Research Article
BibTex RIS Cite

Helisel sarılmış ısı eşanjörünün deneysel ve sayısal analizi

Year 2023, , 1531 - 1537, 15.10.2023
https://doi.org/10.28948/ngumuh.1330247

Abstract

Bu çalışmada, helisel ısı eşanjörlerinin ısı transferi karakteristikleri sürekli şartlarda araştırılmıştır. Deneylerde soğuk suyun eşanjöre giriş sıcaklığı 20 °C, sıcak su sıcaklığı ise 50 °C olarak belirlenmiştir. Soğuk suyun debisi 2 – 3 – 4 ve 5 L/dk olarak ayarlanmıştır. Soğuk suyun eşanjörden çıkış sıcaklığı ölçülmüş ve iç taraf Nu sayısı hesaplanmıştır. Sayısal çalışma için eşajörün üç boyutlu modeli oluşturulmuştur. Hesaplamalı akışkanlar dinamiği paket programı (Fluent 18.2) kullanılarak eşanjördeki ısıl özelliklerin ve hız konturlarının belirlenmesi için sayısal analiz gerçekleştirilmiştir. İç taraf Nu sayısı ve soğuk suyun eşanjörden çıkış sıcaklığı deneysel çalışmada elde edilen verilerle karşılaştırılmıştır. Hesaplamalı akışkanlar dinamiği sonuçlarının deneysel bulgularla uyumlu olduğu tespit edilmiştir.

Supporting Institution

Sivas Cumhuriyet Üniversitesi Bilimsel Araştırma Projeleri (CÜBAP)

Project Number

M-2022-828

References

  • M. E. Ali, Laminar natural convection from constant heat flux helical coiled tubes. International Journal of Heat and Mass Transfer, 41 (14), 2175–2182, 1998. https://doi.org/10.1016/S0017-9310(97)00322-0.
  • S. Vashisth, V. Kumar and K. D. P. Nigam, A Review on the Potential Applications of Curved Geometries in Process Industry. Industrial & Engineering Chemistry Research, 47 (10), 3291–3337, 2008. https://doi.org/ 10.1021/ie701760h.
  • L. Zheng, Y. Xie and D. Zhang, Numerical investigation on heat transfer and flow characteristics in helically coiled mini-tubes equipped with dimples. International Journal of Heat and Mass Transfer, 126, 544–570, 2018. https://doi.org/10.1016/ j.ijheatmasstransfer.2018.05.111.
  • R. C. Xin, A. Awwad, Z. F. Dong, M. A. Ebadian and H. M. Soliman, An investigation and comparative study of the pressure drop in air-water two-phase flow in vertical helicoidal pipes. International Journal of Heat and Mass Transfer, 39 (4), 735–743, 1996. https://doi.org/2010.1016/0017-9310(95)00164-6.
  • M. Kahani, S. Z. Heris and S. M. Mousavi, Experimental investigation of TiO2/water nanofluid laminar forced convective heat transfer through helical coiled tube. Heat Mass Transfer, 50 (11), 1563–1573, 2014. https://doi.org/10.1007/s00231-014-1367-4
  • H. S. Dizaji, S. Jafarmadar and M. Hashemian, The effect of flow, thermodynamic and geometrical characteristics on exergy loss in shell and coiled tube heat exchangers. Energy, 91, 678–684, 2015. https://doi.org/10.1016/j.energy.2015.08.084
  • E. Izadpanah, A. Zarei, S. Akhavan and M. B. Rabiee, An experimental investigation of natural convection heat transfer from a helically coiled heat exchanger. International Journal of Refrigeration, 93, 38–46, 2018. https://doi.org/10.1016/j.ijrefrig.2018.06.008
  • M. Wang, M. Zheng, R. Wang, L. Tian, C. Ye, Y. Chen and H. Gu, Experimental studies on local and average heat transfer characteristics in helical pipes with single phase flow. Annals of Nuclear Energy, 123, 78-85, 2019. https://doi.org/10.1016/j.anucene.2018.09.017.
  • B. K. Hardik, P. K. Baburajan and S. V. Prabhu, Local heat transfer coefficient in helical coils with single phase flow. International Journal of Heat and Mass Transfer, 89, 522–538, 2015. https://doi.org/10.1016/ j.ijheatmasstransfer.2015.05.069.
  • E. Neshat, S. Hossainpour and F. Bahiraee, Experimental and numerical study on unsteady natural convection heat transfer in helically coiled tube heat exchangers. Heat Mass Transfer, 50 (6), 877–885, 2014. https://doi.org/10.1007/s00231-014-1299-z.
  • K. E. Amori, Thermal and hydraulic characteristics of a novel helical coiled tube used as a heat exchanger. Arab J Sci Eng, 39 (5), 4179–4186, 2014. https://doi.org/10.1007/s13369-014-1034-6.
  • S. S. Pawar and V. K. Sunnapwar, Studies on convective heat transfer through helical coils. Heat Mass Transfer, 49 (12), 1741–1754, 2013. https://doi.org/10.1007/s00231-013-1210-3.
  • J. S. Jayakumar, S. M. Mahajani, J. C. Mandal, K. N. Iyer and P. K. Vijayan, CFD analysis of single-phase flows inside helically coiled tubes. Computers & Chemical Engineering, 34 (4), 430–446, 2010. https://doi.org/10.1016/j.compchemeng.2009.11.008.
  • M. Moawed, Experimental study of forced convection from helical coiled tubes with different parameters. Energy Conversion and Management, 52 (2), 1150–1156, 2011. https://doi.org/10.1016/j.enconman.2010 .09.009.
  • C. Zhang, D. Wang, S. Xiang, Y. Han and X. Peng, Numerical investigation of heat transfer and pressure drop in helically coiled tube with spherical corrugation. International Journal of Heat and Mass Transfer, 13, 332–341, 2017. https://doi.org/10.1016/ j.ijheatmasstransfer.2017.05.108.
  • D. G. Prabhanjan, T. J. Rennie and G. S. V. Raghavan, Natural convection heat transfer from helical coiled tubes. International Journal of Thermal Sciences, 43 (4), 359–365, 2004. https://doi.org/10.1016/ j.ijthermalsci.2003.08.005.
  • J. Fernández-Seara, C. Piñeiro-Pontevedra and J. A. Dopazo, On the performance of a vertical helical coil heat exchanger. Numerical model and experimental validation. Applied Thermal Engineering, 62 (2), 680–689, 2014. https://doi.org/10.1016/j.applthermaleng. 2013.09.054.
  • Ö. Karabey ve A. Akkuş, Sürünme Test Cihazı Tasarımı ve İmalatı. Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, 11 (1), 369–376, 2022. https://doi.org/10.17798/bitlisfen.1030964.
  • ANSYS, ANSYS Fluent 18.2. ANSYS Inc., 2016.
  • R.A. Seban and E.F. McLaughlin, Heat transfer in tube coils with laminar and turbulent flow. Int J Heat Mass Tran., 6, 387–395, 1963. https://doi.org/10.1016/0017-9310(63)90100-5.
  • S. S. Pawar and V. K. Sunnapwar, Experimental and CFD investigation of convective heat transfer in helically coiled tube heat exchanger. Chemical Engineering Research and Design, 92 (11), 2294–2312, 2014. https://doi.org/10.1016/j.cherd.2014.01.016.

Experimental and numerical analysis of helical coiled heat exchanger

Year 2023, , 1531 - 1537, 15.10.2023
https://doi.org/10.28948/ngumuh.1330247

Abstract

In this study, heat transfer characteristics of helical heat exchangers were investigated under steady state conditions. In the experiments, the inlet temperature of the cold water into the heat exchanger was set as 20 °C and the hot water temperature was set as 50 °C. The flow rates of cold water were set as 2 - 3 - 4 and 5 l/min. The outlet temperature of the cold water from the heat exchanger was measured and the inside Nu number was calculated. For numerical study a three dimensional model of the heat exchanger was designed. Numerical analysis was carried out to determine the thermal properties and velocity contours in the heat exchanger using a computational fluid dynamics software program package (Fluent 18.2). The inside Nu number and the outlet temperature of the water from the heat exchanger were compared with the data recorded in the experimental study. The computational fluid dynamics results were obtained to be in agreement with the experimental results.

Project Number

M-2022-828

References

  • M. E. Ali, Laminar natural convection from constant heat flux helical coiled tubes. International Journal of Heat and Mass Transfer, 41 (14), 2175–2182, 1998. https://doi.org/10.1016/S0017-9310(97)00322-0.
  • S. Vashisth, V. Kumar and K. D. P. Nigam, A Review on the Potential Applications of Curved Geometries in Process Industry. Industrial & Engineering Chemistry Research, 47 (10), 3291–3337, 2008. https://doi.org/ 10.1021/ie701760h.
  • L. Zheng, Y. Xie and D. Zhang, Numerical investigation on heat transfer and flow characteristics in helically coiled mini-tubes equipped with dimples. International Journal of Heat and Mass Transfer, 126, 544–570, 2018. https://doi.org/10.1016/ j.ijheatmasstransfer.2018.05.111.
  • R. C. Xin, A. Awwad, Z. F. Dong, M. A. Ebadian and H. M. Soliman, An investigation and comparative study of the pressure drop in air-water two-phase flow in vertical helicoidal pipes. International Journal of Heat and Mass Transfer, 39 (4), 735–743, 1996. https://doi.org/2010.1016/0017-9310(95)00164-6.
  • M. Kahani, S. Z. Heris and S. M. Mousavi, Experimental investigation of TiO2/water nanofluid laminar forced convective heat transfer through helical coiled tube. Heat Mass Transfer, 50 (11), 1563–1573, 2014. https://doi.org/10.1007/s00231-014-1367-4
  • H. S. Dizaji, S. Jafarmadar and M. Hashemian, The effect of flow, thermodynamic and geometrical characteristics on exergy loss in shell and coiled tube heat exchangers. Energy, 91, 678–684, 2015. https://doi.org/10.1016/j.energy.2015.08.084
  • E. Izadpanah, A. Zarei, S. Akhavan and M. B. Rabiee, An experimental investigation of natural convection heat transfer from a helically coiled heat exchanger. International Journal of Refrigeration, 93, 38–46, 2018. https://doi.org/10.1016/j.ijrefrig.2018.06.008
  • M. Wang, M. Zheng, R. Wang, L. Tian, C. Ye, Y. Chen and H. Gu, Experimental studies on local and average heat transfer characteristics in helical pipes with single phase flow. Annals of Nuclear Energy, 123, 78-85, 2019. https://doi.org/10.1016/j.anucene.2018.09.017.
  • B. K. Hardik, P. K. Baburajan and S. V. Prabhu, Local heat transfer coefficient in helical coils with single phase flow. International Journal of Heat and Mass Transfer, 89, 522–538, 2015. https://doi.org/10.1016/ j.ijheatmasstransfer.2015.05.069.
  • E. Neshat, S. Hossainpour and F. Bahiraee, Experimental and numerical study on unsteady natural convection heat transfer in helically coiled tube heat exchangers. Heat Mass Transfer, 50 (6), 877–885, 2014. https://doi.org/10.1007/s00231-014-1299-z.
  • K. E. Amori, Thermal and hydraulic characteristics of a novel helical coiled tube used as a heat exchanger. Arab J Sci Eng, 39 (5), 4179–4186, 2014. https://doi.org/10.1007/s13369-014-1034-6.
  • S. S. Pawar and V. K. Sunnapwar, Studies on convective heat transfer through helical coils. Heat Mass Transfer, 49 (12), 1741–1754, 2013. https://doi.org/10.1007/s00231-013-1210-3.
  • J. S. Jayakumar, S. M. Mahajani, J. C. Mandal, K. N. Iyer and P. K. Vijayan, CFD analysis of single-phase flows inside helically coiled tubes. Computers & Chemical Engineering, 34 (4), 430–446, 2010. https://doi.org/10.1016/j.compchemeng.2009.11.008.
  • M. Moawed, Experimental study of forced convection from helical coiled tubes with different parameters. Energy Conversion and Management, 52 (2), 1150–1156, 2011. https://doi.org/10.1016/j.enconman.2010 .09.009.
  • C. Zhang, D. Wang, S. Xiang, Y. Han and X. Peng, Numerical investigation of heat transfer and pressure drop in helically coiled tube with spherical corrugation. International Journal of Heat and Mass Transfer, 13, 332–341, 2017. https://doi.org/10.1016/ j.ijheatmasstransfer.2017.05.108.
  • D. G. Prabhanjan, T. J. Rennie and G. S. V. Raghavan, Natural convection heat transfer from helical coiled tubes. International Journal of Thermal Sciences, 43 (4), 359–365, 2004. https://doi.org/10.1016/ j.ijthermalsci.2003.08.005.
  • J. Fernández-Seara, C. Piñeiro-Pontevedra and J. A. Dopazo, On the performance of a vertical helical coil heat exchanger. Numerical model and experimental validation. Applied Thermal Engineering, 62 (2), 680–689, 2014. https://doi.org/10.1016/j.applthermaleng. 2013.09.054.
  • Ö. Karabey ve A. Akkuş, Sürünme Test Cihazı Tasarımı ve İmalatı. Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, 11 (1), 369–376, 2022. https://doi.org/10.17798/bitlisfen.1030964.
  • ANSYS, ANSYS Fluent 18.2. ANSYS Inc., 2016.
  • R.A. Seban and E.F. McLaughlin, Heat transfer in tube coils with laminar and turbulent flow. Int J Heat Mass Tran., 6, 387–395, 1963. https://doi.org/10.1016/0017-9310(63)90100-5.
  • S. S. Pawar and V. K. Sunnapwar, Experimental and CFD investigation of convective heat transfer in helically coiled tube heat exchanger. Chemical Engineering Research and Design, 92 (11), 2294–2312, 2014. https://doi.org/10.1016/j.cherd.2014.01.016.
There are 21 citations in total.

Details

Primary Language Turkish
Subjects Experimental Methods in Fluid Flow, Heat and Mass Transfer, Computational Methods in Fluid Flow, Heat and Mass Transfer (Incl. Computational Fluid Dynamics)
Journal Section Articles
Authors

Mustafa Caner 0000-0002-3674-7881

Ertan Buyruk 0000-0002-6539-7614

Project Number M-2022-828
Early Pub Date September 7, 2023
Publication Date October 15, 2023
Submission Date July 20, 2023
Acceptance Date August 23, 2023
Published in Issue Year 2023

Cite

APA Caner, M., & Buyruk, E. (2023). Helisel sarılmış ısı eşanjörünün deneysel ve sayısal analizi. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 12(4), 1531-1537. https://doi.org/10.28948/ngumuh.1330247
AMA Caner M, Buyruk E. Helisel sarılmış ısı eşanjörünün deneysel ve sayısal analizi. NÖHÜ Müh. Bilim. Derg. October 2023;12(4):1531-1537. doi:10.28948/ngumuh.1330247
Chicago Caner, Mustafa, and Ertan Buyruk. “Helisel sarılmış ısı eşanjörünün Deneysel Ve sayısal Analizi”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 12, no. 4 (October 2023): 1531-37. https://doi.org/10.28948/ngumuh.1330247.
EndNote Caner M, Buyruk E (October 1, 2023) Helisel sarılmış ısı eşanjörünün deneysel ve sayısal analizi. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 12 4 1531–1537.
IEEE M. Caner and E. Buyruk, “Helisel sarılmış ısı eşanjörünün deneysel ve sayısal analizi”, NÖHÜ Müh. Bilim. Derg., vol. 12, no. 4, pp. 1531–1537, 2023, doi: 10.28948/ngumuh.1330247.
ISNAD Caner, Mustafa - Buyruk, Ertan. “Helisel sarılmış ısı eşanjörünün Deneysel Ve sayısal Analizi”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 12/4 (October 2023), 1531-1537. https://doi.org/10.28948/ngumuh.1330247.
JAMA Caner M, Buyruk E. Helisel sarılmış ısı eşanjörünün deneysel ve sayısal analizi. NÖHÜ Müh. Bilim. Derg. 2023;12:1531–1537.
MLA Caner, Mustafa and Ertan Buyruk. “Helisel sarılmış ısı eşanjörünün Deneysel Ve sayısal Analizi”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, vol. 12, no. 4, 2023, pp. 1531-7, doi:10.28948/ngumuh.1330247.
Vancouver Caner M, Buyruk E. Helisel sarılmış ısı eşanjörünün deneysel ve sayısal analizi. NÖHÜ Müh. Bilim. Derg. 2023;12(4):1531-7.

download