Research Article
BibTex RIS Cite

Optimal sizing of grid-connected hybrid energy systems for electric vehicle charging stations considering charging demand periods and economic parameters

Year 2023, , 1481 - 1491, 15.10.2023
https://doi.org/10.28948/ngumuh.1321628

Abstract

The development of electric vehicle (EV) technologies and the spread of EVs have made the expansion of charging infrastructure increasingly important. However, unplanned sizing of EV charging stations will have adverse technical, economic, and environmental impacts, especially on grid reliability and energy costs. This study performs a techno-economic evaluation of a solar PV-based hybrid power system considering variations in EV charging demand profiles and economic parameters. The results show that variations in demand profile and economic parameters significantly influence investment decisions. Higher inflation was most effective on peak evening demand profiles, increasing the levelized cost of energy by up to 2.2 times. Self-sufficiency can increase to 57% under grid sales constraints in the midday peak scenario. In addition, at maximum installed PV capacity, the SCR is 12% higher than in the evening peak, and curtailment is reduced by up to 4.5%. The results will expand the use of renewable energy with less grid dependency and faster achievement of zero carbon emission targets.

References

  • M. Erbaş, M. Kabak, E. Özceylan and C. Çetinkaya, Optimal siting of electric vehicle charging stations: A GIS-based fuzzy Multi-Criteria Decision Analysis. Energy, 163, 1017–1031, 2018. https://doi.org/10.101 6/j.energy.2018.08.140.
  • S. S. Deshmukh and J. M. Pearce, Electric vehicle charging potential from retail parking lot solar photovoltaic awnings. Renewable Energy, 169, 608–617, 2021. https://doi.org/10.1016/j.renene.2021.01.06 8.
  • R. Yin and J. He, Design of a photovoltaic electric bike battery-sharing system in public transit stations. Applied Energy, 332, 1-15, 2023. https://doi.org/10.10 16/j.apenergy.2022.120505.
  • L. Bartolucci, S. Cordiner, V. Mulone, M. Santarelli, F. Ortenzi and M. Pasquali, PV assisted electric vehicle charging station considering the integration of stationary first- or second-life battery storage. Journal of Cleaner Production, 383, 1-18, 2023. https://doi .org/10.1016/j.jclepro.2022.135426.
  • B. Sun, A multi-objective optimization model for fast electric vehicle charging stations with wind, PV power and energy storage. Journal of Cleaner Production, 288, 1-17, 2021. https://doi.org/10.1016/j.jclepro.2020.125 564.
  • J. A. Domínguez-Navarro, R. Dufo-López, J. M. Yusta-Loyo, J. S. Artal-Sevil and J. L. Bernal-Agustín, Design of an electric vehicle fast-charging station with integration of renewable energy and storage systems. International Journal of Electrical Power & Energy Systems, 105, 46–58, 2019. https://doi.org/10.1016/j.i jepes.2018.08.001.
  • M. Farrokhifar, F. H. Aghdam, A. Alahyari, A. Monavari and A. Safari, Optimal energy management and sizing of renewable energy and battery systems in residential sectors via a stochastic MILP model. Electric Power Systems Research, 187, 1-13, 2020. htt ps://doi.org/10.1016/j.epsr.2020.106483.
  • S. Kumar and S. Koteswara Rao, Optimum capacity of hybrid renewable energy system suitable for fulfilling yearly load demand for a community building located at Vaddeswaram, Andhra Pradesh. Energy and Buildings, 277, 1-14, 2022. https://doi.org/10.1016/ j.enbuild.2022.11257.
  • S. Singh, P. Chauhan and N. J. Singh, Feasibility of Grid-connected Solar-wind Hybrid System with Electric Vehicle Charging Station. Journal of Modern Power Systems and Clean Energy, 9 (2), 295–306, 2021. https://doi.org/10.35833/MPCE.2019.000081.
  • S. Amiri-Pebdani, M. Alinaghian and S. Safarzadeh, Time-Of-Use pricing in an energy sustainable supply chain with government interventions: A game theory approach. Energy, 255, 1-18, 2022. https://doi.org/ 10.1016/j.energy.2022.124380.
  • S. Panda, S. Mohanty, P.K. Rout, B.K. Sahu, M. Bajaj, H.M. Zawbaa and S. Kamel, Residential Demand Side Management model, optimization and future perspective: A review. Energy Reports, 8, 3727–3766, 2022. https://doi.org/10.1016/j.egyr.2022.02.300.
  • P. Yang, G. Tang and A. Nehorai, A game-theoretic approach for optimal time-of-use electricity pricing. IEEE Transactions on Power Systems, 28 (2), 884–892, 2013. https://doi.org/10.1109/TPWRS.2012.2207134.
  • M. Yang, L. Zhang, Z. Zhao and L. Wang, Comprehensive benefits analysis of electric vehicle charging station integrated photovoltaic and energy storage. Journal of Cleaner Production, 302, 1-12, 2021. https://doi.org/10.1016/j.jclepro.2021.126967.
  • B. Aljafari, P.R. Jeyaraj, A.C. Kathiresan and S.B. Thanikanti, Electric vehicle optimum charging-discharging scheduling with dynamic pricing employing multi agent deep neural network. Computers and Electrical Engineering, 105, 1-16, 2023.https://doi.org/10.1016/j.compeleceng.2022.108555.
  • K. Victor Sam Moses Babu, K. Satya Surya Vinay and P. Chakraborty, Peer-to-Peer Sharing of Energy Storage Systems Under Net Metering and Time-of-Use Pricing. IEEE Access, 11, 3118–3128, 2023. https://doi.org/10.1109/ACCESS.2023.3234625.
  • M.A. Judge, A. Khan, A. Manzoor and H.A. Khattak, Overview of smart grid implementation: Frameworks, impact, performance and challenges. Journal of Energy Storage, 49, 1-18, 2022. https://doi.org/10.1016/j.est.2022.104056.
  • J.H. Angelim and C. de M. Affonso, Probabilistic assessment of voltage quality on solar-powered electric vehicle charging station. Electric Power Systems Research, 189, 1-10, 2020. https://doi.org/10.1016/j.epsr.2020.106655.
  • NASA Prediction of Worldwide Energy Resources, 2021. https://data.nasa.gov/Earth-Science/Prediction-Of-Worldwide-Energy-Resources-POWER-/wn3p-qsan (accessed Oct. 08, 2021).
  • M. Terkes, Z. Ozturk, A. Demirci and S.M. Tercan, Optimal sizing and feasibility analysis of second-life battery energy storage systems for community microgrids considering carbon reduction, Journal of Cleaner Production, 421, 1-14, 2023. https://doi.org/10.1016/j.jclepro.2023.138507.
  • Homer Energy, 2023. https://www.homerenergy.com/products/pro/docs/latest/index.html (accessed Jul. 10, 2023).
  • Z. Ozturk and A. Demirci, Optimization of Renewable Energy Hybrid Power Systems Under Different Penetration and Grid Tariffs. Journal of Polytechnic, 26(3), 1267-1275, 2023. https://doi.org/10.2339/politeknik.1246418.
  • J.M. Clairand, M. Arriaga, C.A. Canizares and C. Alvarez-Bel, Power Generation Planning of Galapagos. Microgrid Considering Electric Vehicles and Induction Stoves. IEEE Transactions on Sustainable Energy, 10 (4), 1916–1926, 2019. https://doi.org/10.1109/TSTE.2018.2876059.
  • A. Chauhan and R.P. Saini, A review on Integrated Renewable Energy System based power generation for stand-alone applications: Configurations, storage options, sizing methodologies and control. Renewable and Sustainable Energy Reviews, 38, 99-120, 2014. https://doi.org/10.1016/j.rser.2014.05.079.
  • Z. Ozturk, A. Demirci, S. Tosun and A. Ozturk, Technic and Economic Effects of Changes in the Location of Industrial Facilities in Industrializing Regions on Power Systems, in 2021 13th International Conference on Electrical and Electronics Engineering (ELECO), 11–17, 2021. https://doi.org/10.23919/ELECO54474.2021.9677827.
  • Y. Yuan, J. Wang, X. Yan, B. Shen and T. Long, A review of multi-energy hybrid power system for ships. Renewable and Sustainable Energy Reviews, 132, 1-15, 2020. https://doi.org/10.1016/j.rser.2020.110081.
  • I.R.E. Agency, IRENA (2021), Renewable Power Generation Costs in 2020, Abu Dhabi, 2020.
  • Renewables 2021, Global Status Report, 2021.
  • A. Demirci, Z. Ozturk and S. M. Tercan, Decision-making between hybrid renewable energy configurations and grid extension in rural areas for different climate zones. Energy, 1–22, 2022. https://doi.org/10.1016/j.energy.2022.125402.
  • Z. Ozturk, S. Tosun, A. Ozturk and O. Akar, Comparative Evaluation of Stand-Alone Hybrid Power System with Different Energy Storages. Fresenius Environmental Bulletin, 30(9), 10908–10924, 2021.
  • T. Salameh, M.A. Abdelkareem, A.G. Olabi, E.T. Sayed, M. Al-Chaderchi and H.Rezk, Integrated standalone hybrid solar PV, fuel cell and diesel generator power system for battery or supercapacitor storage systems in Khorfakkan, United Arab Emirates. International Journal of Hydrogen Energy, 46 (8), 6014–6027, 2021. https://doi.org/10.1016/j.ijhydene .2020.08.153.
  • C. Li, Y. Zeng, Z. Li, L. Zhang, L. Zhang, Y. Shan and Q. Tang, Techno-economic and environmental evaluation of grid-connected and off-grid hybrid intermittent power generation systems: A case study of a mild humid subtropical climate zone in China. Energy, 230, 1-16, 2021. https://doi.org/10.1016/j.ener gy.2021.120728.
  • S.M. Tercan, A. Demirci, E. Gokalp and U. Cali, Maximizing self-consumption rates and power quality towards two-stage evaluation for solar energy and shared energy storage empowered microgrids. Journal of Energy Storage, 51, 1-13, 2022. https://doi.org/10. 1016/j.est.2022.104561.
  • A. Demirci, O. Akar and Z. Ozturk, Technical-environmental-economic evaluation of biomass-based hybrid power system with energy storage for rural electrification. Renewable Energy, 195, 1202–1217, 2022. https://doi.org/10.1016/j.renene.2022.06.097.
  • Trading Economics, Inflation Rate. https://tradingeconomics.com/country-list/inflation-rate?continent=world (accessed Feb. 03, 2022).
  • O. Ekren, C.H. Canbaz and Ç.B. Güvel, Sizing of a solar-wind hybrid electric vehicle charging station by using HOMER software. Journal of Cleaner Production, 279, 1-13, 2021. https://doi.org/10.1016/j.j clepro.2020.123615.

Elektrikli araç şarj istasyonları için şebekeye bağlı hibrit yenilenebilir enerji sistemlerinin şarj talep dönemleri ve ekonomik parametreler göz önünde bulundurularak optimum boyutlandırılması

Year 2023, , 1481 - 1491, 15.10.2023
https://doi.org/10.28948/ngumuh.1321628

Abstract

Elektrikli araç (EA) teknolojilerinin gelişmesi ve EA’ların yaygınlaşması, şarj altyapısının genişletilmesini giderek daha önemli hale getirmiştir. Plansız elektrikli araç şarj istasyonu boyutlandırması, özellikle şebeke güvenilirliği ve enerji maliyetleri üzerinde olumsuz teknik, ekonomik ve çevresel etkilere sahip olacaktır. Bu çalışma, elektrikli araç şarj talep profilleri ve ekonomik parametrelerdeki değişimleri göz önünde bulundurarak, güneş fotovoltaik tabanlı hibrit güç sisteminin tekno-ekonomik değerlendirmesi yapılmıştır. Elde edilen sonuçlar, yatırım kararlarının talep profilindeki ve ekonomik parametrelerdeki değişiklikleri önemli ölçüde etkilemiştir. Yüksek enflasyon en çok pik gece şarj talebi profillerinde etkili olmuş ve seviyelendirilmiş enerji maliyetini 2,2 katına kadar artırmıştır. Şebeke satış kısıtlamaları altında öğlen zirve senaryosunda kendi kendine yeterlilik %57'ye kadar artabilir. Dahası, maksimum PV kurulu gücünde SCR akşam zirve senaryosuna göre 12% daha yüksek olmayı başarmış ve faydalanılamayan enerji %4,5'e kadar azalmıştır. Sonuçlar, şebekeye daha az bağımlı yenilenebilir enerji kullanımını yaygınlaştıracak ve sıfır karbon emisyonu hedeflerine daha hızlı ulaşılmasını sağlayacaktır.

References

  • M. Erbaş, M. Kabak, E. Özceylan and C. Çetinkaya, Optimal siting of electric vehicle charging stations: A GIS-based fuzzy Multi-Criteria Decision Analysis. Energy, 163, 1017–1031, 2018. https://doi.org/10.101 6/j.energy.2018.08.140.
  • S. S. Deshmukh and J. M. Pearce, Electric vehicle charging potential from retail parking lot solar photovoltaic awnings. Renewable Energy, 169, 608–617, 2021. https://doi.org/10.1016/j.renene.2021.01.06 8.
  • R. Yin and J. He, Design of a photovoltaic electric bike battery-sharing system in public transit stations. Applied Energy, 332, 1-15, 2023. https://doi.org/10.10 16/j.apenergy.2022.120505.
  • L. Bartolucci, S. Cordiner, V. Mulone, M. Santarelli, F. Ortenzi and M. Pasquali, PV assisted electric vehicle charging station considering the integration of stationary first- or second-life battery storage. Journal of Cleaner Production, 383, 1-18, 2023. https://doi .org/10.1016/j.jclepro.2022.135426.
  • B. Sun, A multi-objective optimization model for fast electric vehicle charging stations with wind, PV power and energy storage. Journal of Cleaner Production, 288, 1-17, 2021. https://doi.org/10.1016/j.jclepro.2020.125 564.
  • J. A. Domínguez-Navarro, R. Dufo-López, J. M. Yusta-Loyo, J. S. Artal-Sevil and J. L. Bernal-Agustín, Design of an electric vehicle fast-charging station with integration of renewable energy and storage systems. International Journal of Electrical Power & Energy Systems, 105, 46–58, 2019. https://doi.org/10.1016/j.i jepes.2018.08.001.
  • M. Farrokhifar, F. H. Aghdam, A. Alahyari, A. Monavari and A. Safari, Optimal energy management and sizing of renewable energy and battery systems in residential sectors via a stochastic MILP model. Electric Power Systems Research, 187, 1-13, 2020. htt ps://doi.org/10.1016/j.epsr.2020.106483.
  • S. Kumar and S. Koteswara Rao, Optimum capacity of hybrid renewable energy system suitable for fulfilling yearly load demand for a community building located at Vaddeswaram, Andhra Pradesh. Energy and Buildings, 277, 1-14, 2022. https://doi.org/10.1016/ j.enbuild.2022.11257.
  • S. Singh, P. Chauhan and N. J. Singh, Feasibility of Grid-connected Solar-wind Hybrid System with Electric Vehicle Charging Station. Journal of Modern Power Systems and Clean Energy, 9 (2), 295–306, 2021. https://doi.org/10.35833/MPCE.2019.000081.
  • S. Amiri-Pebdani, M. Alinaghian and S. Safarzadeh, Time-Of-Use pricing in an energy sustainable supply chain with government interventions: A game theory approach. Energy, 255, 1-18, 2022. https://doi.org/ 10.1016/j.energy.2022.124380.
  • S. Panda, S. Mohanty, P.K. Rout, B.K. Sahu, M. Bajaj, H.M. Zawbaa and S. Kamel, Residential Demand Side Management model, optimization and future perspective: A review. Energy Reports, 8, 3727–3766, 2022. https://doi.org/10.1016/j.egyr.2022.02.300.
  • P. Yang, G. Tang and A. Nehorai, A game-theoretic approach for optimal time-of-use electricity pricing. IEEE Transactions on Power Systems, 28 (2), 884–892, 2013. https://doi.org/10.1109/TPWRS.2012.2207134.
  • M. Yang, L. Zhang, Z. Zhao and L. Wang, Comprehensive benefits analysis of electric vehicle charging station integrated photovoltaic and energy storage. Journal of Cleaner Production, 302, 1-12, 2021. https://doi.org/10.1016/j.jclepro.2021.126967.
  • B. Aljafari, P.R. Jeyaraj, A.C. Kathiresan and S.B. Thanikanti, Electric vehicle optimum charging-discharging scheduling with dynamic pricing employing multi agent deep neural network. Computers and Electrical Engineering, 105, 1-16, 2023.https://doi.org/10.1016/j.compeleceng.2022.108555.
  • K. Victor Sam Moses Babu, K. Satya Surya Vinay and P. Chakraborty, Peer-to-Peer Sharing of Energy Storage Systems Under Net Metering and Time-of-Use Pricing. IEEE Access, 11, 3118–3128, 2023. https://doi.org/10.1109/ACCESS.2023.3234625.
  • M.A. Judge, A. Khan, A. Manzoor and H.A. Khattak, Overview of smart grid implementation: Frameworks, impact, performance and challenges. Journal of Energy Storage, 49, 1-18, 2022. https://doi.org/10.1016/j.est.2022.104056.
  • J.H. Angelim and C. de M. Affonso, Probabilistic assessment of voltage quality on solar-powered electric vehicle charging station. Electric Power Systems Research, 189, 1-10, 2020. https://doi.org/10.1016/j.epsr.2020.106655.
  • NASA Prediction of Worldwide Energy Resources, 2021. https://data.nasa.gov/Earth-Science/Prediction-Of-Worldwide-Energy-Resources-POWER-/wn3p-qsan (accessed Oct. 08, 2021).
  • M. Terkes, Z. Ozturk, A. Demirci and S.M. Tercan, Optimal sizing and feasibility analysis of second-life battery energy storage systems for community microgrids considering carbon reduction, Journal of Cleaner Production, 421, 1-14, 2023. https://doi.org/10.1016/j.jclepro.2023.138507.
  • Homer Energy, 2023. https://www.homerenergy.com/products/pro/docs/latest/index.html (accessed Jul. 10, 2023).
  • Z. Ozturk and A. Demirci, Optimization of Renewable Energy Hybrid Power Systems Under Different Penetration and Grid Tariffs. Journal of Polytechnic, 26(3), 1267-1275, 2023. https://doi.org/10.2339/politeknik.1246418.
  • J.M. Clairand, M. Arriaga, C.A. Canizares and C. Alvarez-Bel, Power Generation Planning of Galapagos. Microgrid Considering Electric Vehicles and Induction Stoves. IEEE Transactions on Sustainable Energy, 10 (4), 1916–1926, 2019. https://doi.org/10.1109/TSTE.2018.2876059.
  • A. Chauhan and R.P. Saini, A review on Integrated Renewable Energy System based power generation for stand-alone applications: Configurations, storage options, sizing methodologies and control. Renewable and Sustainable Energy Reviews, 38, 99-120, 2014. https://doi.org/10.1016/j.rser.2014.05.079.
  • Z. Ozturk, A. Demirci, S. Tosun and A. Ozturk, Technic and Economic Effects of Changes in the Location of Industrial Facilities in Industrializing Regions on Power Systems, in 2021 13th International Conference on Electrical and Electronics Engineering (ELECO), 11–17, 2021. https://doi.org/10.23919/ELECO54474.2021.9677827.
  • Y. Yuan, J. Wang, X. Yan, B. Shen and T. Long, A review of multi-energy hybrid power system for ships. Renewable and Sustainable Energy Reviews, 132, 1-15, 2020. https://doi.org/10.1016/j.rser.2020.110081.
  • I.R.E. Agency, IRENA (2021), Renewable Power Generation Costs in 2020, Abu Dhabi, 2020.
  • Renewables 2021, Global Status Report, 2021.
  • A. Demirci, Z. Ozturk and S. M. Tercan, Decision-making between hybrid renewable energy configurations and grid extension in rural areas for different climate zones. Energy, 1–22, 2022. https://doi.org/10.1016/j.energy.2022.125402.
  • Z. Ozturk, S. Tosun, A. Ozturk and O. Akar, Comparative Evaluation of Stand-Alone Hybrid Power System with Different Energy Storages. Fresenius Environmental Bulletin, 30(9), 10908–10924, 2021.
  • T. Salameh, M.A. Abdelkareem, A.G. Olabi, E.T. Sayed, M. Al-Chaderchi and H.Rezk, Integrated standalone hybrid solar PV, fuel cell and diesel generator power system for battery or supercapacitor storage systems in Khorfakkan, United Arab Emirates. International Journal of Hydrogen Energy, 46 (8), 6014–6027, 2021. https://doi.org/10.1016/j.ijhydene .2020.08.153.
  • C. Li, Y. Zeng, Z. Li, L. Zhang, L. Zhang, Y. Shan and Q. Tang, Techno-economic and environmental evaluation of grid-connected and off-grid hybrid intermittent power generation systems: A case study of a mild humid subtropical climate zone in China. Energy, 230, 1-16, 2021. https://doi.org/10.1016/j.ener gy.2021.120728.
  • S.M. Tercan, A. Demirci, E. Gokalp and U. Cali, Maximizing self-consumption rates and power quality towards two-stage evaluation for solar energy and shared energy storage empowered microgrids. Journal of Energy Storage, 51, 1-13, 2022. https://doi.org/10. 1016/j.est.2022.104561.
  • A. Demirci, O. Akar and Z. Ozturk, Technical-environmental-economic evaluation of biomass-based hybrid power system with energy storage for rural electrification. Renewable Energy, 195, 1202–1217, 2022. https://doi.org/10.1016/j.renene.2022.06.097.
  • Trading Economics, Inflation Rate. https://tradingeconomics.com/country-list/inflation-rate?continent=world (accessed Feb. 03, 2022).
  • O. Ekren, C.H. Canbaz and Ç.B. Güvel, Sizing of a solar-wind hybrid electric vehicle charging station by using HOMER software. Journal of Cleaner Production, 279, 1-13, 2021. https://doi.org/10.1016/j.j clepro.2020.123615.
There are 35 citations in total.

Details

Primary Language English
Subjects Electrical Energy Transmission, Networks and Systems, Power Plants, Photovoltaic Power Systems
Journal Section Articles
Authors

Alpaslan Demirci 0000-0002-1038-7224

Early Pub Date October 6, 2023
Publication Date October 15, 2023
Submission Date July 2, 2023
Acceptance Date September 17, 2023
Published in Issue Year 2023

Cite

APA Demirci, A. (2023). Optimal sizing of grid-connected hybrid energy systems for electric vehicle charging stations considering charging demand periods and economic parameters. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 12(4), 1481-1491. https://doi.org/10.28948/ngumuh.1321628
AMA Demirci A. Optimal sizing of grid-connected hybrid energy systems for electric vehicle charging stations considering charging demand periods and economic parameters. NÖHÜ Müh. Bilim. Derg. October 2023;12(4):1481-1491. doi:10.28948/ngumuh.1321628
Chicago Demirci, Alpaslan. “Optimal Sizing of Grid-Connected Hybrid Energy Systems for Electric Vehicle Charging Stations Considering Charging Demand Periods and Economic Parameters”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 12, no. 4 (October 2023): 1481-91. https://doi.org/10.28948/ngumuh.1321628.
EndNote Demirci A (October 1, 2023) Optimal sizing of grid-connected hybrid energy systems for electric vehicle charging stations considering charging demand periods and economic parameters. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 12 4 1481–1491.
IEEE A. Demirci, “Optimal sizing of grid-connected hybrid energy systems for electric vehicle charging stations considering charging demand periods and economic parameters”, NÖHÜ Müh. Bilim. Derg., vol. 12, no. 4, pp. 1481–1491, 2023, doi: 10.28948/ngumuh.1321628.
ISNAD Demirci, Alpaslan. “Optimal Sizing of Grid-Connected Hybrid Energy Systems for Electric Vehicle Charging Stations Considering Charging Demand Periods and Economic Parameters”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 12/4 (October 2023), 1481-1491. https://doi.org/10.28948/ngumuh.1321628.
JAMA Demirci A. Optimal sizing of grid-connected hybrid energy systems for electric vehicle charging stations considering charging demand periods and economic parameters. NÖHÜ Müh. Bilim. Derg. 2023;12:1481–1491.
MLA Demirci, Alpaslan. “Optimal Sizing of Grid-Connected Hybrid Energy Systems for Electric Vehicle Charging Stations Considering Charging Demand Periods and Economic Parameters”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, vol. 12, no. 4, 2023, pp. 1481-9, doi:10.28948/ngumuh.1321628.
Vancouver Demirci A. Optimal sizing of grid-connected hybrid energy systems for electric vehicle charging stations considering charging demand periods and economic parameters. NÖHÜ Müh. Bilim. Derg. 2023;12(4):1481-9.

download