Research Article
BibTex RIS Cite

Fotovoltaik termal güneş kolektörlü soğutma sisteminin yaşam döngüsü iklim performansı (LCCP) analizi

Year 2024, , 205 - 215, 15.01.2024
https://doi.org/10.28948/ngumuh.1360957

Abstract

Günümüzde teknolojik gelişmeler, iklim değişikliği ve nüfus artış hızına bağlı olarak verimli ve sürdürülebilir enerji sistemlerine ihtiyaç duyulmaktadır. Bu nedenle dünyadaki enerji talebi ile arzı arasındaki boşluğu giderebilmek için alternatif (yenilenebilir) enerji kaynaklarına yönelme, var olan enerjiyi depolama ve enerjiyi verimli bir şekilde kullanma yollarına gidilmektedir. Enerjinin sürekliliği ve güvenilirliği açısından yenilenebilir enerji kaynaklarından yararlanan, enerji verimliliğini arttıran ve fazla-atık olan enerjiyi depolayan teknolojilerin önemi her zamankinden daha fazla artmaktadır. Endüstri uygulamalarındaki yüksek enerji maliyetleri, enerji depolamalı sürdürülebilir güneş enerjili alternatif uygulamalara olan talebin artmasındaki en büyük etkenlerden biridir. Bu çalışmada, sürdürülebilir yeni bir tip fotovoltaik termal güneş kolektörlü soğutma sisteminin tasarlanması ve Yaşam Döngüsü İklim Performansı (LCCP) analizi yapılması hedeflenmiştir. LCCP analizi sonucunda doğrudan emisyonlar 0.81 kgCO2e, dolaylı emisyonlar 119235.5 kgCO2e ve toplam LCCP emisyonu 119236.3 kgCO2e olarak hesaplanmıştır. Bu sistem sayesinde ısıtma, enerji depolama ve soğutma işleminin birlikte gerçekleştirildiği sürdürülebilir bir sistem tasarlanmıştır.

Supporting Institution

Gazi Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi

Project Number

FDK-2022-7868

Thanks

Çalışmaya verdikleri katkılardan dolayı Gazi Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi’ne (Proje Kodu: FDK-2022-7868) ve Nurdil Teknik Soğutma A.Ş.’ye teşekkür ederiz.

References

  • S. Choi, J. Oh, Y. Hwang and H. Lee, Life Cycle Climate Performance Evaluation (LCCP) on Cooling and Heating Systems in South Korea, Applied Thermal Engineering, 120, 88-98, 2017. https://doi.org/-10.1016/j.applthermaleng.2017.03.105
  • H. Wan, T. Cao, Y. Hwang, R. Radermacher and S. Chin, Comprehensive Investigations on Life Cycle Climate Performance of Unitary Air-Conditioners, International Journal of Refrigeration, 129, 332-341, 2021. http://dx.doi.org/10.1016/j.ijrefrig.-2021.04.033
  • F. Wang and T. You, Comparative Analysis on the Life Cycle Climate Performance of Ground Source Heat Pump Using Alternative Refrigerant, Case Studies in Thermal Engineering, 42, 102761, 2023. http://dx.doi.org/10.2139/ssrn.4263765
  • S. Choi, Y. Jung, Y. Kim, H. Lee and Y. Hwang, Environmental Effect Evaluation of Refrigerator Cycle With Life Cycle Climate Performance. International Journal of Refrigeration, 122, 134-146, 2021. http://dx.doi.org/10.1016/j.ijrefrig-.2020.10.032
  • A. Akyüz, R. Yıldırım, A. Güngör, A. D. Tuncer, Experimental Investigation of a Solar-Assisted Air Conditioning System: Energy and Life Cycle Climate Performance Analysis, Thermal Science and Engineering Progress, 43, 101960, 2023. https://doi.org/10.1016/j.tsep.2023.101960
  • C. Yang, S. Seo, N. Takata, K. Thu and T. Miyazaki, The Life Cycle Climate Performance Evaluation of Low-GWP Refrigerants for Domestic Heat Pumps, International Journal of Refrigeration, 121, 33-42, 2021. https://doi.org/10.1016/j.ijrefrig.2020.09.-020
  • H. Wan, T. Cao, Y. Hwang, R. Radermacher, S. O. Andersen and S. Chin, A Comprehensive Review of Life Cycle Climate Performance (LCCP) for Air Conditioning Systems, International Journal of Refrigeration, 130, 187-198, 2021. http://dx.doi.-org/10.1016/j.ijrefrig.2021.06.026
  • G. Li, Comprehensive Investigation of Transport Refrigeration Life Cycle Climate Performance, Sustainable Energy Technologies and Assessments, 21, 33-49, 2017. https://doi.org/10.1016/j.seta.-2017.04.002
  • J. Wu, G. Zhou and M. Wang, A Comprehensive Assessment of Refrigerants for Cabin Heating and Cooling on Electric Vehicles, Applied Thermal Engineering, 174, 115258, 2020. https://doi.-org/10.1016/j.applthermaleng.2020.115258
  • K. Suerdem, T. Taner, Ö. Açıkgöz, A. S. Dalkılıç and H. Panchal, Performance of Refrigerants Employed in Rooftop Air-Conditioners, Journal of Building Engineering, 70, 106301, 2023. https://doi.org/-10.1016/j.jobe.2023.106301
  • M. Sardarabadi, M. Hosseinzadeh, A. Kazemian and M. P. Fard, Experimental investigation of the effects of using metal-oxides/water nanofluids on a photovoltaic thermal system (PVT) from energy and exergy viewpoints, Energy, 138, 682-695, 2017. https://doi.org/10.1016/j.energy.2017.07.046
  • Y. A. Çengel ve M. A. Boles, Termodinamik Mühendislik Yaklaşımıyla, Güven Kitabevi, İzmir, 2008.
  • F. P. Incropera and D. P. Dewitt, Fundamentals of Heat and Mass Transfer, John Wiley Sons, New York, 303-577, 2003.
  • M. Mohanraja, Y. Belyayevb, S. Jayarajc and A. Kaltayev, Research and Developments on Solar Assisted Compression Heat Pump Systems-A Comprehensive Review (Part A: Modeling and Modifications), Renewable and Sustainable Energy Reviews, 83, 90-123, 2018. https://doi.org/10.-1016/j.rser.2017.08.022
  • M. Aktaş, M. Koşan, E. Arslan and A. D. Tuncer, Designing a Novel Solar-Assisted Heat Pump System with Modification of A Thermal Energy Storage Unit, Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 233, 588-603, 2019. https://doi.org/10.1177/09576-50919847934
  • M. Aktaş, S. Erten, E. Demirci, E. Kılıç and F. N. Erdoğmuş, Studies on Increasing Energy Efficiency and Reducing Environmental Impacts in Industrial Cooling Systems with Direct Sales Function, Iksad Publications, Ankara, 49-99, 2021.
  • M. Koşan, E. Arslan, S. Erten, F. N. Erdoğmuş and M. Aktaş, Determination of Defrost Efficiency and Energy Efficiency Index Value Using Different Defrost Methods and Refrigerants: An Experimental Study, Science and Technology for the Built Environment 28, 1012-1023, 2022. https://doi.org-/10.1080/23744731.2022.2076504
  • H. Lee, S. Troch, Y. Hwang and R. Radermacher, LCCP Evaluation on Various Vapor Compression Cycle Options and Low GWP Refrigerants, International Journal of Refrigeration 70, 128-137, 2016. https://doi.org/10.1016/j.ijrefrig.2016.07.003
  • International Institute of Refrigeration. Guideline for Life Cycle Climate Performance, International Institute of Refrigeration, 3-25, 2016.
  • T.C. Enerji ve Tabii Kaynaklar Bakanlığı, Elektrik, https://enerji.gov.tr/bilgi-merkezi-enerji-elektrik, (Erişim Tarihi: 31.07.2023).
  • S. Şensoy, Y. Ulupınar, M. Demircan, I. Alan and P. A. Bostan, Modeling Solar Energy Potential in Turkey, BALWOIS 2010, Ohri, Republic of Macedonia, 1-10, 25-29 May 2010.
  • S. Şevik, Isı Pompası ve Güneş Kolektörünün Birlikte Kullanıldığı, Isıtma ve Kurutma Amaçlı Sıcak Hava Üretim Sisteminin Tasarımı, İmalatı ve Deneysel İncelenmesi. Gazi Üniversitesi Fen Bilimleri Enstitüsü, Doktora Tezi, 2011.
  • T.C. Enerji ve Tabii Kaynaklar Bakanlığı, Türkiye Güneş Enerjisi Potansiyel Atlası, https://enerji.gov.tr/bilgi-merkezi-enerji-gunes (Erişim Tarihi: 11.08.2023).
  • A. Yıldız ve R. Yıldırım, R134a’ya Alternatif Bir Soğutucu Akışkan (R513A) Kullanan Buhar Sıkıştırmalı Soğutma Sistemlerinin Enerji ve Çevresel Analizi, Düzce Üniversitesi Bilim ve Teknoloji Dergisi, 8, 1817-1828, 2020. https://doi.org/10.29130/dubited.690197
  • R. Yıldırım, K. Kumaş ve A. Ö. Akyüz, Soğutma Sisteminde R404A Yerine R454C Soğutucu Akışkanın Kullanılmasının İncelenmesi: Enerji ve Çevresel Analizi, Teknik Bilimler Dergisi, 11, 47-51, 2021. https://doi.org/10.35354/tbed.951070
  • A. Yıldız and R. Yıldırım, Investigation of Using R134a, R1234yf and R513A as Refrigerant in A Heat Pump, International Journal of Environmental Science and Technology, 18, 1201-1210, 2020. https://doi.org/10.1007/s13762-020-02857-z

Life cycle climate performance (LCCP) analysis of photovoltaic thermal solar collector refrigerating system

Year 2024, , 205 - 215, 15.01.2024
https://doi.org/10.28948/ngumuh.1360957

Abstract

Today, there is need for efficient and sustainable energy systems due to technological developments, climate change and population growth. For this reason, in order to eliminate the gap between energy demand and supply in the world, alternative (renewable) energy sources, storage of existing energy and efficient usage of energy are being used. The importance of technologies that utilize renewable energy sources, increase energy efficiency and store excess-waste energy is increasing more than ever in terms of energy continuity and reliability. The high cost of energy in industrial applications is one of the major factors for the growing demand for sustainable solar alternative applications with energy storage. In this study, it is aimed to design a new type of sustainable photovoltaic thermal solar collector refrigerating system and to perform Life Cycle Climate Performance (LCCP) analysis. Result of the LCCP analysis, direct emissions were calculated as 0,81 kgCO2e, indirect emissions as 119235.5 kgCO2e and total LCCP emission as 119236.3 kgCO2e. Thanks to this system, a sustainable system has been designed where heating, energy storage and refrigerating are carried out together.

Project Number

FDK-2022-7868

References

  • S. Choi, J. Oh, Y. Hwang and H. Lee, Life Cycle Climate Performance Evaluation (LCCP) on Cooling and Heating Systems in South Korea, Applied Thermal Engineering, 120, 88-98, 2017. https://doi.org/-10.1016/j.applthermaleng.2017.03.105
  • H. Wan, T. Cao, Y. Hwang, R. Radermacher and S. Chin, Comprehensive Investigations on Life Cycle Climate Performance of Unitary Air-Conditioners, International Journal of Refrigeration, 129, 332-341, 2021. http://dx.doi.org/10.1016/j.ijrefrig.-2021.04.033
  • F. Wang and T. You, Comparative Analysis on the Life Cycle Climate Performance of Ground Source Heat Pump Using Alternative Refrigerant, Case Studies in Thermal Engineering, 42, 102761, 2023. http://dx.doi.org/10.2139/ssrn.4263765
  • S. Choi, Y. Jung, Y. Kim, H. Lee and Y. Hwang, Environmental Effect Evaluation of Refrigerator Cycle With Life Cycle Climate Performance. International Journal of Refrigeration, 122, 134-146, 2021. http://dx.doi.org/10.1016/j.ijrefrig-.2020.10.032
  • A. Akyüz, R. Yıldırım, A. Güngör, A. D. Tuncer, Experimental Investigation of a Solar-Assisted Air Conditioning System: Energy and Life Cycle Climate Performance Analysis, Thermal Science and Engineering Progress, 43, 101960, 2023. https://doi.org/10.1016/j.tsep.2023.101960
  • C. Yang, S. Seo, N. Takata, K. Thu and T. Miyazaki, The Life Cycle Climate Performance Evaluation of Low-GWP Refrigerants for Domestic Heat Pumps, International Journal of Refrigeration, 121, 33-42, 2021. https://doi.org/10.1016/j.ijrefrig.2020.09.-020
  • H. Wan, T. Cao, Y. Hwang, R. Radermacher, S. O. Andersen and S. Chin, A Comprehensive Review of Life Cycle Climate Performance (LCCP) for Air Conditioning Systems, International Journal of Refrigeration, 130, 187-198, 2021. http://dx.doi.-org/10.1016/j.ijrefrig.2021.06.026
  • G. Li, Comprehensive Investigation of Transport Refrigeration Life Cycle Climate Performance, Sustainable Energy Technologies and Assessments, 21, 33-49, 2017. https://doi.org/10.1016/j.seta.-2017.04.002
  • J. Wu, G. Zhou and M. Wang, A Comprehensive Assessment of Refrigerants for Cabin Heating and Cooling on Electric Vehicles, Applied Thermal Engineering, 174, 115258, 2020. https://doi.-org/10.1016/j.applthermaleng.2020.115258
  • K. Suerdem, T. Taner, Ö. Açıkgöz, A. S. Dalkılıç and H. Panchal, Performance of Refrigerants Employed in Rooftop Air-Conditioners, Journal of Building Engineering, 70, 106301, 2023. https://doi.org/-10.1016/j.jobe.2023.106301
  • M. Sardarabadi, M. Hosseinzadeh, A. Kazemian and M. P. Fard, Experimental investigation of the effects of using metal-oxides/water nanofluids on a photovoltaic thermal system (PVT) from energy and exergy viewpoints, Energy, 138, 682-695, 2017. https://doi.org/10.1016/j.energy.2017.07.046
  • Y. A. Çengel ve M. A. Boles, Termodinamik Mühendislik Yaklaşımıyla, Güven Kitabevi, İzmir, 2008.
  • F. P. Incropera and D. P. Dewitt, Fundamentals of Heat and Mass Transfer, John Wiley Sons, New York, 303-577, 2003.
  • M. Mohanraja, Y. Belyayevb, S. Jayarajc and A. Kaltayev, Research and Developments on Solar Assisted Compression Heat Pump Systems-A Comprehensive Review (Part A: Modeling and Modifications), Renewable and Sustainable Energy Reviews, 83, 90-123, 2018. https://doi.org/10.-1016/j.rser.2017.08.022
  • M. Aktaş, M. Koşan, E. Arslan and A. D. Tuncer, Designing a Novel Solar-Assisted Heat Pump System with Modification of A Thermal Energy Storage Unit, Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 233, 588-603, 2019. https://doi.org/10.1177/09576-50919847934
  • M. Aktaş, S. Erten, E. Demirci, E. Kılıç and F. N. Erdoğmuş, Studies on Increasing Energy Efficiency and Reducing Environmental Impacts in Industrial Cooling Systems with Direct Sales Function, Iksad Publications, Ankara, 49-99, 2021.
  • M. Koşan, E. Arslan, S. Erten, F. N. Erdoğmuş and M. Aktaş, Determination of Defrost Efficiency and Energy Efficiency Index Value Using Different Defrost Methods and Refrigerants: An Experimental Study, Science and Technology for the Built Environment 28, 1012-1023, 2022. https://doi.org-/10.1080/23744731.2022.2076504
  • H. Lee, S. Troch, Y. Hwang and R. Radermacher, LCCP Evaluation on Various Vapor Compression Cycle Options and Low GWP Refrigerants, International Journal of Refrigeration 70, 128-137, 2016. https://doi.org/10.1016/j.ijrefrig.2016.07.003
  • International Institute of Refrigeration. Guideline for Life Cycle Climate Performance, International Institute of Refrigeration, 3-25, 2016.
  • T.C. Enerji ve Tabii Kaynaklar Bakanlığı, Elektrik, https://enerji.gov.tr/bilgi-merkezi-enerji-elektrik, (Erişim Tarihi: 31.07.2023).
  • S. Şensoy, Y. Ulupınar, M. Demircan, I. Alan and P. A. Bostan, Modeling Solar Energy Potential in Turkey, BALWOIS 2010, Ohri, Republic of Macedonia, 1-10, 25-29 May 2010.
  • S. Şevik, Isı Pompası ve Güneş Kolektörünün Birlikte Kullanıldığı, Isıtma ve Kurutma Amaçlı Sıcak Hava Üretim Sisteminin Tasarımı, İmalatı ve Deneysel İncelenmesi. Gazi Üniversitesi Fen Bilimleri Enstitüsü, Doktora Tezi, 2011.
  • T.C. Enerji ve Tabii Kaynaklar Bakanlığı, Türkiye Güneş Enerjisi Potansiyel Atlası, https://enerji.gov.tr/bilgi-merkezi-enerji-gunes (Erişim Tarihi: 11.08.2023).
  • A. Yıldız ve R. Yıldırım, R134a’ya Alternatif Bir Soğutucu Akışkan (R513A) Kullanan Buhar Sıkıştırmalı Soğutma Sistemlerinin Enerji ve Çevresel Analizi, Düzce Üniversitesi Bilim ve Teknoloji Dergisi, 8, 1817-1828, 2020. https://doi.org/10.29130/dubited.690197
  • R. Yıldırım, K. Kumaş ve A. Ö. Akyüz, Soğutma Sisteminde R404A Yerine R454C Soğutucu Akışkanın Kullanılmasının İncelenmesi: Enerji ve Çevresel Analizi, Teknik Bilimler Dergisi, 11, 47-51, 2021. https://doi.org/10.35354/tbed.951070
  • A. Yıldız and R. Yıldırım, Investigation of Using R134a, R1234yf and R513A as Refrigerant in A Heat Pump, International Journal of Environmental Science and Technology, 18, 1201-1210, 2020. https://doi.org/10.1007/s13762-020-02857-z
There are 26 citations in total.

Details

Primary Language Turkish
Subjects Energy
Journal Section Research Articles
Authors

Burak Aktekeli 0000-0003-4600-5942

Mustafa Aktaş 0000-0003-1187-5120

Süleyman Erten 0000-0002-7811-6148

Melis Öder 0000-0002-1894-1445

Fatma Nur Erdoğmuş 0000-0002-8887-6597

Yaren Güven 0000-0003-0732-4692

Project Number FDK-2022-7868
Early Pub Date December 11, 2023
Publication Date January 15, 2024
Submission Date September 15, 2023
Acceptance Date November 22, 2023
Published in Issue Year 2024

Cite

APA Aktekeli, B., Aktaş, M., Erten, S., Öder, M., et al. (2024). Fotovoltaik termal güneş kolektörlü soğutma sisteminin yaşam döngüsü iklim performansı (LCCP) analizi. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 13(1), 205-215. https://doi.org/10.28948/ngumuh.1360957
AMA Aktekeli B, Aktaş M, Erten S, Öder M, Erdoğmuş FN, Güven Y. Fotovoltaik termal güneş kolektörlü soğutma sisteminin yaşam döngüsü iklim performansı (LCCP) analizi. NÖHÜ Müh. Bilim. Derg. January 2024;13(1):205-215. doi:10.28948/ngumuh.1360957
Chicago Aktekeli, Burak, Mustafa Aktaş, Süleyman Erten, Melis Öder, Fatma Nur Erdoğmuş, and Yaren Güven. “Fotovoltaik Termal güneş kolektörlü soğutma Sisteminin yaşam döngüsü Iklim Performansı (LCCP) Analizi”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 13, no. 1 (January 2024): 205-15. https://doi.org/10.28948/ngumuh.1360957.
EndNote Aktekeli B, Aktaş M, Erten S, Öder M, Erdoğmuş FN, Güven Y (January 1, 2024) Fotovoltaik termal güneş kolektörlü soğutma sisteminin yaşam döngüsü iklim performansı (LCCP) analizi. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 13 1 205–215.
IEEE B. Aktekeli, M. Aktaş, S. Erten, M. Öder, F. N. Erdoğmuş, and Y. Güven, “Fotovoltaik termal güneş kolektörlü soğutma sisteminin yaşam döngüsü iklim performansı (LCCP) analizi”, NÖHÜ Müh. Bilim. Derg., vol. 13, no. 1, pp. 205–215, 2024, doi: 10.28948/ngumuh.1360957.
ISNAD Aktekeli, Burak et al. “Fotovoltaik Termal güneş kolektörlü soğutma Sisteminin yaşam döngüsü Iklim Performansı (LCCP) Analizi”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 13/1 (January 2024), 205-215. https://doi.org/10.28948/ngumuh.1360957.
JAMA Aktekeli B, Aktaş M, Erten S, Öder M, Erdoğmuş FN, Güven Y. Fotovoltaik termal güneş kolektörlü soğutma sisteminin yaşam döngüsü iklim performansı (LCCP) analizi. NÖHÜ Müh. Bilim. Derg. 2024;13:205–215.
MLA Aktekeli, Burak et al. “Fotovoltaik Termal güneş kolektörlü soğutma Sisteminin yaşam döngüsü Iklim Performansı (LCCP) Analizi”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, vol. 13, no. 1, 2024, pp. 205-1, doi:10.28948/ngumuh.1360957.
Vancouver Aktekeli B, Aktaş M, Erten S, Öder M, Erdoğmuş FN, Güven Y. Fotovoltaik termal güneş kolektörlü soğutma sisteminin yaşam döngüsü iklim performansı (LCCP) analizi. NÖHÜ Müh. Bilim. Derg. 2024;13(1):205-1.

download