Research Article
BibTex RIS Cite

Effective diffusivity determination of date (Phoenix dactylifera L.) leather in infrared drying: Effect of cooking time

Year 2023, , 1558 - 1565, 15.10.2023
https://doi.org/10.28948/ngumuh.1331515

Abstract

Longer process times in conventional drying methods can be improved by using rapid technologies. Infrared drying is one of these faster methods. Consumer awareness on health and wellness products has increased and boosted with Covid-19 pandemic. Therefore, the consumption trend of snack products formulated with natural ingredients has increased. It is estimated that this trend will continue to rise. In accordance with this, fruit leather production from dates was done by infrared drying and the effect of cooking time on drying behavior was investigated. Firstly, dates were washed and seeds were removed, then water was added at a ratio of 1:2.5 (dates:water), and cooked for 30, 45 and 60 min. Samples were pressed and dried at 10 mm thickness. Drying curves showed first-order drying kinetics and effective moisture diffusivity (Deff) of fruit leathers were found as 1.53×10-9, 1.70×10-9 and 1.74×10-9 m2/s for 30, 45 and 60 min of cooking time, respectively.

References

  • P. K. Vayalil, Bioactive compounds, nutritional and functional properties of date fruit. In: M. Siddiq, S. M. Aleid and A. A. Kader (eds.) Dates Postharvest Science, Processing Technology and Health Benefits, Wiley, pp. 285-303, Chichester, 2014.
  • M. A. Al-Farsi and C. Y. Lee, Nutritional and functional properties of dates: A review. Critical Reviews in Food Science and Nutrition, 48(10), 877-887, 2008. https://doi.org/10.1080/104083907017242 64.
  • S. Mounir, C. Tellez-Perez, K. V. Sunooj K.V. and K. Allaf, Texture and color characteristics of swell-dried ready-to-eat Zaghloul date snacks: Effect of operative parameters of instant controlled pressure drop process. Journal of Texture Studies, 51(2), 276-289, 2020. https://doi.org/10.1111/jtxs.12468.
  • T. Seerangurayar, A. M. Al-Ismaili, L. H. J. Jeewantha and N. A. Al-Habsi, Effect of solar drying methods on color kinetics and texture of dates. Food and Bioproducts Processing, 116, 227-239, 2019. https://doi.org/10.1016/j.fbp.2019.03.012.
  • M. Shahbandeh, Global Dates Production 2010-2021. https://www.statista.com/statistics/960247/dates-production-worldwide/ , Accessed 12 June 2023.
  • S. Manaa, M. Younsi and N. Moummi N, Study of Methods for Drying Dates; Review the Traditional Drying Methods in the Region of Touat Wilaya of Adrar-Algeria. Energy Procedia, 36, 521-524, 2013. https://doi.org/10.1016/j.egypro.2013.07.060.
  • M. Q. Al-Mssallem, R. M. Alqurashi R.M. and J. M. Al-Khayri, Bioactive Compounds of Date Palm (Phoenix dactylifera L.). In: H. Murthy and V. Bapat (eds.) Bioactive Compounds in Underutilized Fruits and Nuts, Springer, pp. 91-105, Cham, 2020.
  • J. Ahmed, F. M. Al-Jasass and M. Siddiq M, Date Fruit Composition and Nutrition. In: M. Siddiq, S. M. Aleid and A. A. Kader (eds.) Dates Postharvest Science, Processing Technology and Health Benefits, Wiley, pp. 261-283, Chichester, 2014.
  • A. A. Ayad, L. L. Williams, A. G. El-Rab, R. Ayivi R., H.L. Colleran, S. Aljaloud and S. A. Ibrahim, A review of the chemical composition, nutritional and health benefits of dates for their potential use in energy nutrition bars for athletes. Cogent Food and Agriculture, 6(1), 1809309, 2020. https://doi.org/10.1080/23311932.2020.1809309.
  • K. Shivashankara, S. Isobe, M. I. Al-Haq, M. Takenaka and T. Shiina, Fruit antioxidant activity, ascorbic acid, total phenol, quercetin, and carotene of Irwin mango fruits stored at low temperature after high electric field treatment. Journal of Agricultural and Food Chemistry, 52 (5), 1281-1286, 2004. http://dx.doi.org/10.1021/jf030243l.
  • W. I. W. Ismail and M. N. F. M. Radzi, Evaluation of the benefits of date palm (Phoenix dactylifera) to the brain. Alternative and Integrative Medicine, 2(4), 1000115, 2013. http://dx.doi.org/10.4172/2327-5162.1000115.
  • L. M. Diamante, X. Bai and J. Busch, Fruit leathers: Method of preparation and effect of different conditions on qualities. International Journal of Food Science, 139890, 1-12, 2014. https://doi.org/10.1155/2014/139890.
  • R. W. Hartel and C. M. Nowakowski, Non-equilibrium States in Confectionery. In: B. Bhandari and Y. H. Roos (eds.) Non-Equilibrium States and Glass Transitions in Foods, Woodhead Publishing, pp. 283-301, Duxford, 2017.
  • D. R. Brothwell, and P. Brothwell, Food in Antiquity: A Survey of the Diet of Early Peoples. The John Hopkins University Press, Maryland, 1998.
  • O. Sarma, M. Kundlia, H. Chutia and C. L. Mahanta, Processing of encapsulated flaxseed oil-rich banana-based (Dwarf cavendish) functional fruit leather. Journal of Food Process Engineering, 46 (4), e14282, 2023. https://doi.org/10.1111/jfpe.14282.
  • O. O. Kara and E. Kucukoner, Geleneksel bir meyve çerezi: Pestil. Akademik Gıda, 17 (2), 260-268, 2019. https://doi.org/10.24323/akademik-gida.613621.
  • A. Maskan, S. Kaya and M. Maskan, Hot air and sun drying of grape leather (pestil). Journal of Food Engineering, 54 (1), 81-88, 2002. https://doi.org/10.1016/S0260-8774(01)00188-1.
  • X. Huang, and F. H. Hsieh, Physical properties, sensory attributes, and consumer preference of pear fruit leather. Journal of Food Science, 70 (3), 177-186, 2005. https://doi.org/10.1111/j.1365-2621.2005.tb07133.x.
  • T. Ohlsson, and N. Bengtsson, Minimal processing of foods with thermal methods. Woodhead Publishing, Cambridge, 2002.
  • A. S. Ginzburg, Application of infrared radiation in food processing. Leonard Hill Books, London, 1969.
  • P. Jones, Electromagnetic wave energy in drying processes. In: A.S. Mujumdar (ed.) Drying, Elsevier Science, pp. 114-136, Amsterdam, 1992.
  • R. Ranjan, J. Irudayaraj, and S. Jun, Simulation of infared drying process, Drying Technology, 20, 363-379, 2007. https://doi.org/10.1081/DRT-120002547.
  • F. Salehi, Recent applications and potential of infrared dryer systems for drying various agricultural products: A review. International Journal of Fruit Science, 20(3), 586-602, 2019. https://doi.org/10.1080/15538362.2019.1616243.
  • S. Jaturonglumlert and T. Kiatsiriroat, Heat and mass transfer in combined convective and far-infrared drying of fruit leather. Journal of Food Engineering, 100(2), 254-260, 2010. https://doi.org/10.1016/j.jfoodeng.2010.04.007.
  • S. M. R. Azam, M. Zhang, C. L. Law and A. S. Mujumdar, Effects of drying methods on quality attributes of peach (Prunus persica) leather. Drying Technology, 37 (3), 341-351, 2018. https://doi.org/10.1080/07373937.2018.1454942.
  • R. N. A. Quintero, S. M. Demarchi and S. A. Giner, Effect of hot air, vacuum and infrared drying methods on quality of rosehip (Rosa rubiginosa) leathers. International Journal of Food Science and Technology, 49 (8), 1799-1804, 2014. https://doi.org/10.1111/ijfs.12486.
  • D. Rajoriya, M. L. Bhavya and H. U. Hebbar, Far infrared assisted refractance window drying: Influence on drying characteristics and quality of banana leather. Drying Technology, online, 1-13, 2023. https://doi.org/10.1080/07373937.2023.2220777.
  • R. D. S. Simão, J. O. D. Moraes, B. A. M. Carciofi and J. B. Laurindo, Recent advances in the production of fruit leathers. Food Engineering Reviews, 12, 68-82, 2020. https://doi.org/10.1007/s12393-019-09200-4.
  • F. M. Yilmaz, S. Yuksekkaya and H. Vardin, The effects of drying conditions on moisture transfer and quality of pomegranate fruit leather (pestil). Journal of the Saudi Society of Agricultural Sciences, 16, 33-40, 2017. https://doi.org/10.1016/j.jssas.2015.01.003.
  • A. Midilli, H. Kucuk and Z. Yapar, A new model for single-layer drying, Drying Technology, 20(7), 1503-1513, 2007. https://doi.org/10.1081/DRT-120005864
  • Y. Du, J. Yan, H. Wei, H. Xie, Y. Wu and J. Zhou, Drying kinetics of paddy drying with graphene far-infrared drying equipment at different IR temperatures, radiations-distances, grain-flow, and dehumidifying-velocities. Case Studies in Thermal Engineering, 43, 102780,2023.https://doi.org/10.1016/j.csite.2023.102780.
  • H. S. Gujral, D. P. S. Oberoi, R. Singh and M. Gera, Moisture diffusivity during drying of pineapple and mango leather as affected by sucrose, pectin, and maltodextrin. International Journal of Food Properties, 16, 359-368, 2013. https://doi.org/10.1080/10942912.2011.552016.
  • S. Janjai, B. K. Bala, N. Lamlert, B. Mahayothee, M. Haewsungcharern, W. Muhlbauer and J. Muller, Moisture diffusivity determination of different parts of longan fruit. International Journal of Food Properties, 10, 471-478, 2007. https://doi.org/10.1080/10942910600889968.
  • O. Taskin and N. Izli, Date drying by infrared dryer and mathematical modelling. Journal of Agricultural Faculty of Gaziosmanpasa University, 34, 10-15, 2017.
  • C. Nindo, and G. Mwithiga, Infrared drying. In: Z. Pan and G.G. Atungulu (eds.) Infrared Heating for Food and Agricultural Processing, CRC Press, pp. 89-99, Florida, 2011.
  • N. C. Santos, R. L. J. Almeida, G. M. da Silva, S. S. Monteiro and A. M. M. C. N. André, Effect of ultrasound pre-treatment on the kinetics and thermodynamic properties of guava slices drying process. Innovative Food Science and Emerging Technologies, 66, 102507, 2020. https://doi.org/10.1016/j.ifset.2020.102507.
  • N. Kechaou and M. Maâlej, A simplified model for determination of moisture diffusivity of date from experimental drying curves. Drying Technology, 18(4-5): 1109-1125, 2000. https://doi.org/10.1080/07373930008917758.
  • G. P. Sharma, R. C. Verma and P. B. Pathare, Thin-layer infrared radiation drying of onion slices. Journal of Food Engineering, 67 (3), 361-366, 2005. https://doi.org/10.1016/j.jfoodeng.2004.05.002.
  • M. Younis, D. Abdelkarim and A. Z. El-Abdein, Kinetics and mathematical modelling of infrared thin-layer drying of garlic slices. Saudi Journal of Biological Sciences, 25(2), 332-338, 2018. https://doi.org/10.1016/j.sjbs.2017.06.011.
  • A. R. Celma, F. Cuadros and F. López-Rodríguez, Characterisation of industrial tomato by-products from infrared drying process. Food and Bioproducts Processing, 87 (4), 282-291, 2009. http://dx.doi.org/10.1016%2Fj.fbp.2008.12.003.

Kızılötesi kurutmada hurma (Phoenix dactylifera L.) pestilinin efektif difüzyon katsayısının belirlenmesi: Pişme süresinin etkisi

Year 2023, , 1558 - 1565, 15.10.2023
https://doi.org/10.28948/ngumuh.1331515

Abstract

Geleneksel kurutma yöntemlerinde gerçekleşen uzun işlem süreleri hızlı teknolojiler kullanılarak iyileştirilebilmektedir. Kızılötesi kurutma bu hızlı yöntemlerden biridir. Sağlık ve zindelik ürünlerine ilişkin tüketici bilinci yükselmiş ve Covid-19 pandemisi ile de güçlenmiştir. Bu nedenle, doğal içeriklerle formüle edilmiş atıştırmalık ürünlerin tüketim eğilimi artmıştır. Bu eğilimin artarak devam edeceği öngörülmektedir. Bu konudan hareketle; bu çalışmada hurma ile pestil üretimi kızılötesi kurutma ile yapılmış ve pişirme süresinin kuruma davranışına etkisi incelenmiştir. Öncelikle hurmalar yıkanıp, çekirdekleri çıkarıldıktan sonra 1:2,5 (hurma:su) oranında su ilave edilerek 30, 45 ve 60 dakika pişirilmiştir. Daha sonra, numuneler preslenmiş ve 10 mm kalınlığında kurutulmuştur. Kuruma eğrileri birinci dereceden kuruma kinetiği göstermiş ve meyve pestillerinin efektif difüzyon katsayıları (Deff) 30, 45 ve 60 dakikalık pişirme süreleri için sırasıyla 1,53×10-9, 1,70×10-9 ve 1,74×10-9 m2/s ola-
rak bulunmuştur.

References

  • P. K. Vayalil, Bioactive compounds, nutritional and functional properties of date fruit. In: M. Siddiq, S. M. Aleid and A. A. Kader (eds.) Dates Postharvest Science, Processing Technology and Health Benefits, Wiley, pp. 285-303, Chichester, 2014.
  • M. A. Al-Farsi and C. Y. Lee, Nutritional and functional properties of dates: A review. Critical Reviews in Food Science and Nutrition, 48(10), 877-887, 2008. https://doi.org/10.1080/104083907017242 64.
  • S. Mounir, C. Tellez-Perez, K. V. Sunooj K.V. and K. Allaf, Texture and color characteristics of swell-dried ready-to-eat Zaghloul date snacks: Effect of operative parameters of instant controlled pressure drop process. Journal of Texture Studies, 51(2), 276-289, 2020. https://doi.org/10.1111/jtxs.12468.
  • T. Seerangurayar, A. M. Al-Ismaili, L. H. J. Jeewantha and N. A. Al-Habsi, Effect of solar drying methods on color kinetics and texture of dates. Food and Bioproducts Processing, 116, 227-239, 2019. https://doi.org/10.1016/j.fbp.2019.03.012.
  • M. Shahbandeh, Global Dates Production 2010-2021. https://www.statista.com/statistics/960247/dates-production-worldwide/ , Accessed 12 June 2023.
  • S. Manaa, M. Younsi and N. Moummi N, Study of Methods for Drying Dates; Review the Traditional Drying Methods in the Region of Touat Wilaya of Adrar-Algeria. Energy Procedia, 36, 521-524, 2013. https://doi.org/10.1016/j.egypro.2013.07.060.
  • M. Q. Al-Mssallem, R. M. Alqurashi R.M. and J. M. Al-Khayri, Bioactive Compounds of Date Palm (Phoenix dactylifera L.). In: H. Murthy and V. Bapat (eds.) Bioactive Compounds in Underutilized Fruits and Nuts, Springer, pp. 91-105, Cham, 2020.
  • J. Ahmed, F. M. Al-Jasass and M. Siddiq M, Date Fruit Composition and Nutrition. In: M. Siddiq, S. M. Aleid and A. A. Kader (eds.) Dates Postharvest Science, Processing Technology and Health Benefits, Wiley, pp. 261-283, Chichester, 2014.
  • A. A. Ayad, L. L. Williams, A. G. El-Rab, R. Ayivi R., H.L. Colleran, S. Aljaloud and S. A. Ibrahim, A review of the chemical composition, nutritional and health benefits of dates for their potential use in energy nutrition bars for athletes. Cogent Food and Agriculture, 6(1), 1809309, 2020. https://doi.org/10.1080/23311932.2020.1809309.
  • K. Shivashankara, S. Isobe, M. I. Al-Haq, M. Takenaka and T. Shiina, Fruit antioxidant activity, ascorbic acid, total phenol, quercetin, and carotene of Irwin mango fruits stored at low temperature after high electric field treatment. Journal of Agricultural and Food Chemistry, 52 (5), 1281-1286, 2004. http://dx.doi.org/10.1021/jf030243l.
  • W. I. W. Ismail and M. N. F. M. Radzi, Evaluation of the benefits of date palm (Phoenix dactylifera) to the brain. Alternative and Integrative Medicine, 2(4), 1000115, 2013. http://dx.doi.org/10.4172/2327-5162.1000115.
  • L. M. Diamante, X. Bai and J. Busch, Fruit leathers: Method of preparation and effect of different conditions on qualities. International Journal of Food Science, 139890, 1-12, 2014. https://doi.org/10.1155/2014/139890.
  • R. W. Hartel and C. M. Nowakowski, Non-equilibrium States in Confectionery. In: B. Bhandari and Y. H. Roos (eds.) Non-Equilibrium States and Glass Transitions in Foods, Woodhead Publishing, pp. 283-301, Duxford, 2017.
  • D. R. Brothwell, and P. Brothwell, Food in Antiquity: A Survey of the Diet of Early Peoples. The John Hopkins University Press, Maryland, 1998.
  • O. Sarma, M. Kundlia, H. Chutia and C. L. Mahanta, Processing of encapsulated flaxseed oil-rich banana-based (Dwarf cavendish) functional fruit leather. Journal of Food Process Engineering, 46 (4), e14282, 2023. https://doi.org/10.1111/jfpe.14282.
  • O. O. Kara and E. Kucukoner, Geleneksel bir meyve çerezi: Pestil. Akademik Gıda, 17 (2), 260-268, 2019. https://doi.org/10.24323/akademik-gida.613621.
  • A. Maskan, S. Kaya and M. Maskan, Hot air and sun drying of grape leather (pestil). Journal of Food Engineering, 54 (1), 81-88, 2002. https://doi.org/10.1016/S0260-8774(01)00188-1.
  • X. Huang, and F. H. Hsieh, Physical properties, sensory attributes, and consumer preference of pear fruit leather. Journal of Food Science, 70 (3), 177-186, 2005. https://doi.org/10.1111/j.1365-2621.2005.tb07133.x.
  • T. Ohlsson, and N. Bengtsson, Minimal processing of foods with thermal methods. Woodhead Publishing, Cambridge, 2002.
  • A. S. Ginzburg, Application of infrared radiation in food processing. Leonard Hill Books, London, 1969.
  • P. Jones, Electromagnetic wave energy in drying processes. In: A.S. Mujumdar (ed.) Drying, Elsevier Science, pp. 114-136, Amsterdam, 1992.
  • R. Ranjan, J. Irudayaraj, and S. Jun, Simulation of infared drying process, Drying Technology, 20, 363-379, 2007. https://doi.org/10.1081/DRT-120002547.
  • F. Salehi, Recent applications and potential of infrared dryer systems for drying various agricultural products: A review. International Journal of Fruit Science, 20(3), 586-602, 2019. https://doi.org/10.1080/15538362.2019.1616243.
  • S. Jaturonglumlert and T. Kiatsiriroat, Heat and mass transfer in combined convective and far-infrared drying of fruit leather. Journal of Food Engineering, 100(2), 254-260, 2010. https://doi.org/10.1016/j.jfoodeng.2010.04.007.
  • S. M. R. Azam, M. Zhang, C. L. Law and A. S. Mujumdar, Effects of drying methods on quality attributes of peach (Prunus persica) leather. Drying Technology, 37 (3), 341-351, 2018. https://doi.org/10.1080/07373937.2018.1454942.
  • R. N. A. Quintero, S. M. Demarchi and S. A. Giner, Effect of hot air, vacuum and infrared drying methods on quality of rosehip (Rosa rubiginosa) leathers. International Journal of Food Science and Technology, 49 (8), 1799-1804, 2014. https://doi.org/10.1111/ijfs.12486.
  • D. Rajoriya, M. L. Bhavya and H. U. Hebbar, Far infrared assisted refractance window drying: Influence on drying characteristics and quality of banana leather. Drying Technology, online, 1-13, 2023. https://doi.org/10.1080/07373937.2023.2220777.
  • R. D. S. Simão, J. O. D. Moraes, B. A. M. Carciofi and J. B. Laurindo, Recent advances in the production of fruit leathers. Food Engineering Reviews, 12, 68-82, 2020. https://doi.org/10.1007/s12393-019-09200-4.
  • F. M. Yilmaz, S. Yuksekkaya and H. Vardin, The effects of drying conditions on moisture transfer and quality of pomegranate fruit leather (pestil). Journal of the Saudi Society of Agricultural Sciences, 16, 33-40, 2017. https://doi.org/10.1016/j.jssas.2015.01.003.
  • A. Midilli, H. Kucuk and Z. Yapar, A new model for single-layer drying, Drying Technology, 20(7), 1503-1513, 2007. https://doi.org/10.1081/DRT-120005864
  • Y. Du, J. Yan, H. Wei, H. Xie, Y. Wu and J. Zhou, Drying kinetics of paddy drying with graphene far-infrared drying equipment at different IR temperatures, radiations-distances, grain-flow, and dehumidifying-velocities. Case Studies in Thermal Engineering, 43, 102780,2023.https://doi.org/10.1016/j.csite.2023.102780.
  • H. S. Gujral, D. P. S. Oberoi, R. Singh and M. Gera, Moisture diffusivity during drying of pineapple and mango leather as affected by sucrose, pectin, and maltodextrin. International Journal of Food Properties, 16, 359-368, 2013. https://doi.org/10.1080/10942912.2011.552016.
  • S. Janjai, B. K. Bala, N. Lamlert, B. Mahayothee, M. Haewsungcharern, W. Muhlbauer and J. Muller, Moisture diffusivity determination of different parts of longan fruit. International Journal of Food Properties, 10, 471-478, 2007. https://doi.org/10.1080/10942910600889968.
  • O. Taskin and N. Izli, Date drying by infrared dryer and mathematical modelling. Journal of Agricultural Faculty of Gaziosmanpasa University, 34, 10-15, 2017.
  • C. Nindo, and G. Mwithiga, Infrared drying. In: Z. Pan and G.G. Atungulu (eds.) Infrared Heating for Food and Agricultural Processing, CRC Press, pp. 89-99, Florida, 2011.
  • N. C. Santos, R. L. J. Almeida, G. M. da Silva, S. S. Monteiro and A. M. M. C. N. André, Effect of ultrasound pre-treatment on the kinetics and thermodynamic properties of guava slices drying process. Innovative Food Science and Emerging Technologies, 66, 102507, 2020. https://doi.org/10.1016/j.ifset.2020.102507.
  • N. Kechaou and M. Maâlej, A simplified model for determination of moisture diffusivity of date from experimental drying curves. Drying Technology, 18(4-5): 1109-1125, 2000. https://doi.org/10.1080/07373930008917758.
  • G. P. Sharma, R. C. Verma and P. B. Pathare, Thin-layer infrared radiation drying of onion slices. Journal of Food Engineering, 67 (3), 361-366, 2005. https://doi.org/10.1016/j.jfoodeng.2004.05.002.
  • M. Younis, D. Abdelkarim and A. Z. El-Abdein, Kinetics and mathematical modelling of infrared thin-layer drying of garlic slices. Saudi Journal of Biological Sciences, 25(2), 332-338, 2018. https://doi.org/10.1016/j.sjbs.2017.06.011.
  • A. R. Celma, F. Cuadros and F. López-Rodríguez, Characterisation of industrial tomato by-products from infrared drying process. Food and Bioproducts Processing, 87 (4), 282-291, 2009. http://dx.doi.org/10.1016%2Fj.fbp.2008.12.003.
There are 40 citations in total.

Details

Primary Language English
Subjects Food Engineering
Journal Section Articles
Authors

Suzan Tireki 0000-0002-7424-7378

Early Pub Date September 13, 2023
Publication Date October 15, 2023
Submission Date July 23, 2023
Acceptance Date August 14, 2023
Published in Issue Year 2023

Cite

APA Tireki, S. (2023). Effective diffusivity determination of date (Phoenix dactylifera L.) leather in infrared drying: Effect of cooking time. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 12(4), 1558-1565. https://doi.org/10.28948/ngumuh.1331515
AMA Tireki S. Effective diffusivity determination of date (Phoenix dactylifera L.) leather in infrared drying: Effect of cooking time. NÖHÜ Müh. Bilim. Derg. October 2023;12(4):1558-1565. doi:10.28948/ngumuh.1331515
Chicago Tireki, Suzan. “Effective Diffusivity Determination of Date (Phoenix Dactylifera L.) Leather in Infrared Drying: Effect of Cooking Time”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 12, no. 4 (October 2023): 1558-65. https://doi.org/10.28948/ngumuh.1331515.
EndNote Tireki S (October 1, 2023) Effective diffusivity determination of date (Phoenix dactylifera L.) leather in infrared drying: Effect of cooking time. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 12 4 1558–1565.
IEEE S. Tireki, “Effective diffusivity determination of date (Phoenix dactylifera L.) leather in infrared drying: Effect of cooking time”, NÖHÜ Müh. Bilim. Derg., vol. 12, no. 4, pp. 1558–1565, 2023, doi: 10.28948/ngumuh.1331515.
ISNAD Tireki, Suzan. “Effective Diffusivity Determination of Date (Phoenix Dactylifera L.) Leather in Infrared Drying: Effect of Cooking Time”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 12/4 (October 2023), 1558-1565. https://doi.org/10.28948/ngumuh.1331515.
JAMA Tireki S. Effective diffusivity determination of date (Phoenix dactylifera L.) leather in infrared drying: Effect of cooking time. NÖHÜ Müh. Bilim. Derg. 2023;12:1558–1565.
MLA Tireki, Suzan. “Effective Diffusivity Determination of Date (Phoenix Dactylifera L.) Leather in Infrared Drying: Effect of Cooking Time”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, vol. 12, no. 4, 2023, pp. 1558-65, doi:10.28948/ngumuh.1331515.
Vancouver Tireki S. Effective diffusivity determination of date (Phoenix dactylifera L.) leather in infrared drying: Effect of cooking time. NÖHÜ Müh. Bilim. Derg. 2023;12(4):1558-65.

download