edited by Sumio Sakka (Professor Emeritus of Kyoto University). Kluwer AcademicPublishers: Boston, Dordrecht, London. 2005. lx + 1980 pp. 1500. Journal of the American Chemical Society, 127, 6135–6135, 2005. https://doi.org/10.1021/ja041056m.
  • D. Barnes, S. Johnson, R. Snell and S. Best, Using scratch testing to measure the adhesion strength of calcium phosphate coatings applied to poly(carbonate urethane) substrates. Journal of the Mechanical Behavior of Biomedical Materials, 6, 128–138, 2012. https://doi.org/10.1016/j.jmbbm.2011.10.010.
There are 51 citations in total.

Details

Primary Language English
Subjects Mechanical Engineering
Journal Section Mechanical Engineering
Authors

Mehmet Topuz 0000-0003-3692-796X

Burak Dikici 0000-0002-7249-923X

Early Pub Date May 22, 2023
Publication Date July 15, 2023
Submission Date March 11, 2023
Acceptance Date May 4, 2023
Published in Issue Year 2023

Cite

APA Topuz, M., & Dikici, B. (2023). In-vitro corrosion performance of hydroxyapatite-coated Al2024 in simulated body fluid: A comparative study. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 12(3), 926-934. https://doi.org/10.28948/ngumuh.1263697
AMA Topuz M, Dikici B. In-vitro corrosion performance of hydroxyapatite-coated Al2024 in simulated body fluid: A comparative study. NÖHÜ Müh. Bilim. Derg. July 2023;12(3):926-934. doi:10.28948/ngumuh.1263697
Chicago Topuz, Mehmet, and Burak Dikici. “In-Vitro Corrosion Performance of Hydroxyapatite-Coated Al2024 in Simulated Body Fluid: A Comparative Study”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 12, no. 3 (July 2023): 926-34. https://doi.org/10.28948/ngumuh.1263697.
EndNote Topuz M, Dikici B (July 1, 2023) In-vitro corrosion performance of hydroxyapatite-coated Al2024 in simulated body fluid: A comparative study. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 12 3 926–934.
IEEE M. Topuz and B. Dikici, “In-vitro corrosion performance of hydroxyapatite-coated Al2024 in simulated body fluid: A comparative study”, NÖHÜ Müh. Bilim. Derg., vol. 12, no. 3, pp. 926–934, 2023, doi: 10.28948/ngumuh.1263697.
ISNAD Topuz, Mehmet - Dikici, Burak. “In-Vitro Corrosion Performance of Hydroxyapatite-Coated Al2024 in Simulated Body Fluid: A Comparative Study”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 12/3 (July 2023), 926-934. https://doi.org/10.28948/ngumuh.1263697.
JAMA Topuz M, Dikici B. In-vitro corrosion performance of hydroxyapatite-coated Al2024 in simulated body fluid: A comparative study. NÖHÜ Müh. Bilim. Derg. 2023;12:926–934.
MLA Topuz, Mehmet and Burak Dikici. “In-Vitro Corrosion Performance of Hydroxyapatite-Coated Al2024 in Simulated Body Fluid: A Comparative Study”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, vol. 12, no. 3, 2023, pp. 926-34, doi:10.28948/ngumuh.1263697.
Vancouver Topuz M, Dikici B. In-vitro corrosion performance of hydroxyapatite-coated Al2024 in simulated body fluid: A comparative study. NÖHÜ Müh. Bilim. Derg. 2023;12(3):926-34.

download