Review
BibTex RIS Cite

İncirde (Ficus carica L.) in vitro doku kültürü tekniklerinin uygulanma potansiyelinin değerlendirilmesi

Year 2024, , 393 - 412, 15.01.2024
https://doi.org/10.28948/ngumuh.1360362

Abstract

İncir, çoğunlukla Akdeniz bölgesinde yetişen ve insanlık tarihinin bilinen en eski ıslah edilen meyve türlerinden biri olarak bilinir. Ticari değeri yüksek olan incirin, iklim ve ekolojik istekleri nedeniyle dünyada az sayıda ülkede üretimi yapılabilmektedir. Dünya ülkeleri içinde gerek kuru incir gerekse de taze incir üretiminde Türkiye ilk sırada yer almaktadır. İncir tohumlarının cansızlığı ve ayrıca üretimde yaşanan çeşitli problemlerden ötürü araştırmacılar farklı üretim yöntemlerini tercih etmişlerdir. Bitki doku kültürü teknikleri bu yöntemler arasında iyi bir alternatif olmuştur. Doku kültürü yöntemleri ile çoğaltım; mevsimsel ve diğer çevresel koşullardan bağımsız, yüksek kaliteli, hastalıksız incir üretimine olanak vermesi nedeniyle yüksek avantajlar sağlamaktadır. Bugüne kadar birçok araştırmacı tarafından incir bitkisinde mikroçoğaltım, somatik embriyogenez, kallus kültürü, hastalıksız bitki üretimi (meristem kültürü), protoplast kültürü ve in vitro seleksiyon ile ilgili çeşitli çalışmalar yapılmıştır. Bu amaçla gerçekleştirilen araştırmalarda sürgün ucu, nod, gövde, yaprak ya da meristem başta olmak üzere farklı eksplant kaynakları kullanılmıştır. Bu derlemede, ekonomik öneme sahip olan Ficus carica L. türünde in vitro koşullarda farklı uygulama alanlarında yapılan çeşitli çalışmalar incelenerek elde edilen sonuçların irdelenmesi amaçlanmıştır.

References

  • D. Bay, Bursa Siyahı incir bitkisi (Ficus carica L.)’nde K, Ca, Mg ve P besin elementlerinin mevsimsel değişimlerinin araştırılması. Yüksek Lisans Tezi, Muğla Sıtkı Koçman Üniversitesi Fen Bilimleri Enstitüsü, Türkiye, 2012.
  • N. F. Edremit, Aydın ilinin bazı ilçelerinde incir mozaik hastalığının yaygınlığının belirlenmesi, etmenin tanılanması ve üretim materyalinin incir sürgün ucu kültürü-termoterapi ile etmenden arındırılması. Doktora Tezi, Adnan Menderes Üniversitesi Fen Bilimleri Enstitüsü, Türkiye, 2013.
  • D. Singh, B. Singh, and R. K. Goel, Traditional uses, phytochemistry and pharmacology of Ficus religiosa. A review, Journal of Ethnopharmacology, 134 (3), 565-583, 2011. https://doi.org/10.1016/j.jep.2011.01.046.
  • Ö. Aytürk, Dioik Ficus carica L. (incir)’de dişi, gal ve erkek çiçek gelişiminin mikroskobik ve moleküler yöntemler ile karşılaştırılması. Doktora Tezi, Marmara Üniversitesi Fen Bilimleri Enstitüsü, Türkiye, 2016.
  • W. P. Armstrong, Sex life of figs: coevolution of a tree & minute wasp. Palomar.Edu, 2012. Erişim adresi: https://www.waynesword.net/arbimg10.htm (accessed: 11.12.2023).
  • Tureng Dictionary and Translation, 2023. Erişim adresi: https://tureng.com/tr/turkce-ingilizce/gynodioecious (accessed: 15.06.2023).
  • G. Çatmadım, Aydın ili Kuyucak ilçesinde (Büyük Menderes Ovası) yetiştirilen sarılop ve bursa siyahı incir çeşitlerinde meyve gelişimlerinin belirlenmesi. Yüksek Lisans Tezi, Ordu Üniversitesi Fen Bilimleri Enstitüsü, Türkiye, 2014.
  • D. Núñez-Gómez, P. Legua, J. J. Martínez-Nicolás and P. Melgarejo, Breba fruits characterization from four varieties (Ficus carica L.) with important commercial interest in Spain. Foods, 10 (12), 3138, 2021. https://doi.org/10.3390/foods10123138.
  • N. Soni, S. Mehta, G. Satpathy and R. K. Gupta, Estimation of nutritional, phytochemical, antioxidant and antibacterial activity of dried fig (Ficus carica). Journal of Pharmacognosy and Phytochemistry, 3 (2), 158-165, 2014. doi: 10.12691/jfnr-8-12-3.
  • C. Teruel-Andreu, L. Andreu-Coll, D. López-Lluch, E. Sendra, F. Hernández and M. Cano-Lamadrid, Ficus carica fruits, by-products and based products as potential sources of bioactive compounds: A review. Agronomy, 11 (9), 1834, 2021. https://doi.org/ 10.3390/agronomy11091834.
  • O. Çalışkan, Türkiye’de sofralık incir yetiştiriciliğinin mevcut durumu ve geleceği. Uludağ Üniversitesi Ziraat Fakültesi Dergisi, 26 (2), 71-87, 2012.
  • FAOSTAT, 2022. Erişim adresi: https://www.fao.org/faostat/en/#data/QCL/visualize (accessed: 14.03.2022).
  • D. Çelik, Kuru incirlerde aflatoksin ve oktaroksin varlığının belirlenmesi. Yüksek Lisans Tezi, Hitit Üniversitesi Fen Bilimleri Ensititüsü, Türkiye, 2022.
  • İ. G. Güney, T. Bozoğlu, G. Özer, Ş. Türkölmez and S. Derviş, First report of Neoscytalidium dimidiatum associated with dieback and canker of common fig (Ficus carica L.) in Turkey. Journal of Plant Diseases and Protection, 129 (3), 701-705, 2022. https://doi.org/10.1007/s41348-022-00586-8.
  • Ş. N. Erdeğer, İncir (Ficus carica L.) genomunda sekans temelli ssr (basit dizi tekrarı) markörlerinin geliştirilmesi. Doktora Tezi, Necmettin Erbakan Üniversitesi Fen Bilimleri Enstitüsü, Türkiye, 2019.
  • A. Güler, Şanlıurfa’da yetiştirilen Ege kökenli bazı incir çeşitlerinin toprakta bulunan besin maddelerinden yararlanma durumlarının belirlenmesi. Yüksek Lisans Tezi, Şanlıurfa Harran Üniversitesi Fen Bilimleri Enstitüsü, Türkiye, 2021.
  • E. Nakilcioğlu-Taş, Biochemical characterization of fig (Ficus carica L.) seeds. Journal of Agricultural Sciences, 25 (2), 232-237, 2019. https://doi.org/10.15832/ankutbd.398268
  • H. Crisosto, L. Ferguson, V. Bremer, E. Stover and G. Colelli, Fig (Ficus carica L.). In Postharvest biology and technology of tropical and subtropical fruits. Woodhead Publishing, Sawston, Cambridge, pp. 134-160, 2011. https://doi.org/10.1533/9780857092885.134
  • M. Ayuso, M. Carpena, O. Taofiq, T.G. Albuquerque, J. Simal-Grdana, M.B.P.P. Oliveira, M.A. Prieto, I.C.F.R. Ferreira and L. Barros, Fig “Ficus carica L.” and its by-products: A decade evidence of their health-promoting benefits towards the development of novel food formulations. Trends in Food Science and Technology, 127: 1-13, 2022. https://doi.org/10.1016/j.tifs.2022.06.010.
  • S. Mahmoudi, M. Khali, A. Benkhaled, I. Boucetta, Y. Dahmani, Z. Attallah and S. Belbraouet, Fresh figs (Ficus carica L.): Pomological characteristics, nutritional value, and phytochemical properties. European Journal of Horticultural Science, 83 (2), 104-113, 2018. doi: 10.17660/eJHS.2018/83.2.6.
  • M. Tepecik, Farklı potasyum dozlarının incirde kaliteye etkisi. Doktora Tezi, Ege Üniversitesi Fen Bilimleri Enstitüsü, Türkiye, 2010.
  • F. Özçiçekçi, İncir mozaik hastalığının Aydın ilindeki incir bahçe ve fidanlıklarındaki yaygınlığının saptanması ile hastalık etmeninin, bitki özsuyu ile taşınması, konukçu çevresi ve serolojik yöntemlerle (elisa) karakterizasyonunun belirlenmesi. Doktora Tezi, Adnan Menderes Üniversitesi Fen Bilimleri Enstitüsü, Türkiye, 2008.
  • C. Bayoudh, R. Labidi, A. Majdoub and M. Mars, In vitro propagation of caprifig and female fig varieties (Ficus carica L.) from shoot-tips. Journal of Agricultural Science and Technology, 17, 1597-1608, 2015. http://jast.modares.ac.ir/article-23-2152-en.html.
  • A. C. Boliani, A. F. A. Ferreira, L. N. H. Monteiro, M. S. A. C. D. Silva and A. D. Rombola, Advances in propagation of Ficus carica L. Revista Brasileira de Fruticultura, 41, 2019. http://dx.doi.org /10.1590/0100-29452019026.
  • N. S. Mustafa and R. A. Taha, Influence of plant growth regulators and subculturing on in vitro multiplication of some fig (Ficus carica) cultivars. Journal of Applied Sciences Research, 8(8), 4038-4044, 2012.
  • A. Ismail, Using of DNA-barcoding, scot and sds-page protein to assess soma-clonal variation in micropropagated fig (Ficus carica L.) plant. Pakistan Journal of Biological Sciences: PJBS, 25 (5), 415-425, 2022. https://doi.org/10.3923/pjbs.2022.415.425.
  • N. A. Azhar and Z. Zainuddin, Tissue culture of Ficus carica variety BTM-6. Malaysian Journal of Sustainable Agriculture (MJSA), 4 (1), 26-28, 2020. doi: http://doi.org/10.26480/mjsa.01.2020.26.28.
  • G. C. Phillips and M. Garda, Plant tissue culture media and practices: an overview. In Vitro Cellular & Developmental Biology-Plant, 55 (3), 242-257, 2019. https://doi.org/10.1007/s11627-019-09983-5.
  • E. Chimdessa, Composition and preparation of plant tissue culture medium. Tissue Cult Bio Bioeng, 3: 120, 2020. doi: 10.29011/2688-6502.000020.
  • S. S. Bhojwani and P. K. Dantu, Micropropagation, In Plant tissue culture: An introductory text, Springer, India, 2013.
  • Himedia Laboratories, 2023. Erişim adresi: https://www.diagnocine.com/Content/Upload/Product/datasheets/m%20(250).pdf (accessed: 11.12.2023).
  • A. Purwito, D. Efendi and T. M., Ermayanti, Growth response of four accessions of Moringa oleifera Linn shoots cultured on various basic media. In IOP Conference Series: Earth and Environmental Science, 741 (1), 012054, 2021. https://doi.org/10.1088/1755-1315/741/1/012054.
  • Plant Cell Technology, 2023. Erişim adresi: https://www.plantcelltechnology.com/pct-blog/tissue-culture-medium-types-and-5-steps-of-selection/ (accessed: 21.06.2023).
  • Biochemie, 2023. Erişim adresi: https://www.duchefa-biochemie.com/product/details/number/Q0251 (accessed: 21.06.2023).
  • M. Peyvandi, F. Farahani, Z. Noormohammadi, O. Banihashemi, M. Hosseini and S. Ataee, Mass production of Olea europea L. (cv. rowghani) through micropropagation. General and Applied Plant Physiology, 35, 35-43, 2009.
  • A. Hussain, I. A. Qarshi, H. Nazir and I. Ullah, Plant tissue culture: current status and opportunities. Recent Advances in Plant In Vitro Culture, 6(10), 1-28, 2012. http://dx.doi.org/10.5772/50568.
  • A. M. Kumlay ve T. Eryiğit, Bitkilerde büyüme ve gelişmeyi düzenleyici maddeler: bitki hormonları. Journal of the Institute of Science and Technology, 1 (2), 47-56, 2011, https://dergipark.org.tr/tr/pub/jist/issue/7925/104223.
  • H. T. Hallmark and A. M. Rashotte, Cytokinin isopentenyladenine and its glucoside isopentenyladenine‐9G delay leaf senescence through activation of cytokinin‐associated genes. Plant Direct, 4, (12), 2020. https://doi.org/10.1002/pld3.292.
  • Y. J. Lee, D. Sriskanda, S. Subramaniam and B. L. Chew, The effects of banana, potato and coconut water in the regeneration of Ficus carica cv. Japanese BTM 6. Malaysian Applied Biology, 51 (1), 163-170, 2022. https://doi.org/10.55230/mabjournal.v51i1.2157.
  • J. A. Teixeira da Silva, J. Dobránszki and S. Ross, Phloroglucinol in plant tissue culture. In Vitro Cellular & Developmental Biology, 49, 1–16, 2013. https://doi.org/10.1007/s11627-013-9491-2.
  • A. Rency, S. Pandian and M. Ramesh, Influence of adenine sulphate on multiple shoot induction in Clitoria ternatea L. and analysis of phyto-compounds in in vitro grown plants. Biocatalysis and Agricultural Biotechnology, 16, 181-191, 2018. https://doi.org/10.1016/j.bcab.2018.07.034
  • T. S. Dattatraya and R. N. S. S. Vidyadhar, To study the effect of plant growth regulator and chemicals on survival of cuttings in fig (Ficus carica L.) cv. Dinkar. International Journal of Conservation Science, 8 (6), 2220-2222, 2020. https://doi.org/10.22271/chemi.2020.v8.i6af.11103.
  • A. Gürel, Ş., Hayta, P. Nartop, M. Bayraktar ve S.O. Fedakar, Bitki hücre, doku ve organ kültürü uygulamaları. Ege Üniversitesi Yayınları Mühendislik Fakültesi, İzmir, Türkiye, 2013.
  • S. Bhatia and K. L. Sharma, Micropropagation. Modern applications of plant biotechnology in pharmaceutical sciences. Academic Press, Burlington, New Jersey, pp. 32-98, 2015. http://dx.doi.org/10.1016/B978-0-12-802221-4.00002-9.
  • J. C. Cardoso, L. T. Sheng Gerald and J. A. Teixeira da Silva, Micropropagation in the twenty-first century. Plant Cell Culture Protocols, Springer, pp. 17-46, 1815, 2018. https://doi.org/10.1007/978-1-4939-8594-4_2.
  • M. A. Shatnawi, R. A. Shibli, W. G. Shahrour, T. S. Al-Qudah and T. Abu-Zahra, Micropropagation and conservation of fig (Ficus carica L.). Journal of Advances Agriculture, 10, 1669-1679, 2019. https://doi.org/10.24297/jaa.v10i0.8160.
  • M. Moniruzzaman, Z. Yaakob and R. A. Taha, In vitro production of fig (Ficus carica L.) plantlets. In V International Symposium on Fig, pp. 231-236, Napoli, Italy, 2015. https://doi.org/10.17660/ActaHortic.2017.1173.40.
  • I. M. Qrunfleh, M. M. Shatnawi and Z. I Al-Ajlouni,. Effect of different concentrations of carbon source, salinity and gelling agent on in vitro growth of fig (Ficus carica L.). African Journal of Biotechnology, 12 (9), 936-940, 2013. https://doi.org/10.5897/AJB12.2871.
  • O. Dolgun and F. E. Tekintas Production of fig (Ficus carica L.) nursery plants by stem layering method. Agriculturae Conspectus Scientificus, 73 (3), 157-160, 2008. https://hrcak.srce.hr/26826.
  • C. B. Fráguas, M. Pasqual, L. F. Dutra and J. O. Cazetta, Micropropagation of fig (Ficus carica L.) ‘Roxo de Valinhos’ plants. In Vitro Cellular & Developmental Biology-Plant, 405, 471-474, 2004b. http://dx.doi.org/10.1079/IVP2004562.
  • H. Darwesh, S. Bazaid and B. Samra, In vitro propagation method of Ficus carica at Taif governorate using tissue culture technique. International Journal of Advanced Research, 2, 6, 756-761, 2014.
  • R. S. D. Pratiwi, L. A. M. Siregar and C. Hanum, The response of several combination of plant growth regulators to shoot induction of fig (Ficus carica L.) var. improved celeste. In IOP Conference Series: Earth and Environmental Science, p. 032088, Fakultas Pertanian Universitas Sumatera Atara, Indonesia, 2021. doi:10.1088/1755-1315/782/3/032088.
  • M. Pasqual and E. A. Ferreira Micropropagation of Fig tree (Ficus carica sp). In Protocols for micropropagation of woody trees and fruits Springer, Dordrecht, pp. 409-416, 2007. https://doi.org/10.1007/978-1-4020-6352-7_37.
  • V. Kumar, A. Radha and S. Kumar Chitta, In vitro plant regeneration of fig (Ficus carica L. cv. Gular) using apical buds from mature trees. Plant Cell Reports, 17, 717-720, 1998. https://doi.org/10.1007/s002990050471.
  • S. Hepaksoy and U. Aksoy, In vitro propagation of Ficus carica cv. Sarılop clone selected for its high performance. In III International Symposium on Fig, pp. 199-204, Vilamouran, Algarve, Portugal, 2005. https://doi.org/10.17660/ActaHortic.2008.798.27.
  • K. M. Kim, M. Y. Kim, P. Y. Yun, T. Chandrasekhar, H. Y. Lee and P. S. Song, Production of multiple shoots and plant regeneration from leaf segments of fig tree (Ficus carica L.). Journal of Plant Biology, 50, 440-446, 2007. https://doi.org/10.1007/BF03030680.
  • G. H. Danial, D. A. Ibrahim, S. A. Brkat and B. M. Khalil, Multiple shoots production from shoot tips of fig tree (Ficus carica L.) and callus induction from leaf segments. International Journal of Pure & Applied Sciences & Technology, 20 (1), 117-124 2014.
  • I. V. Mitrofanova, N. P. Lesnikova-Sedoshenko, V. A. Brailko, T. N. Kuzmina, S. V. Chelombit, E. L. Shishkina and O. V. Mitrofanova, Realization of Ficus carica L. morphogenic capacity via organogenesis and somatic embryogenesis in vitro. In International Symposium on Horticulture: Priorities and Emerging Trends, 1255, pp. 69-76, Bengaluru, India, 2017. https://doi.org/10.17660/ActaHortic.2019.1255.12.
  • S. T. Shahcheraghi, and A. Shekafandeh, Micropropagation of three endemic and endangered fig (Ficus carica L.) genotypes. Advances in Horticultural Science, 30 (3), 129-134, 2016. https://doi.org/10.13128/ahs-20248.
  • F. K. A. Patah, N. A. Hasbullah, H. Idris and N. S. Radzuan, Micropropagation of Ficus carica L. through Tissue Culture System. 12th Int'l Conference on Advances in Agricultural, Chemical, Biological & Medical Sciences (AACBMS-18), pp. 19-22, Pattaya, Thailand, 2018. https://doi.org/10.17758/EARES3.C0818108.
  • G. Prabhuling and H. Huchesh, Direct In Vitro regeneration in fig (Ficus carcia L.) cv. ‘Brown Turkey’. Research Journal of Biotechnology, 13, 5, 77-83, 2018.
  • Wan Ting Ling, Fui Chu Liew, Wei Yong Lim, Sreeramanan Subramaniam and Bee Lynn Chew. Shoot induction from axillary shoot tip explants of fig (Ficus carica) cv. Japanese BTM 6. Tropical Life Sciences Research, 29 (2), 165–174, 2018. https://doi. org/10.21315/tlsr2018.29.2.1.
  • H. S. Al-Zahrani, O. A. Almaghrabi, M. P. Fuller, H. I. Soliman, M. Farooq and E. M. Metwali, Micropropagation of virus-free plants of Saudi fig (Ficus carica L.) and their identification through enzyme-linked immunosorbent assay methods. In Vitro Cellular & Developmental Biology-Plant, 54, 626-636, 2018. doi: 10.1007/s11627-018-9933-y.
  • A. Sahraroo, A. Zarei and M. Babalar, In vitro regeneration of the isolated shoot apical meristem of two commercial fig cultivars ‘Sabz’and ‘Jaami-e-Kan’. Biocatalysis and Agricultural Biotechnology, 17, 743-749, 2019. https://doi.org/10.1016/j.bcab.2019.01.024.
  • R. Abdolinejad, A. Shekafandeh, A. Jowkar, A. Gharaghani and A. Alemzadeh, Indirect regeneration of Ficus carica by the TCL technique and genetic fidelity evaluation of the regenerated plants using flow cytometry and ISSR. Plant Cell, Tissue and Organ Culture (PCTOC), 143, 131-144, 2020. https://doi.org/10.1007/s11240-020-01903-5.
  • D. Sriskanda, Y. X. Liew, S. P. Khor, F. Merican, S. Subramaniam and B. L. Chew, An efficient micropropagation protocol for Ficus carica cv. Golden Orphan suitable for mass propagation. Biocatalysis and Agricultural Biotechnology, 38, 102225, 2021. https://doi.org/10.1016/j.bcab.2021.102225
  • L. M. Muriithi, T. S. Rangan and B. H. Waite, In Vitro propagation of fig through shoot tip culture1. HortScience, 17 (1), 86-87, 1982. https://doi.org/10.21273/HORTSCI.17.1.86.
  • C.A. Pontikis and P Melas, Micropropagation of Ficus carica L. HortScience, 21 (1):153-154, 1986.
  • G. Günver and E. A. Ertan, Study on the propagation of figs by the tissue culture techniques. In I International Symposium on Fig, pp. 169-172, İzmir, Turkey, 1997. https://doi.org/10.17660/ActaHortic.1998.480.29.
  • A. Demiralay, Y. Yalçin-Mendi, Y. Aka-Kaçar and S. Cetiner, In vitro propagation of Ficus carica L. var. Bursa Siyahi through meristem culture. In I International Symposium on Fig, pp. 165-168, İzmir, Turkey, 1997. https://doi.org/10.17660/ActaHortic.1998.480.28.
  • G. R. Brum, M. Pasqual, A. B. Silva and N. N. J. Chalfun, Sucrose, culture media, and their interactions during in vitro proliferation of ‘Roxo de Valinhos’ (Ficus carica L.). In II International Symposium on Fig, pp. 131-135, Caceres, Spain, 2001. https://doi.org/10.17660/ActaHortic.2003.605.20.
  • C. B. Fráguas, M. Pasqual and A. R. Pereira, Multiplicação in vitro de Ficus carica L.: efeito da cinetina e do ácido giberélico. Ciência e Agrotecnologia, 28, 49-55, 2004. https://doi.org/10.1590/S1413-70542004000100006.
  • E. A. Ferreira and M. Pasqual, Ficus carica L. produced by micropropagation. In International Symposium on Biotechnology of Temperate Fruit Crops and Tropical Species, 738, pp. 437-441, Florida, USA, 2005. https://doi.org/10.17660/ActaHortic.2007.738.53.
  • E. A. Ferreira and M. Pasqual, Protocol optimization for micropropagation of ’Roxo de Valinhos’ fig tree. Ciência Rural, 38, 1149-1153, 2008. https://doi.org/10.1590/S0103-84782008000400040.
  • W. Barbosa, R. Pio, R. F. de Arruda Veiga, E. A. Chagas and N. P. Feldberg, Efeito de concentrações do AIB no enraizamento in vitro de cultivares de figueira, 24, 2, 1-6, 2008.
  • R. A. Taha, N. S. Mustafa and S. A. Hassan, Protocol for micropropagation of two Ficus carica cultivars. World Journal of Agricultural Sciences, 9 (5), 383-388, 2013. doi:10.5829/idosi.wjas.2013.9.5.1802.
  • N. S. Mustafa, R. A. Taha, S. A. M. Hassan and N. S. M. Zaied, Effect of medium strength and carbon source on in vitro shoot multiplication of two Ficus carica cultivars. Journal of Applied Sciences Research, 9 (4), 3068-3074, 2013.
  • L. Erfa, D. Maulida, R. M. Sari and F. Yuniardi, Regeneration of red palestine fig (Ficus carica L.) from formation of adventitious shoots in murashige & skoog media with additional of BAP/TDZ and NAA. In IOP Conference Series: Earth and Environmental Science, p. 012068, Lampung State Polytechnic, Indonesia, 2022. https://doi.org/10.1088/1755-1315/1012/1/012068.
  • S. Hepaksoy, Bazı kiraz anaçlarının mikroçoğaltımı üzerinde araştırmalar I. Gelişme ve çoğalma. Ege Üniversitesi Ziraat Fakültesi Dergisi, 41 (3), 11-12, 2004.
  • M. Moniruzzaman, Z. Yaakob and N. Anuar, Factors affecting in vitro regeneration of Ficus carica L. and genetic fidelity studies using molecular marker. Journal of Plant Biochemistry and Biotechnology, 30 (2), 304-316, 2021. https://doi.org/10.1007/s13562-020-00590-9.
  • A. M. S. Almemary, Callus induction and differentiation. The Future Journal of Agriculture, 3, 5-9, 2020. https://doi.org/10.37229/fsa.fja.2020.07.02.
  • E. D. Benjamin, G. A. Ishaku, F. A. Peingurta and A. S. Afolabi, Callus culture for the production of therapeutic compounds. American Journal of Plant Biology, 4 (4), 76-84, 2019. https://doi.org/10.11648/j.ajpb.20190404.14
  • M. Lotfi, Effects of monochromatic red and blue light-emitting diodes and phenyl acetic acid on in vitro mass production of Pyrus communis ‘Arbi’. Journal of Horticulture and Postharvest Research, 5 (2), 119-128, 2022. https://doi.org/10.22077/jhpr.2021.4517.1229.
  • E. C. Hong, C. B. Lynn and S. Subramaniam, Development of plantlet regeneration pathway using in vitro leaf of Ficus carica L. cv. Panachee supported with histological analysis. Biocatalysis and Agricultural Biotechnology, 27, 101697, 2020. https://doi.org/10.1016/j.bcab.2020.101697.
  • S. Mehmood, Q. Ayub, S. M. Khan, N. Arif, M. J. Khan, A. Mehmood... and M. U. Ayub, Responses of fig cuttings (Ficus carica) to different sowing dates and potting media under agro-climatic conditions of Haripur. RADS Journal of Biological Research & Applied Sciences, 11 (2), 112-119, 2020. https://doi.org/10.37962/jbas.v11i2.268
  • D. S. Elazab and M. M. Shaaban, The impact of sucrose concentration on root growth and development in fig (Ficus carica L.) in vitro. Assiut Journal of Agricultural Sciences, 46 (6), 67-75, 2015. doi: 10.21608/AJAS.2015.521.
  • H. Yakushiji, N. Mase and Y. Sato, Adventitious bud formation and plantlet regeneration from leaves of fig (Ficus carica L.). The Journal of Horticultural Science and Biotechnology, 78 (6), 874-878, 2003. https://doi.org/10.1080/14620316.2003.11511712.
  • S. S. Dhage, V. P. Chimote, B. D. Pawar, A.A. Kale, S. V. Pawar and A. S. Jadhav, Development of an efficient in vitro regeneration protocol in fig (Ficus carica L.). Journal of Applied Horticulture, 17, 2, 160-164, 2015. https://doi.org/10.37855/jah.2015.v17i02.30
  • M. Hayati and E. Kesumawati, Response of in vitro propagated fig (Ficus carica L.) shoots to the concentrations of benzyl amino purine and coconut water. In IOP Conference Series: Earth and Environmental Science, 922, 1, 012067, 2021. https://doi.org/10.1088/1755-1315/922/1/012067.
  • A. R. Parab, K. Y. Han, B. L. Chew and S. Subramaniam, Morphogenetic and physiological effects of LED spectra on the apical buds of Ficus carica var. ‘Black Jack’. Scientific Reports, 11 (1), 1-11, 2021. https://doi.org/10.1038/s41598-021-03056-7.
  • X. J. Lui, D. Sriskanda, W. T. Ling, S. Subramaniam and B. L. Chew, The Incorporation of coconut water and banana homogenate in the regeneration of fig (Ficus carica L.) cv. Violette de Solliès. Malaysian Applied Biology, 51 (5), 13-22, 2022. https://doi.org/10.55230/mabjournal.v51i5.2327.
  • B. Güler, Çay (Camellia sinensis [L.] O. Kuntze) bitkisinde geçici daldırma sistemine dayalı biyoreaktörler aracılığıyla sentetik tohumların üretilmesi. Doktora Tezi, Ege Üniversitesi Fen Bilimleri Enstitüsü, Türkiye, 2022.
  • S. Asghar, N. Ghori, F. Hyat, Y. Li and C. Chen, Use of auxin and cytokinin for somatic embryogenesis in plant: a story from competence towards completion. Plant Growth Regulation, 99 (3), 413-428, 2023. https://doi.org/10.1007/s10725-022-00923-9.
  • H. I. Soliman, M. Gabr and N. A. Abdallah, Efficient transformation and regeneration of fig (Ficus carica L.) via somatic embryogenesis. GM crops, 1 (1), 40-51, 2010. https://doi.org/10.4161/gmcr.1.1.10632.
  • T. Turan, Sarılop İncir (Ficus carica L.) Çeşidi Yaprak Segmentlerinden Somatik Embriyogenesis Oluşumu. Yüksek Lisans Tezi, Adnan Menderes Üniversitesi Fen Bilimleri Enstitüsü, Türkiye, 2013.
  • D. Büyükdinç and G. Günver Dalkılıç, Sarılop incir (Ficus carica L.) çeşidi yaprak segmentlerinden somatik embriyogenesis oluşumu, Adnan Menderes Üniversitesi Ziraat Fakültesi Dergisi, 19 (1), 29-35, 2022. https://doi.org/10.25308/aduziraat.1011855.
  • Efferth, T. Biotechnology applications of plant callus cultures. Engineering, 5 (1), 50-59, 2019. https://doi.org/10.1016/j.eng.2018.11.006.
  • S. S., Dhage, B. D. Pawar, V. P. Chimote, A. S. Jadhav and A. A. Kale, In vitro callus induction and plantlet regeneration in fig (Ficus carica L.). Journal of Cell & Tissue Research, 12, 3, 3395-3400, 2012.
  • B. M. Singh, C. M. Rajoriya, I. A. Wani, R. S. Rawat and B. L. Jat, In vitro studies of Ficus carica and its application in crop improvement. International Journal for Research in Applied Science and Engineering Technology, 4 (11), 135-148, 2016.
  • S. Wahyuni, R. Susanti and R. S. Iswari, Isolation and caracterization of ficin enzyme from Ficus septica Burm F stem latex. Indonesian Journal of Biotechnology, 20 (2), 161-166, 2015. https://doi.org/10.22146/ijbiotech.24200.
  • A. H. Nassar and H. J. Newbury, Ficin production by callus cultures of Ficus carica. Journal of Plant Physiology, 131 (3-4), 171-179, 1987. https://doi.org/10.1016/S0176-1617(87)80157-8.
  • F. Cormier, C. Charest and C. Dufresne, Partial purification and properties of proteases from fig (Ficus carica) callus cultures. Biotechnology letters, 11, 797-802, 1989. https://doi.org/10.1007/BF01026100.
  • D. Sriskanda, X. J. Chew and B. L. Chew, Callus induction of fig (Ficus carica cv. Violette de Soillès) via thin cell layer technique. Journal of Tropical Plant Physiology, 14 (1), 22-30, 2022. https://doi.org/10.1016/j.bcab.2021.102225.
  • E. Hafez, A. A. El Morsi and A. A. Abdelkhalek, Biological and molecular characterization of the fig mosaic disease. Molecular Pathogens, 2, 2, 2011. https://doi.org/10.5376/mp.2011.02.0002
  • M. Afechtal, Fig tree viruses in Morocco. Moroccan Journal of Agricultural Sciences, 1, (1), 54-58, 2020.
  • G. Sümer, Sürgün Ucu ve Termoterapi Yöntemleri ile İncir Mozaik Hastalık Etmenlerinden Arındırılmış ve Tek Basamaklı Rt-Pcr ile Testlenmiş, Sarılop ve Bursa Siyahı İncir Üretim Materyalinin Elde Edilmesi. Yüksek Lisans Tezi, Adnan Menderes Üniversitesi Fen Bilimleri Enstitüsü, Türkiye, 2014.
  • M. Chiumenti, A. Campanale, G. Bottalico, A. Minafra, A. De Stradis, V. Savino and G. P. Martelli, Sanitation trials for the production of virus-free fig stocks. Journal of Plant Pathology, 95, 655-658. 2013.
  • K. Magyar-Tábori, N. Mendler-Drienyovszki, A. Hanász, L. Zsombik and J. Dobránszki, Phytotoxicity and other adverse effects on the in vitro shoot cultures caused by virus elimination treatments: Reasons and solutions. Plants, 10, (4), 670, 2021. https://doi.org/ 10.3390/plants10040670.
  • K. A. Quiroz, Berríos, M., Carrasco, B., Retamales, J. B., Caligari, P. D., and García-Gonzáles, R. (2017). Meristem culture and subsequent micropropagation of Chilean strawberry (Fragaria chiloensis (L.) Duch.). Biological Research, 50, 20, 2-11, 2017. https://doi.org/10.1186/s40659-017-0125-8.
  • S. Karimpour, G. H. Davarynejad, M. ZakiAghl, M. R. Safarnejad, P. Martínez-Gómez and M. Rubio, Rapid assessment of sanitary and physiological state of thermotherapy-treated apple shoots by chlorophyll content evaluation. European Journal of Horticultural Science, 86, 205- 211, 2021. https://doi.org/10.17660/eJHS.2021/86.2.11.
  • M. Ebrahimi, A. A. Habashi, M. Emadpour and N. Kazemi, Recovery of virus-free almond (Prunus dulcis) cultivars by somatic embryogenesis from meristem undergone thermotherapy. Scientific Reports, 12 (1), 14948, 2022. http://dx.doi.org/10.17660/eJHS.2021/86.2.11.
  • S. Çömlekçioğlu, A. B. Kuden, Y. A. Kacar and M. A. Kamberoglu, Meristem culture of two fig cultivars in Turkey. Fruits, 62 (2), 125-131, 2007. http://dx.doi.org/10.1051/fruits:2007006.
  • M. Ziv and A. Altman, Tissue culture- general principles. encyclopedia of applied plant sciences. Brian Thomas (Eds.), Elsevier, pp. 1341-135, Wellesbourne, UK, 2003. https://doi.org/10.1016/B0-12-227050-9/00213-1.
  • J. E. Han, H. S. Lee, H. Lee, H. Cho and S. Y. Park, Embryogenic stem cell identity after protoplast isolation from Daucus Carota and recovery of regeneration ability through protoplast culture. International Journal of Molecular Sciences, 23 (19), 11556, 2022. https://doi.org/10.3390/ijms231911556.
  • F. Aljane, A. Essid and S. Nahdi, Improvement of fig (Ficus carica L.) by conventional breeding and biotechnology. M. Al-Khayri et al. (Eds.), Advances in Plant Breeding Strategies: Fruits, 3, 343-375, 2018. https://doi.org/10.1007/978-3-319-91944-7_9.
  • H. Yakushiji, T. Morita, S. Jikumaru, Interspecific hybridization of fig (Ficus carica L.) and Ficus erecta Thunb., a source of Ceratocystis canker resistance. Euphytica, 183, 39–47, 2012. https://doi.org/10.1007/s10681-011-0459-1.
  • I. Mitrofanova, N. Lesnikova-Sedoshenko and O. Krivenko, Some features of protoplast isolation from leaf explants of Ficus carica plantlets cultured in vitro. Journal of Biotechnology, 305 (S), 52-53, 2019. https://doi.org/10.1016/j.jbiotec.2019.05.186.
  • N. E. Moreno-Anzúrez, S. Marquina, L. Alvarez, A. Zamilpa, P. Castillo-España, I. Perea-Arango... and J. Arellano-García, A cytotoxic and anti-inflammatory campesterol derivative from genetically transformed hairy roots of Lopezia racemosa Cav. (Onagraceae). Molecules, 22, (1), 118, 2017. https://doi.org/10.3390/molecules22010118
  • S. Amani, M. Mohebodini, S. Khademvatan, M. Jafari and V. Kumar, Piriformospora indica based elicitation for overproduction of phenolic compounds by hairy root cultures of Ficus carica. Journal of Biotechnology, 327, 43-53, 2021. https://doi.org/10.1016/j.jbiotec.2020.12.015.
  • S. Amani, S. Khademvatan, M. Mohebodini, M. Jafari and V. Kumar, Ficus carica hairy roots: In vitro anti-leishmanial activity against Leishmania major promastigotes and amastigotes. Asian Pacific Journal of Tropical Medicine, 15 (5), 220, 2022. https://doi.org/10.4103/1995-7645.345945.
  • M. Abid, Y. J. Zhang, Z. Li, D. F. Bai, Y. P. Zhong and J. B. Fang, Effect of salt stress on growth, physiological and biochemical characters of four kiwifruit genotypes. Scientia Horticulturae, 271, 109473, 2020. https://doi.org/10.1016/j.scienta.2020.109473.
  • H. I. A. Soliman, and M. R. Abd Alhady, Evaluation of salt tolerance ability in some fig (Ficus carica L.) cultivars using tissue culture technique. Journal of Applied Biology and Biotechnology, 5 (6), 29-39, 2019. https://doi.org/10.7324/JABB.2017.50605.
  • A. Vangelisti, L.S. Zambrano and G. Caruso, How an ancient, salt-tolerant fruit crop, Ficus carica L., copes with salinity: a transcriptome analysis. Sci Rep, 9, 2561, 2019. https://doi.org/10.1038/s41598-019-39114-4.
  • A. Mascellani, L. Natali, A. Cavallini, F. Mascagni, G. Caruso, R. Gucci... and R. Bernardi, Moderate salinity stress affects expression of main sugar metabolism and transport genes and soluble carbohydrate content in ripe fig fruits (Ficus carica L. cv. Dottato). Plants, 10 (9), 1861, 2021. https://doi.org/10.3390/plants10091861.
  • R. Abdolinejad and A. Shekafandeh, Responses of two figs (Ficus carica L.) cultivars under salt stress via in vitro condition. Agriculture Science Developments, 3 (5), 194-199, 2014.
  • E. M. Metwali, I. A. S. Hemaid, H. S. Al-Zahrani, S. M. Howlader and M. P. Fuller, Influence of different concentrations of salt stress on in vitro multiplication of some fig (Ficus carcia L.) cultivars. Life Science Journal, 11 (10), 386-397, 2014. oai: pearl.plymouth.ac.uk:10026.1/3047.
  • I. Al-Shomali, M. T. Sadder and A. Ateyyeha, Culture media comparative assessment of common fig (Ficus carica L.) and carryover effect. Jordan Journal of Biological Sciences, 10 (1), 13-18, 2017.
  • Y. Emek, In vitro Şartlar Altında ‘Bursa Siyahı’ (Ficus carica L.) incir çeşidinin morfolojisi üzerine tuzun etkisi. KSÜ Tarım ve Doğa Derg, 21 (3), 292-296, 2018. https://doi.org/10.18016/ksudobil.298973.

Evaluation of the application potential of in vitro tissue culture techniques in fig (Ficus carica L.)

Year 2024, , 393 - 412, 15.01.2024
https://doi.org/10.28948/ngumuh.1360362

Abstract

Figs are known as one of the oldest known breeds of fruit in the history of mankind, mostly grown in the Mediterranean region. Fig, which has a high commercial value, can be produced in a few countries in the world due to its climate and ecological demands. Turkey is in first place in the production of both dried and fresh figs among the countries of the world. Researchers have preferred different production methods due to the lifelessness of fig seeds and various problems experienced in production. Plant tissue culture techniques have been a good alternative among these methods. Propagation by tissue culture methods provides high advantages as it enables high quality, disease-free fig production independent of seasonal and other environmental conditions. To date numerous studies have been carried out by many researchers on micropropagation, somatic embryogenesis, callus culture, disease-free plant production (meristematic culture), protoplast culture and in vitro selection in fig plants. In the studies accomplished for this purpose, different explant sources, especially shoot tip, node, stem, leaf or meristem were used. In this review, it is aimed to examine the results obtained by examining various studies conducted in different application areas under in vitro conditions on the economically important Ficus carica L. species.

References

  • D. Bay, Bursa Siyahı incir bitkisi (Ficus carica L.)’nde K, Ca, Mg ve P besin elementlerinin mevsimsel değişimlerinin araştırılması. Yüksek Lisans Tezi, Muğla Sıtkı Koçman Üniversitesi Fen Bilimleri Enstitüsü, Türkiye, 2012.
  • N. F. Edremit, Aydın ilinin bazı ilçelerinde incir mozaik hastalığının yaygınlığının belirlenmesi, etmenin tanılanması ve üretim materyalinin incir sürgün ucu kültürü-termoterapi ile etmenden arındırılması. Doktora Tezi, Adnan Menderes Üniversitesi Fen Bilimleri Enstitüsü, Türkiye, 2013.
  • D. Singh, B. Singh, and R. K. Goel, Traditional uses, phytochemistry and pharmacology of Ficus religiosa. A review, Journal of Ethnopharmacology, 134 (3), 565-583, 2011. https://doi.org/10.1016/j.jep.2011.01.046.
  • Ö. Aytürk, Dioik Ficus carica L. (incir)’de dişi, gal ve erkek çiçek gelişiminin mikroskobik ve moleküler yöntemler ile karşılaştırılması. Doktora Tezi, Marmara Üniversitesi Fen Bilimleri Enstitüsü, Türkiye, 2016.
  • W. P. Armstrong, Sex life of figs: coevolution of a tree & minute wasp. Palomar.Edu, 2012. Erişim adresi: https://www.waynesword.net/arbimg10.htm (accessed: 11.12.2023).
  • Tureng Dictionary and Translation, 2023. Erişim adresi: https://tureng.com/tr/turkce-ingilizce/gynodioecious (accessed: 15.06.2023).
  • G. Çatmadım, Aydın ili Kuyucak ilçesinde (Büyük Menderes Ovası) yetiştirilen sarılop ve bursa siyahı incir çeşitlerinde meyve gelişimlerinin belirlenmesi. Yüksek Lisans Tezi, Ordu Üniversitesi Fen Bilimleri Enstitüsü, Türkiye, 2014.
  • D. Núñez-Gómez, P. Legua, J. J. Martínez-Nicolás and P. Melgarejo, Breba fruits characterization from four varieties (Ficus carica L.) with important commercial interest in Spain. Foods, 10 (12), 3138, 2021. https://doi.org/10.3390/foods10123138.
  • N. Soni, S. Mehta, G. Satpathy and R. K. Gupta, Estimation of nutritional, phytochemical, antioxidant and antibacterial activity of dried fig (Ficus carica). Journal of Pharmacognosy and Phytochemistry, 3 (2), 158-165, 2014. doi: 10.12691/jfnr-8-12-3.
  • C. Teruel-Andreu, L. Andreu-Coll, D. López-Lluch, E. Sendra, F. Hernández and M. Cano-Lamadrid, Ficus carica fruits, by-products and based products as potential sources of bioactive compounds: A review. Agronomy, 11 (9), 1834, 2021. https://doi.org/ 10.3390/agronomy11091834.
  • O. Çalışkan, Türkiye’de sofralık incir yetiştiriciliğinin mevcut durumu ve geleceği. Uludağ Üniversitesi Ziraat Fakültesi Dergisi, 26 (2), 71-87, 2012.
  • FAOSTAT, 2022. Erişim adresi: https://www.fao.org/faostat/en/#data/QCL/visualize (accessed: 14.03.2022).
  • D. Çelik, Kuru incirlerde aflatoksin ve oktaroksin varlığının belirlenmesi. Yüksek Lisans Tezi, Hitit Üniversitesi Fen Bilimleri Ensititüsü, Türkiye, 2022.
  • İ. G. Güney, T. Bozoğlu, G. Özer, Ş. Türkölmez and S. Derviş, First report of Neoscytalidium dimidiatum associated with dieback and canker of common fig (Ficus carica L.) in Turkey. Journal of Plant Diseases and Protection, 129 (3), 701-705, 2022. https://doi.org/10.1007/s41348-022-00586-8.
  • Ş. N. Erdeğer, İncir (Ficus carica L.) genomunda sekans temelli ssr (basit dizi tekrarı) markörlerinin geliştirilmesi. Doktora Tezi, Necmettin Erbakan Üniversitesi Fen Bilimleri Enstitüsü, Türkiye, 2019.
  • A. Güler, Şanlıurfa’da yetiştirilen Ege kökenli bazı incir çeşitlerinin toprakta bulunan besin maddelerinden yararlanma durumlarının belirlenmesi. Yüksek Lisans Tezi, Şanlıurfa Harran Üniversitesi Fen Bilimleri Enstitüsü, Türkiye, 2021.
  • E. Nakilcioğlu-Taş, Biochemical characterization of fig (Ficus carica L.) seeds. Journal of Agricultural Sciences, 25 (2), 232-237, 2019. https://doi.org/10.15832/ankutbd.398268
  • H. Crisosto, L. Ferguson, V. Bremer, E. Stover and G. Colelli, Fig (Ficus carica L.). In Postharvest biology and technology of tropical and subtropical fruits. Woodhead Publishing, Sawston, Cambridge, pp. 134-160, 2011. https://doi.org/10.1533/9780857092885.134
  • M. Ayuso, M. Carpena, O. Taofiq, T.G. Albuquerque, J. Simal-Grdana, M.B.P.P. Oliveira, M.A. Prieto, I.C.F.R. Ferreira and L. Barros, Fig “Ficus carica L.” and its by-products: A decade evidence of their health-promoting benefits towards the development of novel food formulations. Trends in Food Science and Technology, 127: 1-13, 2022. https://doi.org/10.1016/j.tifs.2022.06.010.
  • S. Mahmoudi, M. Khali, A. Benkhaled, I. Boucetta, Y. Dahmani, Z. Attallah and S. Belbraouet, Fresh figs (Ficus carica L.): Pomological characteristics, nutritional value, and phytochemical properties. European Journal of Horticultural Science, 83 (2), 104-113, 2018. doi: 10.17660/eJHS.2018/83.2.6.
  • M. Tepecik, Farklı potasyum dozlarının incirde kaliteye etkisi. Doktora Tezi, Ege Üniversitesi Fen Bilimleri Enstitüsü, Türkiye, 2010.
  • F. Özçiçekçi, İncir mozaik hastalığının Aydın ilindeki incir bahçe ve fidanlıklarındaki yaygınlığının saptanması ile hastalık etmeninin, bitki özsuyu ile taşınması, konukçu çevresi ve serolojik yöntemlerle (elisa) karakterizasyonunun belirlenmesi. Doktora Tezi, Adnan Menderes Üniversitesi Fen Bilimleri Enstitüsü, Türkiye, 2008.
  • C. Bayoudh, R. Labidi, A. Majdoub and M. Mars, In vitro propagation of caprifig and female fig varieties (Ficus carica L.) from shoot-tips. Journal of Agricultural Science and Technology, 17, 1597-1608, 2015. http://jast.modares.ac.ir/article-23-2152-en.html.
  • A. C. Boliani, A. F. A. Ferreira, L. N. H. Monteiro, M. S. A. C. D. Silva and A. D. Rombola, Advances in propagation of Ficus carica L. Revista Brasileira de Fruticultura, 41, 2019. http://dx.doi.org /10.1590/0100-29452019026.
  • N. S. Mustafa and R. A. Taha, Influence of plant growth regulators and subculturing on in vitro multiplication of some fig (Ficus carica) cultivars. Journal of Applied Sciences Research, 8(8), 4038-4044, 2012.
  • A. Ismail, Using of DNA-barcoding, scot and sds-page protein to assess soma-clonal variation in micropropagated fig (Ficus carica L.) plant. Pakistan Journal of Biological Sciences: PJBS, 25 (5), 415-425, 2022. https://doi.org/10.3923/pjbs.2022.415.425.
  • N. A. Azhar and Z. Zainuddin, Tissue culture of Ficus carica variety BTM-6. Malaysian Journal of Sustainable Agriculture (MJSA), 4 (1), 26-28, 2020. doi: http://doi.org/10.26480/mjsa.01.2020.26.28.
  • G. C. Phillips and M. Garda, Plant tissue culture media and practices: an overview. In Vitro Cellular & Developmental Biology-Plant, 55 (3), 242-257, 2019. https://doi.org/10.1007/s11627-019-09983-5.
  • E. Chimdessa, Composition and preparation of plant tissue culture medium. Tissue Cult Bio Bioeng, 3: 120, 2020. doi: 10.29011/2688-6502.000020.
  • S. S. Bhojwani and P. K. Dantu, Micropropagation, In Plant tissue culture: An introductory text, Springer, India, 2013.
  • Himedia Laboratories, 2023. Erişim adresi: https://www.diagnocine.com/Content/Upload/Product/datasheets/m%20(250).pdf (accessed: 11.12.2023).
  • A. Purwito, D. Efendi and T. M., Ermayanti, Growth response of four accessions of Moringa oleifera Linn shoots cultured on various basic media. In IOP Conference Series: Earth and Environmental Science, 741 (1), 012054, 2021. https://doi.org/10.1088/1755-1315/741/1/012054.
  • Plant Cell Technology, 2023. Erişim adresi: https://www.plantcelltechnology.com/pct-blog/tissue-culture-medium-types-and-5-steps-of-selection/ (accessed: 21.06.2023).
  • Biochemie, 2023. Erişim adresi: https://www.duchefa-biochemie.com/product/details/number/Q0251 (accessed: 21.06.2023).
  • M. Peyvandi, F. Farahani, Z. Noormohammadi, O. Banihashemi, M. Hosseini and S. Ataee, Mass production of Olea europea L. (cv. rowghani) through micropropagation. General and Applied Plant Physiology, 35, 35-43, 2009.
  • A. Hussain, I. A. Qarshi, H. Nazir and I. Ullah, Plant tissue culture: current status and opportunities. Recent Advances in Plant In Vitro Culture, 6(10), 1-28, 2012. http://dx.doi.org/10.5772/50568.
  • A. M. Kumlay ve T. Eryiğit, Bitkilerde büyüme ve gelişmeyi düzenleyici maddeler: bitki hormonları. Journal of the Institute of Science and Technology, 1 (2), 47-56, 2011, https://dergipark.org.tr/tr/pub/jist/issue/7925/104223.
  • H. T. Hallmark and A. M. Rashotte, Cytokinin isopentenyladenine and its glucoside isopentenyladenine‐9G delay leaf senescence through activation of cytokinin‐associated genes. Plant Direct, 4, (12), 2020. https://doi.org/10.1002/pld3.292.
  • Y. J. Lee, D. Sriskanda, S. Subramaniam and B. L. Chew, The effects of banana, potato and coconut water in the regeneration of Ficus carica cv. Japanese BTM 6. Malaysian Applied Biology, 51 (1), 163-170, 2022. https://doi.org/10.55230/mabjournal.v51i1.2157.
  • J. A. Teixeira da Silva, J. Dobránszki and S. Ross, Phloroglucinol in plant tissue culture. In Vitro Cellular & Developmental Biology, 49, 1–16, 2013. https://doi.org/10.1007/s11627-013-9491-2.
  • A. Rency, S. Pandian and M. Ramesh, Influence of adenine sulphate on multiple shoot induction in Clitoria ternatea L. and analysis of phyto-compounds in in vitro grown plants. Biocatalysis and Agricultural Biotechnology, 16, 181-191, 2018. https://doi.org/10.1016/j.bcab.2018.07.034
  • T. S. Dattatraya and R. N. S. S. Vidyadhar, To study the effect of plant growth regulator and chemicals on survival of cuttings in fig (Ficus carica L.) cv. Dinkar. International Journal of Conservation Science, 8 (6), 2220-2222, 2020. https://doi.org/10.22271/chemi.2020.v8.i6af.11103.
  • A. Gürel, Ş., Hayta, P. Nartop, M. Bayraktar ve S.O. Fedakar, Bitki hücre, doku ve organ kültürü uygulamaları. Ege Üniversitesi Yayınları Mühendislik Fakültesi, İzmir, Türkiye, 2013.
  • S. Bhatia and K. L. Sharma, Micropropagation. Modern applications of plant biotechnology in pharmaceutical sciences. Academic Press, Burlington, New Jersey, pp. 32-98, 2015. http://dx.doi.org/10.1016/B978-0-12-802221-4.00002-9.
  • J. C. Cardoso, L. T. Sheng Gerald and J. A. Teixeira da Silva, Micropropagation in the twenty-first century. Plant Cell Culture Protocols, Springer, pp. 17-46, 1815, 2018. https://doi.org/10.1007/978-1-4939-8594-4_2.
  • M. A. Shatnawi, R. A. Shibli, W. G. Shahrour, T. S. Al-Qudah and T. Abu-Zahra, Micropropagation and conservation of fig (Ficus carica L.). Journal of Advances Agriculture, 10, 1669-1679, 2019. https://doi.org/10.24297/jaa.v10i0.8160.
  • M. Moniruzzaman, Z. Yaakob and R. A. Taha, In vitro production of fig (Ficus carica L.) plantlets. In V International Symposium on Fig, pp. 231-236, Napoli, Italy, 2015. https://doi.org/10.17660/ActaHortic.2017.1173.40.
  • I. M. Qrunfleh, M. M. Shatnawi and Z. I Al-Ajlouni,. Effect of different concentrations of carbon source, salinity and gelling agent on in vitro growth of fig (Ficus carica L.). African Journal of Biotechnology, 12 (9), 936-940, 2013. https://doi.org/10.5897/AJB12.2871.
  • O. Dolgun and F. E. Tekintas Production of fig (Ficus carica L.) nursery plants by stem layering method. Agriculturae Conspectus Scientificus, 73 (3), 157-160, 2008. https://hrcak.srce.hr/26826.
  • C. B. Fráguas, M. Pasqual, L. F. Dutra and J. O. Cazetta, Micropropagation of fig (Ficus carica L.) ‘Roxo de Valinhos’ plants. In Vitro Cellular & Developmental Biology-Plant, 405, 471-474, 2004b. http://dx.doi.org/10.1079/IVP2004562.
  • H. Darwesh, S. Bazaid and B. Samra, In vitro propagation method of Ficus carica at Taif governorate using tissue culture technique. International Journal of Advanced Research, 2, 6, 756-761, 2014.
  • R. S. D. Pratiwi, L. A. M. Siregar and C. Hanum, The response of several combination of plant growth regulators to shoot induction of fig (Ficus carica L.) var. improved celeste. In IOP Conference Series: Earth and Environmental Science, p. 032088, Fakultas Pertanian Universitas Sumatera Atara, Indonesia, 2021. doi:10.1088/1755-1315/782/3/032088.
  • M. Pasqual and E. A. Ferreira Micropropagation of Fig tree (Ficus carica sp). In Protocols for micropropagation of woody trees and fruits Springer, Dordrecht, pp. 409-416, 2007. https://doi.org/10.1007/978-1-4020-6352-7_37.
  • V. Kumar, A. Radha and S. Kumar Chitta, In vitro plant regeneration of fig (Ficus carica L. cv. Gular) using apical buds from mature trees. Plant Cell Reports, 17, 717-720, 1998. https://doi.org/10.1007/s002990050471.
  • S. Hepaksoy and U. Aksoy, In vitro propagation of Ficus carica cv. Sarılop clone selected for its high performance. In III International Symposium on Fig, pp. 199-204, Vilamouran, Algarve, Portugal, 2005. https://doi.org/10.17660/ActaHortic.2008.798.27.
  • K. M. Kim, M. Y. Kim, P. Y. Yun, T. Chandrasekhar, H. Y. Lee and P. S. Song, Production of multiple shoots and plant regeneration from leaf segments of fig tree (Ficus carica L.). Journal of Plant Biology, 50, 440-446, 2007. https://doi.org/10.1007/BF03030680.
  • G. H. Danial, D. A. Ibrahim, S. A. Brkat and B. M. Khalil, Multiple shoots production from shoot tips of fig tree (Ficus carica L.) and callus induction from leaf segments. International Journal of Pure & Applied Sciences & Technology, 20 (1), 117-124 2014.
  • I. V. Mitrofanova, N. P. Lesnikova-Sedoshenko, V. A. Brailko, T. N. Kuzmina, S. V. Chelombit, E. L. Shishkina and O. V. Mitrofanova, Realization of Ficus carica L. morphogenic capacity via organogenesis and somatic embryogenesis in vitro. In International Symposium on Horticulture: Priorities and Emerging Trends, 1255, pp. 69-76, Bengaluru, India, 2017. https://doi.org/10.17660/ActaHortic.2019.1255.12.
  • S. T. Shahcheraghi, and A. Shekafandeh, Micropropagation of three endemic and endangered fig (Ficus carica L.) genotypes. Advances in Horticultural Science, 30 (3), 129-134, 2016. https://doi.org/10.13128/ahs-20248.
  • F. K. A. Patah, N. A. Hasbullah, H. Idris and N. S. Radzuan, Micropropagation of Ficus carica L. through Tissue Culture System. 12th Int'l Conference on Advances in Agricultural, Chemical, Biological & Medical Sciences (AACBMS-18), pp. 19-22, Pattaya, Thailand, 2018. https://doi.org/10.17758/EARES3.C0818108.
  • G. Prabhuling and H. Huchesh, Direct In Vitro regeneration in fig (Ficus carcia L.) cv. ‘Brown Turkey’. Research Journal of Biotechnology, 13, 5, 77-83, 2018.
  • Wan Ting Ling, Fui Chu Liew, Wei Yong Lim, Sreeramanan Subramaniam and Bee Lynn Chew. Shoot induction from axillary shoot tip explants of fig (Ficus carica) cv. Japanese BTM 6. Tropical Life Sciences Research, 29 (2), 165–174, 2018. https://doi. org/10.21315/tlsr2018.29.2.1.
  • H. S. Al-Zahrani, O. A. Almaghrabi, M. P. Fuller, H. I. Soliman, M. Farooq and E. M. Metwali, Micropropagation of virus-free plants of Saudi fig (Ficus carica L.) and their identification through enzyme-linked immunosorbent assay methods. In Vitro Cellular & Developmental Biology-Plant, 54, 626-636, 2018. doi: 10.1007/s11627-018-9933-y.
  • A. Sahraroo, A. Zarei and M. Babalar, In vitro regeneration of the isolated shoot apical meristem of two commercial fig cultivars ‘Sabz’and ‘Jaami-e-Kan’. Biocatalysis and Agricultural Biotechnology, 17, 743-749, 2019. https://doi.org/10.1016/j.bcab.2019.01.024.
  • R. Abdolinejad, A. Shekafandeh, A. Jowkar, A. Gharaghani and A. Alemzadeh, Indirect regeneration of Ficus carica by the TCL technique and genetic fidelity evaluation of the regenerated plants using flow cytometry and ISSR. Plant Cell, Tissue and Organ Culture (PCTOC), 143, 131-144, 2020. https://doi.org/10.1007/s11240-020-01903-5.
  • D. Sriskanda, Y. X. Liew, S. P. Khor, F. Merican, S. Subramaniam and B. L. Chew, An efficient micropropagation protocol for Ficus carica cv. Golden Orphan suitable for mass propagation. Biocatalysis and Agricultural Biotechnology, 38, 102225, 2021. https://doi.org/10.1016/j.bcab.2021.102225
  • L. M. Muriithi, T. S. Rangan and B. H. Waite, In Vitro propagation of fig through shoot tip culture1. HortScience, 17 (1), 86-87, 1982. https://doi.org/10.21273/HORTSCI.17.1.86.
  • C.A. Pontikis and P Melas, Micropropagation of Ficus carica L. HortScience, 21 (1):153-154, 1986.
  • G. Günver and E. A. Ertan, Study on the propagation of figs by the tissue culture techniques. In I International Symposium on Fig, pp. 169-172, İzmir, Turkey, 1997. https://doi.org/10.17660/ActaHortic.1998.480.29.
  • A. Demiralay, Y. Yalçin-Mendi, Y. Aka-Kaçar and S. Cetiner, In vitro propagation of Ficus carica L. var. Bursa Siyahi through meristem culture. In I International Symposium on Fig, pp. 165-168, İzmir, Turkey, 1997. https://doi.org/10.17660/ActaHortic.1998.480.28.
  • G. R. Brum, M. Pasqual, A. B. Silva and N. N. J. Chalfun, Sucrose, culture media, and their interactions during in vitro proliferation of ‘Roxo de Valinhos’ (Ficus carica L.). In II International Symposium on Fig, pp. 131-135, Caceres, Spain, 2001. https://doi.org/10.17660/ActaHortic.2003.605.20.
  • C. B. Fráguas, M. Pasqual and A. R. Pereira, Multiplicação in vitro de Ficus carica L.: efeito da cinetina e do ácido giberélico. Ciência e Agrotecnologia, 28, 49-55, 2004. https://doi.org/10.1590/S1413-70542004000100006.
  • E. A. Ferreira and M. Pasqual, Ficus carica L. produced by micropropagation. In International Symposium on Biotechnology of Temperate Fruit Crops and Tropical Species, 738, pp. 437-441, Florida, USA, 2005. https://doi.org/10.17660/ActaHortic.2007.738.53.
  • E. A. Ferreira and M. Pasqual, Protocol optimization for micropropagation of ’Roxo de Valinhos’ fig tree. Ciência Rural, 38, 1149-1153, 2008. https://doi.org/10.1590/S0103-84782008000400040.
  • W. Barbosa, R. Pio, R. F. de Arruda Veiga, E. A. Chagas and N. P. Feldberg, Efeito de concentrações do AIB no enraizamento in vitro de cultivares de figueira, 24, 2, 1-6, 2008.
  • R. A. Taha, N. S. Mustafa and S. A. Hassan, Protocol for micropropagation of two Ficus carica cultivars. World Journal of Agricultural Sciences, 9 (5), 383-388, 2013. doi:10.5829/idosi.wjas.2013.9.5.1802.
  • N. S. Mustafa, R. A. Taha, S. A. M. Hassan and N. S. M. Zaied, Effect of medium strength and carbon source on in vitro shoot multiplication of two Ficus carica cultivars. Journal of Applied Sciences Research, 9 (4), 3068-3074, 2013.
  • L. Erfa, D. Maulida, R. M. Sari and F. Yuniardi, Regeneration of red palestine fig (Ficus carica L.) from formation of adventitious shoots in murashige & skoog media with additional of BAP/TDZ and NAA. In IOP Conference Series: Earth and Environmental Science, p. 012068, Lampung State Polytechnic, Indonesia, 2022. https://doi.org/10.1088/1755-1315/1012/1/012068.
  • S. Hepaksoy, Bazı kiraz anaçlarının mikroçoğaltımı üzerinde araştırmalar I. Gelişme ve çoğalma. Ege Üniversitesi Ziraat Fakültesi Dergisi, 41 (3), 11-12, 2004.
  • M. Moniruzzaman, Z. Yaakob and N. Anuar, Factors affecting in vitro regeneration of Ficus carica L. and genetic fidelity studies using molecular marker. Journal of Plant Biochemistry and Biotechnology, 30 (2), 304-316, 2021. https://doi.org/10.1007/s13562-020-00590-9.
  • A. M. S. Almemary, Callus induction and differentiation. The Future Journal of Agriculture, 3, 5-9, 2020. https://doi.org/10.37229/fsa.fja.2020.07.02.
  • E. D. Benjamin, G. A. Ishaku, F. A. Peingurta and A. S. Afolabi, Callus culture for the production of therapeutic compounds. American Journal of Plant Biology, 4 (4), 76-84, 2019. https://doi.org/10.11648/j.ajpb.20190404.14
  • M. Lotfi, Effects of monochromatic red and blue light-emitting diodes and phenyl acetic acid on in vitro mass production of Pyrus communis ‘Arbi’. Journal of Horticulture and Postharvest Research, 5 (2), 119-128, 2022. https://doi.org/10.22077/jhpr.2021.4517.1229.
  • E. C. Hong, C. B. Lynn and S. Subramaniam, Development of plantlet regeneration pathway using in vitro leaf of Ficus carica L. cv. Panachee supported with histological analysis. Biocatalysis and Agricultural Biotechnology, 27, 101697, 2020. https://doi.org/10.1016/j.bcab.2020.101697.
  • S. Mehmood, Q. Ayub, S. M. Khan, N. Arif, M. J. Khan, A. Mehmood... and M. U. Ayub, Responses of fig cuttings (Ficus carica) to different sowing dates and potting media under agro-climatic conditions of Haripur. RADS Journal of Biological Research & Applied Sciences, 11 (2), 112-119, 2020. https://doi.org/10.37962/jbas.v11i2.268
  • D. S. Elazab and M. M. Shaaban, The impact of sucrose concentration on root growth and development in fig (Ficus carica L.) in vitro. Assiut Journal of Agricultural Sciences, 46 (6), 67-75, 2015. doi: 10.21608/AJAS.2015.521.
  • H. Yakushiji, N. Mase and Y. Sato, Adventitious bud formation and plantlet regeneration from leaves of fig (Ficus carica L.). The Journal of Horticultural Science and Biotechnology, 78 (6), 874-878, 2003. https://doi.org/10.1080/14620316.2003.11511712.
  • S. S. Dhage, V. P. Chimote, B. D. Pawar, A.A. Kale, S. V. Pawar and A. S. Jadhav, Development of an efficient in vitro regeneration protocol in fig (Ficus carica L.). Journal of Applied Horticulture, 17, 2, 160-164, 2015. https://doi.org/10.37855/jah.2015.v17i02.30
  • M. Hayati and E. Kesumawati, Response of in vitro propagated fig (Ficus carica L.) shoots to the concentrations of benzyl amino purine and coconut water. In IOP Conference Series: Earth and Environmental Science, 922, 1, 012067, 2021. https://doi.org/10.1088/1755-1315/922/1/012067.
  • A. R. Parab, K. Y. Han, B. L. Chew and S. Subramaniam, Morphogenetic and physiological effects of LED spectra on the apical buds of Ficus carica var. ‘Black Jack’. Scientific Reports, 11 (1), 1-11, 2021. https://doi.org/10.1038/s41598-021-03056-7.
  • X. J. Lui, D. Sriskanda, W. T. Ling, S. Subramaniam and B. L. Chew, The Incorporation of coconut water and banana homogenate in the regeneration of fig (Ficus carica L.) cv. Violette de Solliès. Malaysian Applied Biology, 51 (5), 13-22, 2022. https://doi.org/10.55230/mabjournal.v51i5.2327.
  • B. Güler, Çay (Camellia sinensis [L.] O. Kuntze) bitkisinde geçici daldırma sistemine dayalı biyoreaktörler aracılığıyla sentetik tohumların üretilmesi. Doktora Tezi, Ege Üniversitesi Fen Bilimleri Enstitüsü, Türkiye, 2022.
  • S. Asghar, N. Ghori, F. Hyat, Y. Li and C. Chen, Use of auxin and cytokinin for somatic embryogenesis in plant: a story from competence towards completion. Plant Growth Regulation, 99 (3), 413-428, 2023. https://doi.org/10.1007/s10725-022-00923-9.
  • H. I. Soliman, M. Gabr and N. A. Abdallah, Efficient transformation and regeneration of fig (Ficus carica L.) via somatic embryogenesis. GM crops, 1 (1), 40-51, 2010. https://doi.org/10.4161/gmcr.1.1.10632.
  • T. Turan, Sarılop İncir (Ficus carica L.) Çeşidi Yaprak Segmentlerinden Somatik Embriyogenesis Oluşumu. Yüksek Lisans Tezi, Adnan Menderes Üniversitesi Fen Bilimleri Enstitüsü, Türkiye, 2013.
  • D. Büyükdinç and G. Günver Dalkılıç, Sarılop incir (Ficus carica L.) çeşidi yaprak segmentlerinden somatik embriyogenesis oluşumu, Adnan Menderes Üniversitesi Ziraat Fakültesi Dergisi, 19 (1), 29-35, 2022. https://doi.org/10.25308/aduziraat.1011855.
  • Efferth, T. Biotechnology applications of plant callus cultures. Engineering, 5 (1), 50-59, 2019. https://doi.org/10.1016/j.eng.2018.11.006.
  • S. S., Dhage, B. D. Pawar, V. P. Chimote, A. S. Jadhav and A. A. Kale, In vitro callus induction and plantlet regeneration in fig (Ficus carica L.). Journal of Cell & Tissue Research, 12, 3, 3395-3400, 2012.
  • B. M. Singh, C. M. Rajoriya, I. A. Wani, R. S. Rawat and B. L. Jat, In vitro studies of Ficus carica and its application in crop improvement. International Journal for Research in Applied Science and Engineering Technology, 4 (11), 135-148, 2016.
  • S. Wahyuni, R. Susanti and R. S. Iswari, Isolation and caracterization of ficin enzyme from Ficus septica Burm F stem latex. Indonesian Journal of Biotechnology, 20 (2), 161-166, 2015. https://doi.org/10.22146/ijbiotech.24200.
  • A. H. Nassar and H. J. Newbury, Ficin production by callus cultures of Ficus carica. Journal of Plant Physiology, 131 (3-4), 171-179, 1987. https://doi.org/10.1016/S0176-1617(87)80157-8.
  • F. Cormier, C. Charest and C. Dufresne, Partial purification and properties of proteases from fig (Ficus carica) callus cultures. Biotechnology letters, 11, 797-802, 1989. https://doi.org/10.1007/BF01026100.
  • D. Sriskanda, X. J. Chew and B. L. Chew, Callus induction of fig (Ficus carica cv. Violette de Soillès) via thin cell layer technique. Journal of Tropical Plant Physiology, 14 (1), 22-30, 2022. https://doi.org/10.1016/j.bcab.2021.102225.
  • E. Hafez, A. A. El Morsi and A. A. Abdelkhalek, Biological and molecular characterization of the fig mosaic disease. Molecular Pathogens, 2, 2, 2011. https://doi.org/10.5376/mp.2011.02.0002
  • M. Afechtal, Fig tree viruses in Morocco. Moroccan Journal of Agricultural Sciences, 1, (1), 54-58, 2020.
  • G. Sümer, Sürgün Ucu ve Termoterapi Yöntemleri ile İncir Mozaik Hastalık Etmenlerinden Arındırılmış ve Tek Basamaklı Rt-Pcr ile Testlenmiş, Sarılop ve Bursa Siyahı İncir Üretim Materyalinin Elde Edilmesi. Yüksek Lisans Tezi, Adnan Menderes Üniversitesi Fen Bilimleri Enstitüsü, Türkiye, 2014.
  • M. Chiumenti, A. Campanale, G. Bottalico, A. Minafra, A. De Stradis, V. Savino and G. P. Martelli, Sanitation trials for the production of virus-free fig stocks. Journal of Plant Pathology, 95, 655-658. 2013.
  • K. Magyar-Tábori, N. Mendler-Drienyovszki, A. Hanász, L. Zsombik and J. Dobránszki, Phytotoxicity and other adverse effects on the in vitro shoot cultures caused by virus elimination treatments: Reasons and solutions. Plants, 10, (4), 670, 2021. https://doi.org/ 10.3390/plants10040670.
  • K. A. Quiroz, Berríos, M., Carrasco, B., Retamales, J. B., Caligari, P. D., and García-Gonzáles, R. (2017). Meristem culture and subsequent micropropagation of Chilean strawberry (Fragaria chiloensis (L.) Duch.). Biological Research, 50, 20, 2-11, 2017. https://doi.org/10.1186/s40659-017-0125-8.
  • S. Karimpour, G. H. Davarynejad, M. ZakiAghl, M. R. Safarnejad, P. Martínez-Gómez and M. Rubio, Rapid assessment of sanitary and physiological state of thermotherapy-treated apple shoots by chlorophyll content evaluation. European Journal of Horticultural Science, 86, 205- 211, 2021. https://doi.org/10.17660/eJHS.2021/86.2.11.
  • M. Ebrahimi, A. A. Habashi, M. Emadpour and N. Kazemi, Recovery of virus-free almond (Prunus dulcis) cultivars by somatic embryogenesis from meristem undergone thermotherapy. Scientific Reports, 12 (1), 14948, 2022. http://dx.doi.org/10.17660/eJHS.2021/86.2.11.
  • S. Çömlekçioğlu, A. B. Kuden, Y. A. Kacar and M. A. Kamberoglu, Meristem culture of two fig cultivars in Turkey. Fruits, 62 (2), 125-131, 2007. http://dx.doi.org/10.1051/fruits:2007006.
  • M. Ziv and A. Altman, Tissue culture- general principles. encyclopedia of applied plant sciences. Brian Thomas (Eds.), Elsevier, pp. 1341-135, Wellesbourne, UK, 2003. https://doi.org/10.1016/B0-12-227050-9/00213-1.
  • J. E. Han, H. S. Lee, H. Lee, H. Cho and S. Y. Park, Embryogenic stem cell identity after protoplast isolation from Daucus Carota and recovery of regeneration ability through protoplast culture. International Journal of Molecular Sciences, 23 (19), 11556, 2022. https://doi.org/10.3390/ijms231911556.
  • F. Aljane, A. Essid and S. Nahdi, Improvement of fig (Ficus carica L.) by conventional breeding and biotechnology. M. Al-Khayri et al. (Eds.), Advances in Plant Breeding Strategies: Fruits, 3, 343-375, 2018. https://doi.org/10.1007/978-3-319-91944-7_9.
  • H. Yakushiji, T. Morita, S. Jikumaru, Interspecific hybridization of fig (Ficus carica L.) and Ficus erecta Thunb., a source of Ceratocystis canker resistance. Euphytica, 183, 39–47, 2012. https://doi.org/10.1007/s10681-011-0459-1.
  • I. Mitrofanova, N. Lesnikova-Sedoshenko and O. Krivenko, Some features of protoplast isolation from leaf explants of Ficus carica plantlets cultured in vitro. Journal of Biotechnology, 305 (S), 52-53, 2019. https://doi.org/10.1016/j.jbiotec.2019.05.186.
  • N. E. Moreno-Anzúrez, S. Marquina, L. Alvarez, A. Zamilpa, P. Castillo-España, I. Perea-Arango... and J. Arellano-García, A cytotoxic and anti-inflammatory campesterol derivative from genetically transformed hairy roots of Lopezia racemosa Cav. (Onagraceae). Molecules, 22, (1), 118, 2017. https://doi.org/10.3390/molecules22010118
  • S. Amani, M. Mohebodini, S. Khademvatan, M. Jafari and V. Kumar, Piriformospora indica based elicitation for overproduction of phenolic compounds by hairy root cultures of Ficus carica. Journal of Biotechnology, 327, 43-53, 2021. https://doi.org/10.1016/j.jbiotec.2020.12.015.
  • S. Amani, S. Khademvatan, M. Mohebodini, M. Jafari and V. Kumar, Ficus carica hairy roots: In vitro anti-leishmanial activity against Leishmania major promastigotes and amastigotes. Asian Pacific Journal of Tropical Medicine, 15 (5), 220, 2022. https://doi.org/10.4103/1995-7645.345945.
  • M. Abid, Y. J. Zhang, Z. Li, D. F. Bai, Y. P. Zhong and J. B. Fang, Effect of salt stress on growth, physiological and biochemical characters of four kiwifruit genotypes. Scientia Horticulturae, 271, 109473, 2020. https://doi.org/10.1016/j.scienta.2020.109473.
  • H. I. A. Soliman, and M. R. Abd Alhady, Evaluation of salt tolerance ability in some fig (Ficus carica L.) cultivars using tissue culture technique. Journal of Applied Biology and Biotechnology, 5 (6), 29-39, 2019. https://doi.org/10.7324/JABB.2017.50605.
  • A. Vangelisti, L.S. Zambrano and G. Caruso, How an ancient, salt-tolerant fruit crop, Ficus carica L., copes with salinity: a transcriptome analysis. Sci Rep, 9, 2561, 2019. https://doi.org/10.1038/s41598-019-39114-4.
  • A. Mascellani, L. Natali, A. Cavallini, F. Mascagni, G. Caruso, R. Gucci... and R. Bernardi, Moderate salinity stress affects expression of main sugar metabolism and transport genes and soluble carbohydrate content in ripe fig fruits (Ficus carica L. cv. Dottato). Plants, 10 (9), 1861, 2021. https://doi.org/10.3390/plants10091861.
  • R. Abdolinejad and A. Shekafandeh, Responses of two figs (Ficus carica L.) cultivars under salt stress via in vitro condition. Agriculture Science Developments, 3 (5), 194-199, 2014.
  • E. M. Metwali, I. A. S. Hemaid, H. S. Al-Zahrani, S. M. Howlader and M. P. Fuller, Influence of different concentrations of salt stress on in vitro multiplication of some fig (Ficus carcia L.) cultivars. Life Science Journal, 11 (10), 386-397, 2014. oai: pearl.plymouth.ac.uk:10026.1/3047.
  • I. Al-Shomali, M. T. Sadder and A. Ateyyeha, Culture media comparative assessment of common fig (Ficus carica L.) and carryover effect. Jordan Journal of Biological Sciences, 10 (1), 13-18, 2017.
  • Y. Emek, In vitro Şartlar Altında ‘Bursa Siyahı’ (Ficus carica L.) incir çeşidinin morfolojisi üzerine tuzun etkisi. KSÜ Tarım ve Doğa Derg, 21 (3), 292-296, 2018. https://doi.org/10.18016/ksudobil.298973.
There are 128 citations in total.

Details

Primary Language Turkish
Subjects Food Engineering, Optimization in Manufacturing
Journal Section Review Articles
Authors

Altın Kardelen Abacı 0000-0001-9147-2422

Begüm Güler 0000-0002-9970-2111

Aynur Gürel 0000-0002-7002-9752

Early Pub Date December 15, 2023
Publication Date January 15, 2024
Submission Date September 15, 2023
Acceptance Date November 16, 2023
Published in Issue Year 2024

Cite

APA Abacı, A. K., Güler, B., & Gürel, A. (2024). İncirde (Ficus carica L.) in vitro doku kültürü tekniklerinin uygulanma potansiyelinin değerlendirilmesi. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 13(1), 393-412. https://doi.org/10.28948/ngumuh.1360362
AMA Abacı AK, Güler B, Gürel A. İncirde (Ficus carica L.) in vitro doku kültürü tekniklerinin uygulanma potansiyelinin değerlendirilmesi. NÖHÜ Müh. Bilim. Derg. January 2024;13(1):393-412. doi:10.28948/ngumuh.1360362
Chicago Abacı, Altın Kardelen, Begüm Güler, and Aynur Gürel. “İncirde (Ficus Carica L.) in Vitro Doku kültürü Tekniklerinin Uygulanma Potansiyelinin değerlendirilmesi”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 13, no. 1 (January 2024): 393-412. https://doi.org/10.28948/ngumuh.1360362.
EndNote Abacı AK, Güler B, Gürel A (January 1, 2024) İncirde (Ficus carica L.) in vitro doku kültürü tekniklerinin uygulanma potansiyelinin değerlendirilmesi. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 13 1 393–412.
IEEE A. K. Abacı, B. Güler, and A. Gürel, “İncirde (Ficus carica L.) in vitro doku kültürü tekniklerinin uygulanma potansiyelinin değerlendirilmesi”, NÖHÜ Müh. Bilim. Derg., vol. 13, no. 1, pp. 393–412, 2024, doi: 10.28948/ngumuh.1360362.
ISNAD Abacı, Altın Kardelen et al. “İncirde (Ficus Carica L.) in Vitro Doku kültürü Tekniklerinin Uygulanma Potansiyelinin değerlendirilmesi”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 13/1 (January 2024), 393-412. https://doi.org/10.28948/ngumuh.1360362.
JAMA Abacı AK, Güler B, Gürel A. İncirde (Ficus carica L.) in vitro doku kültürü tekniklerinin uygulanma potansiyelinin değerlendirilmesi. NÖHÜ Müh. Bilim. Derg. 2024;13:393–412.
MLA Abacı, Altın Kardelen et al. “İncirde (Ficus Carica L.) in Vitro Doku kültürü Tekniklerinin Uygulanma Potansiyelinin değerlendirilmesi”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, vol. 13, no. 1, 2024, pp. 393-12, doi:10.28948/ngumuh.1360362.
Vancouver Abacı AK, Güler B, Gürel A. İncirde (Ficus carica L.) in vitro doku kültürü tekniklerinin uygulanma potansiyelinin değerlendirilmesi. NÖHÜ Müh. Bilim. Derg. 2024;13(1):393-412.

download