Research Article
BibTex RIS Cite

Evaluation of the performance of the real-time precise point positioning (RT-PPP) technique based on low-cost GNSS observations and contribution of multi-GNSS observations

Year 2023, , 1341 - 1350, 15.10.2023
https://doi.org/10.28948/ngumuh.1310577

Abstract

This study presents an investigation of the positioning performance of the Real-Time Precise Point Positioning (RT-PPP) technique based on low-cost Global Navigation Satellite Systems (GNSS) observations and the contribution of multi-GNSS observations to the method. In the study, two different experiments were performed in static and kinematic modes employing two low-cost u-blox ZED-F9P receivers and ANN-MB-00 antennas. In both experiments, RT-PPP solutions were performed using the products obtained from the real-time precise orbit and clock corrections from the IGS03 stream based on Global Positioning System (GPS) and GPS+Galileo observations, and these results were compared with the Real-Time Kinematic (RTK) data based on GPS+Galileo observations. The findings of the experiment realized in static mode clearly demonstrated that the multi-GNSS observations converge about 30 minutes earlier than GPS-only observations and provide approximately ±3, ±11, and ±6 cm more precise position accuracy for the east, north, and up components, respectively. The kinematic test results indicated that the multi-GNSS observations improved the position accuracy obtained compared to a single system by 33% and 25% for horizontal and vertical components, respectively. However, considering that the results obtained from both experiments are in the order of dm, it is clear that the RT-PPP technique based on low-cost GNSS observations will not be sufficient in geodetic applications that require high accuracy, whereas it provides sufficient accuracy for navigation applications.

References

  • S. Malys and P. A. Jensen, Geodetic point positioning with GPS carrier beat phase data from the CASA UNO Experiment, Geophysical Research Letters, 17(5), 651–654, 1990, https://doi.org/10.1029/GL017i005p00651.
  • J. F. Zumberge, M. B. Heflin, D. C. Jefferson, M. M. Watkins, and F. H. Webb, Precise point positioning for the efficient and robust analysis of GPS data from large networks, Journal of Geophysical Research: Solid Earth, 102 (B3), 5005–5017, 1997, https://doi.org/10.1029/96JB03860.
  • J. Kouba and P. Héroux, Precise Point Positioning Using IGS Orbit and Clock Products, GPS Solutions, 5 (2), 12–28, 2001, https://doi.org/10.1007/PL00012883.
  • J. Geng, F. N. Teferle, X. Meng, and A. H. Dodson, Kinematic precise point positioning at remote marine platforms, GPS Solutions, 14 (4), 343–350, 2010, https://doi.org/10.1007/s10291-009-0157-9.
  • M. Bezcioğlu, C. Ö. Yiğit, ve M. N. Bodur, Kinematik PPP-AR ve Geleneksel PPP Yöntemlerin Performanslarının Değerlendirilmesi: Antarktika Yarımadası Örneği, Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 19 (1), 162–169, 2019, https://doi.org/10.35414/akufemubid.467336.
  • J. Guo, X. Li, Z. Li, L. Hu, G. Yang, C. Zhao, D. Fairbairn, D. Watson, and M. Ge, Multi-GNSS precise point positioning for precision agriculture, Precision Agriculture, 19 (5), 895–911, 2018, https://doi.org/10.1007/s11119-018-9563-8.
  • M. R. Kaloop, C. O. Yigit, A. El-Mowafy, A. A. Dindar, M. Bezcioglu, and J. W. Hu, Hybrid wavelet and principal component analyses approach for extracting dynamic motion characteristics from displacement series derived from multipath-affected high-rate GNSS observations, Remote Sensing, 12 (1), 2020, https://doi.org/10.3390/RS12010079.
  • P. Xu, C. Shi, R. Fang, J. Liu, X. Niu, Q. Zhang, and T. Yanagidani, High-rate precise point positioning (PPP) to measure seismic wave motions: An experimental comparison of GPS PPP with inertial measurement units, Journal of Geodesy, 87 (4), 361–372, 2013, https://doi.org/10.1007/s00190-012-0606-z.
  • F. Zhou, X. Cao, Y. Ge, and W. Li, Assessment of the positioning performance and tropospheric delay retrieval with precise point positioning using products from different analysis centers, GPS Solutions, 24 (1), 1–11, 2020, https://doi.org/10.1007/s10291-019-0925-0.
  • X. Ren, X. Zhang, W. Xie, K. Zhang, Y. Yuan, and X. Li, Global Ionospheric Modelling using Multi-GNSS: BeiDou, Galileo, GLONASS and GPS, Scientific Reports, 6, August, 1–11, 2016, https://doi.org/10.1038/srep33499.
  • J. Kouba, A Guide to using international GNSS Service ( IGS ) Products, Geodetic Survey Division Natural Resources Canada Ottawa, 6 (34), 2009, [Online]. Available: http://graypantherssf.igs.org/igscb/resource/pubs/UsingIGSProductsVer21.pdf
  • Z. Wang, Z. Li, L. Wang, X. Wang, and H. Yuan, Assessment of multiple GNSS real-Time SSR products from different analysis centers, ISPRS International Journal of Geo-Information, 7 (3), 2018, https://doi.org/10.3390/ijgi7030085.
  • L. Chen, Q. Zhao, Z. Hu, X. Jiang, C. Geng, M. Ge, and C. Shi, GNSS global real-time augmentation positioning: Real-time precise satellite clock estimation, prototype system construction and performance analysis, Advances in Space Research, 61 (1), 367–384, 2018, https://doi.org/10.1016/j.asr.2017.08.037.
  • L. Wang, Z. Li, M. Ge, F. Neitzel, Z. Wang, and H. Yuan, Validation and assessment of multi-GNSS real-time precise point positioning in simulated kinematic mode using IGS real-time service, Remote Sensing, 10 (2), 2018, https://doi.org/10.3390/rs10020337.
  • T. Hadas and J. Bosy, IGS RTS precise orbits and clocks verification and quality degradation over time, GPS Solutions, 19 (1), 93–105, 2015, https://doi.org/10.1007/s10291-014-0369-5.
  • M. El-Diasty and M. Elsobeiey, Precise Point Positioning Technique with IGS Real-Time Service (RTS) for Maritime Applications, Positioning, 06 (04), 71–80, 2015, https://doi.org/10.4236/pos.2015.64008.
  • L. Wang, Z. Li, M. Ge, F. Neitzel, X. Wang, and H. Yuan, Investigation of the performance of real-time BDS-only precise point positioning using the IGS real-time service, GPS Solutions, 23 (3), 1–12, 2019, https://doi.org/10.1007/s10291-019-0856-9.
  • M. Elsobeiey and S. Al-Harbi, Performance of real-time Precise Point Positioning using IGS real-time service, GPS Solutions, 20 (3), 565–571, 2016, https://doi.org/10.1007/s10291-015-0467-z.
  • N. Takahashi, Y. Ishihara, H. Ochi, T. Fukuda, J. Tahara, Y. Maeda, M. Kido, Y. Ohta, K. Mutoh, G. Hashimoto, S. Kogure, and Y. Kaneda, New buoy observation system for tsunami and crustal deformation, Marine Geophysical Research, 35 (3), 243–253, 2014, https://doi.org/10.1007/s11001-014-9235-7.
  • X. Li, M. Ge, X. Zhang, Y. Zhang, B. Guo, R. Wang, J. Klotz, and J. Wickert, Real-time high-rate co-seismic displacement from ambiguity-fixed precise point positioning: Application to earthquake early warning, Geophysical Research Letters, 40 (2), 295–300, 2013, https://doi.org/10.1002/grl.50138.
  • X. Tang, G. W. Roberts, X. Li, and C. M. Hancock, Real-time kinematic PPP GPS for structure monitoring applied on the Severn Suspension Bridge, UK, Advances in Space Research, 60 (5), 925–937, 2017, https://doi.org/10.1016/j.asr.2017.05.010.
  • M. Bezcioglu, C. O. Yigit, B. Karadeniz, A. A. Dindar, A. El-Mowafy, and Ö. Avcı, Evaluation of real-time variometric approach and real-time precise point positioning in monitoring dynamic displacement based on high-rate (20 Hz) GPS Observations, GPS Solutions, 27 (1), 1–13, 2023, https://doi.org/10.1007/s10291-022-01381-6.
  • B. Bahadur, An improved weighting strategy for tropospheric delay estimation with real-time single-frequency precise positioning, Earth Science Informatics, 15 (2), 1267–1284, 2022, https://doi.org/10.1007/s12145-022-00814-7.
  • B. Bahadur, Impact of different troposphere models on the real-time multi-GNSS PPP performance, Gümüşhane Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 12 (3), 756–768, 2022, https://doi.org/10.17714/gumusfenbil.1061668.
  • E. Tunalı, Monitoring Water Vapor Variations with PPP and IGS Real Time Service, Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 18 (1), 343–356, 2018, https://doi.org/10.5578/fmbd.66259.
  • T. Öcalan ve M. Soycan, RTCM/SSR Mesajları İle Gerçek Zamanlı Hassas Nokta Konumlama (PPP-RTK) Tekniği, Harita Teknolojileri Elektronik Dergisi, 4 (2), 30–41, 2012.
  • S. Alçay, Gerçek Zamanli Hassas Nokta Konumlama (RT-PPP)Yöntemi̇ni̇n KonumBeli̇rleme Performansinin Doğruluk VeHassasi̇yet Bakimindaİncelenmesi̇, Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 8 (1), 121–133, 2019, https://doi.org/10.28948/ngumuh.516842.
  • S. Alçay and Ö. Atiz, Farklı Yazılımlar Kullanılarak Gerçek Zamanlı Hassas Nokta Konum Belirleme (RT-PPP) Yönteminin Performansının İncelenmesi, Geomatik, 6 (1), 77–83, 2021, https://doi.org/10.29128/geomatik.687709.
  • R. M. Alkan, S. Erol, ve B. Mutlu, IGS-RTS ürünleri kullanılarak gerçek-zamanlı hassas nokta konumlama (RT-PPP) tekniğinin performans analizi: Antarktika örneği, Yerbilimleri, 43 (1), 76–95, 2022, https://doi.org/10.17824/yerbilimleri.1050124.
  • C. İnal, B. Bilgen, S. Bülbül, ve M. Başbük, Farklı uydu sistemi kombinasyonlarının gerçek zamanlı hassas nokta konumlamaya etkisi, Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 11 (1), 109–115, 2021, https://doi.org/10.28948/ngumuh.996018.
  • Z. Nie, F. Liu, and Y. Gao, Real-time precise point positioning with a low-cost dual-frequency GNSS device, GPS Solutions, 24 (1), 1–11, 2020, https://doi.org/10.1007/s10291-019-0922-3.
  • D. Janos, P. Kuras, and Ł. Ortyl, Evaluation of low-cost RTK GNSS receiver in motion under demanding conditions, Measurement: Journal of the International Measurement Confederation, 201, 2022, https://doi.org/10.1016/j.measurement.2022.111647.
  • M. F. Karabulut, N. O. Aykut, B. Akpinar, G. Oku Topal, Z. B. Çakmak, B. Doran, A. A. Dindar, C. Ö. Yiğit, M. Bezcioglu, and A. Zafer, The Positioning Performance of Low-Cost Gnss Receivers in Precise Point Positioning Method, Advances in Geodesy and Geoinformation, 71 (2), e29, 2022, https://doi.org/10.24425/agg.2022.141916.
  • G. Sanna, T. Pisanu, and S. Garau, Behavior of Low-Cost Receivers in Base-Rover Configuration with Geodetic-Grade Antennas, Sensors, 22 (7), 1–17, 2022, https://doi.org/10.3390/s22072779.
  • M. Di, B. Guo, J. Ren, X. Wu, Z. Zhang, Y. Liu, Q. Liu, and A. Zhang, GNSS Real–Time Precise Point Positioning in Arctic Northeast Passage, Journal of Marine Science and Engineering, 10 (10), 2022, https://doi.org/10.3390/jmse10101345.
  • R. Hohensinn, R. Stauffer, M. F. Glaner, I. D. Herrera Pinzón, E. Vuadens, Y. Rossi, J. Clinton, and M. Rothacher, Low-Cost GNSS and Real-Time PPP: Assessing the Precision of the u-blox ZED-F9P for Kinematic Monitoring Applications, Remote Sensing, 14 (20), 1–25, 2022, https://doi.org/10.3390/rs14205100.
  • G. Oku Topal, M. F. Karabulut, N. O. Aykut, and B. Akpınar, Performance of low-cost GNSS equipment in monitoring of horizontal displacements, Survey Review, 1–10, 2023, https://doi.org/10.1080/00396265.2023.2179910.
  • A. El-Mowafy, M. Deo, and N. Kubo, Maintaining real-time precise point positioning during outages of orbit and clock corrections, GPS Solutions, 1–11, 2016, https://doi.org/10.1007/s10291-016-0583-4.
  • T. Takasu and A. Yasuda, Development of the low-cost RTK-GPS receiver with an open source program package RTKLIB, International Symposium on GPS/GNSS, 4–6, 2009.
  • B. Li, H. Ge, Y. Bu, Y. Zheng, and L. Yuan, Comprehensive assessment of real-time precise products from IGS analysis centers, Satellite Navigation, 3 (1), 2022, https://doi.org/10.1186/s43020-022-00074-2.

Düşük maliyetli GNSS gözlemlerine dayalı gerçek-zamanlı hassas nokta konum belirleme (RT-PPP) tekniğinin performansının değerlendirilmesi ve çoklu-GNSS gözlemlerinin katkısı

Year 2023, , 1341 - 1350, 15.10.2023
https://doi.org/10.28948/ngumuh.1310577

Abstract

Bu çalışma, düşük maliyetli Küresel Uydu Navigasyon Sistemi (Global Navigation Satellite Systems -GNSS-) gözlemlerine dayalı Gerçek-Zamanlı Hassas Nokta Konum Belirleme (Real-Time Precise Point Positioning -RT-PPP-) tekniğinin konum belirleme performansının araştırılmasını ve yönteme çoklu-GNSS gözlemlerinin katkısını sunmaktadır. Çalışmada, iki adet düşük maliyetli u-blox ZED-F9P alıcısı ve ANN-MB-00 anteni kullanılarak statik ve kinematik modda iki farklı deney gerçekleştirilmiştir. Gerçekleştirilen iki deney setinde de Küresel Konum Belirleme Sistemi (Global Positioning System -GPS-) ve GPS+Galileo gözlemlerine dayalı olarak IGS03 akışından elde edilen gerçek-zamanlı hassas yörünge ve saat düzeltmelerinden elde edilen ürünlerle RT-PPP çözümleri gerçekleştirilmiş ve bu sonuçlar, GPS+Galileo gözlemlerine dayalı Gerçek-Zamanlı Kinematik (Real-Time Kinematic -RTK-) verileri ile karşılaştırılmıştır. Statik modda gerçekleştirilen deneyin bulguları, çoklu-GNSS gözlemlerinin sadece-GPS gözlemlerine kıyasla yaklaşık olarak 30 dakika daha erken yakınsadığını ve sağa, yukarı ve h bileşenleri için sırasıyla ±3, ±11 ve ±6 cm mertebesinde daha hassas konum doğruluğu sağladığını açıkça göstermektedir. Kinematik deney sonuçları ise çoklu-GNSS gözlemlerinin tek sisteme kıyasla elde edilen konum doğruluğunu yatay ve düşey bileşenler için sırasıyla %33 ve %25 oranında iyileştirdiğini ifade etmektedir. Ancak, her iki deneyden elde edilen sonuçların dm mertebesinde olduğu göz önüne alındığında, düşük maliyetli GNSS gözlemlerine dayalı RT-PPP tekniğinin yüksek doğruluk gerektiren jeodezik uygulamalarda yeterli olmayacağını, buna karşılık navigasyon uygulamaları için yeterli doğruluk sağladığı açıktır.

References

  • S. Malys and P. A. Jensen, Geodetic point positioning with GPS carrier beat phase data from the CASA UNO Experiment, Geophysical Research Letters, 17(5), 651–654, 1990, https://doi.org/10.1029/GL017i005p00651.
  • J. F. Zumberge, M. B. Heflin, D. C. Jefferson, M. M. Watkins, and F. H. Webb, Precise point positioning for the efficient and robust analysis of GPS data from large networks, Journal of Geophysical Research: Solid Earth, 102 (B3), 5005–5017, 1997, https://doi.org/10.1029/96JB03860.
  • J. Kouba and P. Héroux, Precise Point Positioning Using IGS Orbit and Clock Products, GPS Solutions, 5 (2), 12–28, 2001, https://doi.org/10.1007/PL00012883.
  • J. Geng, F. N. Teferle, X. Meng, and A. H. Dodson, Kinematic precise point positioning at remote marine platforms, GPS Solutions, 14 (4), 343–350, 2010, https://doi.org/10.1007/s10291-009-0157-9.
  • M. Bezcioğlu, C. Ö. Yiğit, ve M. N. Bodur, Kinematik PPP-AR ve Geleneksel PPP Yöntemlerin Performanslarının Değerlendirilmesi: Antarktika Yarımadası Örneği, Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 19 (1), 162–169, 2019, https://doi.org/10.35414/akufemubid.467336.
  • J. Guo, X. Li, Z. Li, L. Hu, G. Yang, C. Zhao, D. Fairbairn, D. Watson, and M. Ge, Multi-GNSS precise point positioning for precision agriculture, Precision Agriculture, 19 (5), 895–911, 2018, https://doi.org/10.1007/s11119-018-9563-8.
  • M. R. Kaloop, C. O. Yigit, A. El-Mowafy, A. A. Dindar, M. Bezcioglu, and J. W. Hu, Hybrid wavelet and principal component analyses approach for extracting dynamic motion characteristics from displacement series derived from multipath-affected high-rate GNSS observations, Remote Sensing, 12 (1), 2020, https://doi.org/10.3390/RS12010079.
  • P. Xu, C. Shi, R. Fang, J. Liu, X. Niu, Q. Zhang, and T. Yanagidani, High-rate precise point positioning (PPP) to measure seismic wave motions: An experimental comparison of GPS PPP with inertial measurement units, Journal of Geodesy, 87 (4), 361–372, 2013, https://doi.org/10.1007/s00190-012-0606-z.
  • F. Zhou, X. Cao, Y. Ge, and W. Li, Assessment of the positioning performance and tropospheric delay retrieval with precise point positioning using products from different analysis centers, GPS Solutions, 24 (1), 1–11, 2020, https://doi.org/10.1007/s10291-019-0925-0.
  • X. Ren, X. Zhang, W. Xie, K. Zhang, Y. Yuan, and X. Li, Global Ionospheric Modelling using Multi-GNSS: BeiDou, Galileo, GLONASS and GPS, Scientific Reports, 6, August, 1–11, 2016, https://doi.org/10.1038/srep33499.
  • J. Kouba, A Guide to using international GNSS Service ( IGS ) Products, Geodetic Survey Division Natural Resources Canada Ottawa, 6 (34), 2009, [Online]. Available: http://graypantherssf.igs.org/igscb/resource/pubs/UsingIGSProductsVer21.pdf
  • Z. Wang, Z. Li, L. Wang, X. Wang, and H. Yuan, Assessment of multiple GNSS real-Time SSR products from different analysis centers, ISPRS International Journal of Geo-Information, 7 (3), 2018, https://doi.org/10.3390/ijgi7030085.
  • L. Chen, Q. Zhao, Z. Hu, X. Jiang, C. Geng, M. Ge, and C. Shi, GNSS global real-time augmentation positioning: Real-time precise satellite clock estimation, prototype system construction and performance analysis, Advances in Space Research, 61 (1), 367–384, 2018, https://doi.org/10.1016/j.asr.2017.08.037.
  • L. Wang, Z. Li, M. Ge, F. Neitzel, Z. Wang, and H. Yuan, Validation and assessment of multi-GNSS real-time precise point positioning in simulated kinematic mode using IGS real-time service, Remote Sensing, 10 (2), 2018, https://doi.org/10.3390/rs10020337.
  • T. Hadas and J. Bosy, IGS RTS precise orbits and clocks verification and quality degradation over time, GPS Solutions, 19 (1), 93–105, 2015, https://doi.org/10.1007/s10291-014-0369-5.
  • M. El-Diasty and M. Elsobeiey, Precise Point Positioning Technique with IGS Real-Time Service (RTS) for Maritime Applications, Positioning, 06 (04), 71–80, 2015, https://doi.org/10.4236/pos.2015.64008.
  • L. Wang, Z. Li, M. Ge, F. Neitzel, X. Wang, and H. Yuan, Investigation of the performance of real-time BDS-only precise point positioning using the IGS real-time service, GPS Solutions, 23 (3), 1–12, 2019, https://doi.org/10.1007/s10291-019-0856-9.
  • M. Elsobeiey and S. Al-Harbi, Performance of real-time Precise Point Positioning using IGS real-time service, GPS Solutions, 20 (3), 565–571, 2016, https://doi.org/10.1007/s10291-015-0467-z.
  • N. Takahashi, Y. Ishihara, H. Ochi, T. Fukuda, J. Tahara, Y. Maeda, M. Kido, Y. Ohta, K. Mutoh, G. Hashimoto, S. Kogure, and Y. Kaneda, New buoy observation system for tsunami and crustal deformation, Marine Geophysical Research, 35 (3), 243–253, 2014, https://doi.org/10.1007/s11001-014-9235-7.
  • X. Li, M. Ge, X. Zhang, Y. Zhang, B. Guo, R. Wang, J. Klotz, and J. Wickert, Real-time high-rate co-seismic displacement from ambiguity-fixed precise point positioning: Application to earthquake early warning, Geophysical Research Letters, 40 (2), 295–300, 2013, https://doi.org/10.1002/grl.50138.
  • X. Tang, G. W. Roberts, X. Li, and C. M. Hancock, Real-time kinematic PPP GPS for structure monitoring applied on the Severn Suspension Bridge, UK, Advances in Space Research, 60 (5), 925–937, 2017, https://doi.org/10.1016/j.asr.2017.05.010.
  • M. Bezcioglu, C. O. Yigit, B. Karadeniz, A. A. Dindar, A. El-Mowafy, and Ö. Avcı, Evaluation of real-time variometric approach and real-time precise point positioning in monitoring dynamic displacement based on high-rate (20 Hz) GPS Observations, GPS Solutions, 27 (1), 1–13, 2023, https://doi.org/10.1007/s10291-022-01381-6.
  • B. Bahadur, An improved weighting strategy for tropospheric delay estimation with real-time single-frequency precise positioning, Earth Science Informatics, 15 (2), 1267–1284, 2022, https://doi.org/10.1007/s12145-022-00814-7.
  • B. Bahadur, Impact of different troposphere models on the real-time multi-GNSS PPP performance, Gümüşhane Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 12 (3), 756–768, 2022, https://doi.org/10.17714/gumusfenbil.1061668.
  • E. Tunalı, Monitoring Water Vapor Variations with PPP and IGS Real Time Service, Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 18 (1), 343–356, 2018, https://doi.org/10.5578/fmbd.66259.
  • T. Öcalan ve M. Soycan, RTCM/SSR Mesajları İle Gerçek Zamanlı Hassas Nokta Konumlama (PPP-RTK) Tekniği, Harita Teknolojileri Elektronik Dergisi, 4 (2), 30–41, 2012.
  • S. Alçay, Gerçek Zamanli Hassas Nokta Konumlama (RT-PPP)Yöntemi̇ni̇n KonumBeli̇rleme Performansinin Doğruluk VeHassasi̇yet Bakimindaİncelenmesi̇, Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 8 (1), 121–133, 2019, https://doi.org/10.28948/ngumuh.516842.
  • S. Alçay and Ö. Atiz, Farklı Yazılımlar Kullanılarak Gerçek Zamanlı Hassas Nokta Konum Belirleme (RT-PPP) Yönteminin Performansının İncelenmesi, Geomatik, 6 (1), 77–83, 2021, https://doi.org/10.29128/geomatik.687709.
  • R. M. Alkan, S. Erol, ve B. Mutlu, IGS-RTS ürünleri kullanılarak gerçek-zamanlı hassas nokta konumlama (RT-PPP) tekniğinin performans analizi: Antarktika örneği, Yerbilimleri, 43 (1), 76–95, 2022, https://doi.org/10.17824/yerbilimleri.1050124.
  • C. İnal, B. Bilgen, S. Bülbül, ve M. Başbük, Farklı uydu sistemi kombinasyonlarının gerçek zamanlı hassas nokta konumlamaya etkisi, Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 11 (1), 109–115, 2021, https://doi.org/10.28948/ngumuh.996018.
  • Z. Nie, F. Liu, and Y. Gao, Real-time precise point positioning with a low-cost dual-frequency GNSS device, GPS Solutions, 24 (1), 1–11, 2020, https://doi.org/10.1007/s10291-019-0922-3.
  • D. Janos, P. Kuras, and Ł. Ortyl, Evaluation of low-cost RTK GNSS receiver in motion under demanding conditions, Measurement: Journal of the International Measurement Confederation, 201, 2022, https://doi.org/10.1016/j.measurement.2022.111647.
  • M. F. Karabulut, N. O. Aykut, B. Akpinar, G. Oku Topal, Z. B. Çakmak, B. Doran, A. A. Dindar, C. Ö. Yiğit, M. Bezcioglu, and A. Zafer, The Positioning Performance of Low-Cost Gnss Receivers in Precise Point Positioning Method, Advances in Geodesy and Geoinformation, 71 (2), e29, 2022, https://doi.org/10.24425/agg.2022.141916.
  • G. Sanna, T. Pisanu, and S. Garau, Behavior of Low-Cost Receivers in Base-Rover Configuration with Geodetic-Grade Antennas, Sensors, 22 (7), 1–17, 2022, https://doi.org/10.3390/s22072779.
  • M. Di, B. Guo, J. Ren, X. Wu, Z. Zhang, Y. Liu, Q. Liu, and A. Zhang, GNSS Real–Time Precise Point Positioning in Arctic Northeast Passage, Journal of Marine Science and Engineering, 10 (10), 2022, https://doi.org/10.3390/jmse10101345.
  • R. Hohensinn, R. Stauffer, M. F. Glaner, I. D. Herrera Pinzón, E. Vuadens, Y. Rossi, J. Clinton, and M. Rothacher, Low-Cost GNSS and Real-Time PPP: Assessing the Precision of the u-blox ZED-F9P for Kinematic Monitoring Applications, Remote Sensing, 14 (20), 1–25, 2022, https://doi.org/10.3390/rs14205100.
  • G. Oku Topal, M. F. Karabulut, N. O. Aykut, and B. Akpınar, Performance of low-cost GNSS equipment in monitoring of horizontal displacements, Survey Review, 1–10, 2023, https://doi.org/10.1080/00396265.2023.2179910.
  • A. El-Mowafy, M. Deo, and N. Kubo, Maintaining real-time precise point positioning during outages of orbit and clock corrections, GPS Solutions, 1–11, 2016, https://doi.org/10.1007/s10291-016-0583-4.
  • T. Takasu and A. Yasuda, Development of the low-cost RTK-GPS receiver with an open source program package RTKLIB, International Symposium on GPS/GNSS, 4–6, 2009.
  • B. Li, H. Ge, Y. Bu, Y. Zheng, and L. Yuan, Comprehensive assessment of real-time precise products from IGS analysis centers, Satellite Navigation, 3 (1), 2022, https://doi.org/10.1186/s43020-022-00074-2.
There are 40 citations in total.

Details

Primary Language Turkish
Subjects Satellite-Based Positioning
Journal Section Articles
Authors

Mert Bezcioğlu 0000-0001-7179-8361

Early Pub Date September 19, 2023
Publication Date October 15, 2023
Submission Date June 6, 2023
Acceptance Date September 14, 2023
Published in Issue Year 2023

Cite

APA Bezcioğlu, M. (2023). Düşük maliyetli GNSS gözlemlerine dayalı gerçek-zamanlı hassas nokta konum belirleme (RT-PPP) tekniğinin performansının değerlendirilmesi ve çoklu-GNSS gözlemlerinin katkısı. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 12(4), 1341-1350. https://doi.org/10.28948/ngumuh.1310577
AMA Bezcioğlu M. Düşük maliyetli GNSS gözlemlerine dayalı gerçek-zamanlı hassas nokta konum belirleme (RT-PPP) tekniğinin performansının değerlendirilmesi ve çoklu-GNSS gözlemlerinin katkısı. NÖHÜ Müh. Bilim. Derg. October 2023;12(4):1341-1350. doi:10.28948/ngumuh.1310577
Chicago Bezcioğlu, Mert. “Düşük Maliyetli GNSS gözlemlerine Dayalı gerçek-Zamanlı Hassas Nokta Konum Belirleme (RT-PPP) tekniğinin performansının değerlendirilmesi Ve çoklu-GNSS gözlemlerinin katkısı”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 12, no. 4 (October 2023): 1341-50. https://doi.org/10.28948/ngumuh.1310577.
EndNote Bezcioğlu M (October 1, 2023) Düşük maliyetli GNSS gözlemlerine dayalı gerçek-zamanlı hassas nokta konum belirleme (RT-PPP) tekniğinin performansının değerlendirilmesi ve çoklu-GNSS gözlemlerinin katkısı. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 12 4 1341–1350.
IEEE M. Bezcioğlu, “Düşük maliyetli GNSS gözlemlerine dayalı gerçek-zamanlı hassas nokta konum belirleme (RT-PPP) tekniğinin performansının değerlendirilmesi ve çoklu-GNSS gözlemlerinin katkısı”, NÖHÜ Müh. Bilim. Derg., vol. 12, no. 4, pp. 1341–1350, 2023, doi: 10.28948/ngumuh.1310577.
ISNAD Bezcioğlu, Mert. “Düşük Maliyetli GNSS gözlemlerine Dayalı gerçek-Zamanlı Hassas Nokta Konum Belirleme (RT-PPP) tekniğinin performansının değerlendirilmesi Ve çoklu-GNSS gözlemlerinin katkısı”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 12/4 (October 2023), 1341-1350. https://doi.org/10.28948/ngumuh.1310577.
JAMA Bezcioğlu M. Düşük maliyetli GNSS gözlemlerine dayalı gerçek-zamanlı hassas nokta konum belirleme (RT-PPP) tekniğinin performansının değerlendirilmesi ve çoklu-GNSS gözlemlerinin katkısı. NÖHÜ Müh. Bilim. Derg. 2023;12:1341–1350.
MLA Bezcioğlu, Mert. “Düşük Maliyetli GNSS gözlemlerine Dayalı gerçek-Zamanlı Hassas Nokta Konum Belirleme (RT-PPP) tekniğinin performansının değerlendirilmesi Ve çoklu-GNSS gözlemlerinin katkısı”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, vol. 12, no. 4, 2023, pp. 1341-50, doi:10.28948/ngumuh.1310577.
Vancouver Bezcioğlu M. Düşük maliyetli GNSS gözlemlerine dayalı gerçek-zamanlı hassas nokta konum belirleme (RT-PPP) tekniğinin performansının değerlendirilmesi ve çoklu-GNSS gözlemlerinin katkısı. NÖHÜ Müh. Bilim. Derg. 2023;12(4):1341-50.

download