Research Article
BibTex RIS Cite

Examining the environmental and economic dimensions of producing fuel from medical waste plastics

Year 2024, , 279 - 293, 15.01.2024
https://doi.org/10.28948/ngumuh.1367080

Abstract

The increasing challenge of managing medical waste plastics has spurred the exploration of various waste management strategies. This comprehensive study delves into the environmental and economic aspects of different approaches to medical waste management; incineration, landfilling, and pyrolysis, with a specific focus on plastics-to-fuels conversion. The study provides a critical assessment of these methods, highlighting their sustainability and environmental implications. In this study, it was conducted a Life Cycle Assessment (LCA), with a particular focus on comparing greenhouse gas (GHG) emissions. Notably, landfill, a commonly employed method for medical waste disposal, was found to produce lower GHGs than incineration and pyrolysis. However, it does have the drawback of leaving waste as a final product, and its long-term environmental consequences are uncertain, emphasizing the need to explore new technologies. Moreover, this study envisions the conversion of pyrolysis oil from medical waste plastics into a viable fuel source for circular economy, providing a sustainable solution to the growing problem of medical waste plastics. It predicts that in 2030, 799,163 kg of fuel can be obtained from medical waste plastic pyrolysis in the Adana province. As a result, the implementation of a circular economy through the utilization of medical waste plastic pyrolysis oil is projected to yield annual economic profits of up to $4,794,979. Furthermore, this approach has been verified to effectively reduce greenhouse gas (GHG) emissions compared to incineration. Moreover, this innovative strategy has been scientifically validated to substantially reduce greenhouse gas emissions, making it an environmentally responsible and economically promising solution for the future.

References

  • Recycling Magazine, Purdue Innovation Converts Plastic Waste into High-Value Fuels. https://www.recycling-magazine.com/2021/06/16/purdue-innovation-converts-plastic-waste-into-high-value-fuels/ , Accessed 26 September 2023.
  • M. Mittal, D. Mittal and N. K. Aggarwal, Plastic accumulation during COVID-19: call for another pandemic; bioplastic a step towards this challenge?. Environmental Science and Pollution Research, 29 (8), 11039-11053, 2022. https://doi.org/10.1007/s11356-021-17792-w.
  • T. T. Onay, M. A. Küçüker, S. Vardar ve T. Yücel, Türkiye’de Plastik Atik Sorunu ve Politika Önerileri, WWF-Türkiye (Doğal Hayatı Koruma Vakfı), Boğaziçi Üniversitesi Çevre Bilimleri Enstitüsü (BÜ-ÇEVRE), 2022.
  • United Nations Environment Programme (UNEP), What You Need to Know About the Plastic Pollution Resolution. https://www.unep.org/news-and-stories/story/what-you-need-know-about-plastic-pollution-resolution/ , Accessed 26 September 2023.
  • W.T. Chen, K. Jin and N.H.L. Wang, Use of Supercritical Water for the Liquefaction of Polypropylene into Oil. ACS Sustainable Chemistry & Engineering, 7, 3749–3758, 2019. https://doi.org/10.1021/acssuschemeng.8b03841.
  • Plastics, the Circular Economy and Global Trade, World Economic Forum (WEF), 2020.
  • E.A. Udofia, G. Gulis and J. Fobil, Solid Medical Waste: A Cross-Sectional Study of Household Disposal Practices and Reported Harm in Southern Ghana. BMC Public Health, 17 (464), 2017. https://doi.org/10.1186/s12889-017-4366-9.
  • Y. Chartier, J. Emmanuel, U. Pieper, A. Prüss, P. Rushbrook, R. Stringer, W. Townend, S. Wilburn and R. Zghondi, Safe Management of Wastes from Health-Care Activities, 2nd ed., World Health Organization (WHO), Geneva, Switzerland, 2014.
  • P. Kanchi, Knowledge, Attitude, Practice Regarding Hospital Waste Management among Interns & Nurses of Tertiary Care Hospitals of Navi Mumbai. Scholars Journal of Applied Medical Sciences, 5 (2), 526–530, 2017.https://doi.org/10.36347/sjams.2017.v05i02.044 .
  • B. Sahiledengle, Self-Reported Healthcare Waste Segregation Practice and Its Correlates among Healthcare Workers in Hospitals of Southeast Ethiopia. BMC Health Services Research, 19 (5910), 2019. https://doi.org/10.1186/s12913-019-4439-9.
  • K. Aydin and Ç. Ün, Usability of Municipal and Medical Waste Plastics as a Fuel in Diesel Engines. Recent Advances in Environmental and Biological Engineering: Proceedings of the 3rd International Conference on Sustainable Cities, Urban Sustainability and Transportation (SCUST '14), Istanbul, Turkiye, 15-17 December 2014. pp. 34-42, 2014.
  • H. K. Shinn, Y. Hwang, B. G. Kim, C. Yang, W. Na, J. H. Song and H. K. Lim, Segregation for Reduction of Regulated Medical Waste in the Operating Room: A Case Report. Korean Journal of Anesthesiology, 70 (1), 100–104, 2017. https://doi.org/10.4097/kjae.2017.70.1.100.
  • V. C. Sengodan, Segregation of biomedical waste in an South Indian tertiary care hospital. Journal of Natural Science, Biology and Medicine, 5 (2), 378–382, 2014. https://doi.org/10.4103/0976-9668.136194.
  • Medical Waste and Climate Change – The Vicious Cycle We CAN Fix. https://envomed.com/medical-waste-and-climate-change-the-vicious-cycle-we-can-fix/ , Accessed 26 September 2023.
  • A. D. Igalavithana, X. Yuan, C. P. Attanayake, S. Wang, S. You, D. C. W. Tsang, A. Nzihou, and Y. S. Ok, Sustainable management of plastic wastes in COVID-19 pandemic: The biochar solution. Environmental Research, 212, 113495, 2022. https://doi.org/10.1016/j.envres.2022.113495.
  • Coronavirus: Disposable Face Masks Creating New Plastic Pollution Crisis, Experts Warn. https://news.sky.com/story/coronavirus-disposable-face-masks-creating-new-plastic-pollution-crisis-experts-warn-12045350 , Accessed 26 September 2023.
  • A. L. Patrício Silva, J. C. Prata, T. R. Walker, A. C. Duarte, W. Ouyang, D. Barcelò and T. Rocha-Santos, Increased plastic pollution due to COVID-19 pandemic: Challenges and recommendations. Chemical Engineering Journal, 405, 126683, 2021. https://doi.org/10.1016/j.cej.2020.126683.
  • A. Hanedar, D. I., Çifçi and N. Zafer, The impact of COVID-19 pandemic in medical waste amounts: a case study from a high-populated city of Turkey. Journal of Material Cycles and Waste Management, 24, 1760–1767, 2022. https://doi.org/10.1007/s10163-022-01428-3.
  • S. Jung, S. Lee, X. Dou and E. E. Kwon, Valorization of disposable COVID-19 mask through the thermo-chemical process. Chemical. Engineering Journal, 405, 126658, 2021. https://doi.org/10.1016/j.cej.2020.126658.
  • Ö. Ak, COVID-19’un Başka Bir Sonucu: Plastik Salgını. TÜBİTAK Bilim ve Teknik Dergisi, 10, 26–35, 2020.
  • M. Minoglou, S. Gerassimidou and D. Komilis, Healthcare Waste Generation Worldwide and Its Dependence on Socio-Economic and Environmental Factors. Sustainability, 9, 220, 2017. https://doi.org/10.3390/su9020220.
  • C. Kenny and A. Priyadarshini, Review of Current Healthcare Waste Management Methods and Their Effect on Global Health. Healthcare, 9, 284, 2021. https://doi.org/10.3390/healthcare9030284.
  • M. E. Boesch, C. Vadenbo, D. Saner, C. Huter and S. Hellweg, An LCA Model for Waste Incineration Enhanced with New Technologies for Metal Recovery and Application to the Case of Switzerland. Waste Management, 34, 378–389, 2014. https://doi.org/10.1016/j.wasman.2013.10.019.
  • S. De and B. Debnath, Prevalence of Health Hazards Associated with Solid Waste Disposal: A Case Study of Kolkata, India. Procedia Environmental Sciences, 35, 201–208, 2016. https://doi.org/10.1016/j.proenv.2016.07.081.
  • X. F. Lou and J. Nair, The impact of landfilling and composting on greenhouse gas emissions – A review. Bioresource Technology, 100 (16), 3792-3798, 2009. https://doi.org/10.1016/j.proenv.2016.07.081.
  • A. Vlasopoulos, J. Malinauskaite, A. Żabnieńska-Góra and H. Jouhara, Life Cycle Assessment of Plastic Waste and Energy Recovery. Energy, 277, 127576, 2023. https://doi.org/10.1016/j.energy.2023.127576.
  • B. Joseph, J. James, N. Kalarikkal and S. Thomas, Recycling of Medical Plastics. Advanced Industrial and Engineering Polymer Research, 4, 199–208, 2021. https://doi.org/10.1016/j.aiepr.2021.06.003.
  • V. Krishnamurthi, R. Frota and B. Turna, Management of Vascular Complications. Section IV: Common Surgical Considerations, Chapter 21, Complications of Urologic Surgery Prevention and Management Book Fourth Edition, 2010. ISBN: 978-1-4160-4572-4.
  • O. A. Alabi, K. I. Ologbonjaye, O. Awosolu and O. E. Alalade, Public and Environmental Health Effects of Plastic Wastes Disposal: A Review. Journal of Toxicology and Risk Assessment, 5 (21), 2019. https://doi.org/10.23937/2572-4061.1510021.
  • M. O. Amankwa, E. K. Tetteh and G. T. Mohale, The Production of Valuable Products and Fuel from Plastic Waste in Africa. Discover Sustainability, 2 (31), 2021. https://doi.org/10.1007/s43621-021-00040-z.
  • J. A. Onwudili, N. Insura and P. T. Williams, Composition of Products from the Pyrolysis of Polyethylene and Polystyrene in a Closed Batch Reactor: Effects of Temperature and Residence Time. Journal of Analytical and Applied Pyrolysis, 86 (2), 293–303, 2009. https://doi.org/10.1016/j.jaap.2009.07.008.
  • U. Som, F. Rahman and S. Hossain, Recovery of Pyrolytic Oil from Thermal Pyrolysis of Medical Waste. Journal of Engineering Sciences, 5 (2), 5-8, 2018. https://doi.org/10.21272/jes.2018.5(2).h2.
  • K. Aydin and Ç. Ün, Development of Solid Waste Management System for Adana Metropolitan Municipality. Exergy for A Better Environment and Improved Sustainability 2; Aloui, F., Dincer, I., Eds., 115–131, Springer: Cham, Switzerland, 2018. https://doi.org/10.1007/978-3-319-62575-1_8.
  • H. K. Musale, Y. C. Bhattacharyulu and R. K. Bhoyar, Design Consideration of Pyrolysis Reactor for Production of Bio-Oil. International Journal of Engineering Trends and Technology (IJETT), 5 (2), 83-85, 2013. ISSN:2231-5381.
  • M. I. Jahirul, M. G. Rasul, D. Schaller, M. M. K. Khan, M. M. Hasan and M. A. Hazrat, Transport fuel from waste plastics pyrolysis – A review on technologies, challenges and opportunities. Energy Conversion and Management, 258, 115451, 2022. https://doi.org/10.1016/j.enconman.2022.11545.
  • J. Wang, J. Shen, D. Ye, X. Yan, Y. Zhang, W. Yang, X. Li, J. Wang, L. Zhang and L. Pan, Disinfection Technology of Hospital Wastes and Wastewater: Suggestions for Disinfection Strategy during Coronavirus Disease 2019 (COVID-19) Pandemic in China. Environmental Pollution, 262, 114665, 2020. https://doi.org/10.1016/j.envpol.2020.114665.
  • N. Asim, M. Badiei and K. Sopian, Review of the Valorization Options for the Proper Disposal of Face Masks during the COVID-19 Pandemic. Environmental Technology & Innovation, 23, 101797, 2021. https://doi.org/10.1016/j.eti.2021.101797.
  • O. A. Fakayode, E. A. A. Aboagarib, C. Zhou and H. Ma, Co-Pyrolysis of Lignocellulosic and Macroalgae Biomasses for the Production of Biochar—A Review. Bioresource Technology, 297, 122408, 2020. https://doi.org/10.1016/j.biortech.2019.122408.
  • G. Su, H. C. Ong, S. Ibrahim, I. M. R. Fattah, M. Mofijur and C. T. Chong, Valorisation of Medical Waste through Pyrolysis for a Cleaner Environment: Progress and Challenges. Environmental Pollution, 279, 116934, 2021. https://doi.org/10.1016/j.envpol.2021.116934.
  • T. A. Aragaw and B. A. Mekonnen, Current Plastics Pollution Threats Due to COVID-19 and Its Possible Mitigation Techniques: A Waste-to-Energy Conversion via Pyrolysis. Environmental Systems Research, 10 (8), 2021. https://doi.org/10.1186/s40068-020-00217-x.
  • R. K. Singh and B. Ruj, Time and Temperature Depended Fuel Gas Generation from Pyrolysis of Real World Municipal Plastic Waste. Fuel, 174, 164–171, 2016. https://doi.org/10.1016/j.fuel.2016.01.049.
  • N. A. Antoniou and A. A. Zorpas, Quality protocol and procedure development to define end-of-waste criteria for tire pyrolysis oil in the framework of circular economy strategy. Waste Management, 15 (95), 161–170, 2019. https://doi.org/10.1016/j.wasman.2019.05.035.
  • W. U. Eze, R. Umunakwe, H. C. Obasi, M. I. Ugbaja, C. C. Uche and I. C. Madufor, Plastics waste management: a review of pyrolysis technology. Clean Technologies and Recycling, 1 (1), 50–69, 2021. https://doi.org/10.3934/ctr.2021003.
  • M. J. B. Kabeyi and A. O. Olanrewaju, Performance analysis and evaluation of Muhoroni 60MW gas turbine power plant. International Conference on Electrical, Computer, Communications and Mechatronics Engineering (ICECCME), Mauritius, 7-8 October 2021, pp. 1–8, 2021.
  • L. Fulgencio-Medrano, S. García-Fernández, A. Asueta, A. Lopez-Urionabarrenechea, B. B. Perez-Martinez and J. M. Arandes, Oil Production by Pyrolysis of Real Plastic Waste. Polymers, 14, 553, 2022. https://doi.org/10.3390/polym14030553.
  • M. J. B. Kabeyi and A. O. Olanrewaju, Review and Design Overview of Plastic Waste-to-Pyrolysis Oil Conversion with Implications on the Energy Transition. Journal of Energy, 1821129, 2023. https://doi.org/10.1155/2023/1821129.
  • M. J. B. Kabeyi and A. O. Olanrewaju, Sustainability Assessment for Non-Combustible Renewable Power Generation. 12th Annual Istanbul International Conference on Industrial Engineering and Operations Management, Istanbul, Turkiye, 7-10 March 2022, pp. 2232–2244, 2022.
  • TMMOB Chamber of Chemical Engineers (KMO) Istanbul Branch Plastics and Rubber Commission. Plastic Recycling and Waste Import Report in Türkiye, 2021.
  • T.R. Ministry of Development. Eleventh Development Plan (2019-2023) Sustainable Management of Environment and Natural Resources, Working Group Report, 2018.
  • Anadolu Agency (AA), Türkiye Her Yıl 1,1 Milyon Ton Plastik Atığı Geri Dönüştürüyor. https://www.aa.com.tr/tr/cevre/turkiye-her-yil-1-1-milyon-ton-plastik-atigi-geri-donusturuyor/2427166 , Accessed 26 September 2023.
  • Turkish Statistical Institute (TÜİK) Waste Statistics-2020. https://data.tuik.gov.tr/Bulten/Index?p=Atik-Istatistikleri-2020-37198 , Accessed 26 September 2023.
  • Adana Governorship, Provincial Directorate of Environment, Urbanization and Climate Change, Adana Province Environmental Status Report, 2022.
  • Adana Metropolitan Municipality Activity Report. https://www.adana.bel.tr/panel/uploads/yillikfaaliyetraporlari_v/files/2022yili-faaliyetraporu-small.pdf , Accessed 26 September 2023.
  • How Should US Health Care Lead Global Change in Plastic Waste Disposal?. https://journalofethics.ama-assn.org/article/how-should-us-health-care-lead-global-change-plastic-waste-disposal/2022-10 , Accessed 26 September 2023.
  • K. V. Wong, R. Narasimhan, R. Kashyap and J. Fu, Medical waste characterization. Journal of Environment and Health, 57 (1), 19-24, 1994.
  • A. Dash, S. Kumar and R. K. Singh, Thermolysis of Medical Waste (Waste Syringe) to Liquid Fuel Using Semi-Batch Reactor. Waste Biomass Valorization, 6 (4), 507–514, 2015. https://doi.org/10.1007/s12649-015-9382-3.
  • UNEP, Compendium of Technologies for Treatment/Destruction of Healthcare Waste, United Nations Environment Programme Division of Technology, Industry and Economics International Environmental Technology Centre Osaka, Japan, 2012.
  • N. Miskolczi, L. Bartha and A. Angyal, Pyrolysis of Polyvinyl Chloride (PVC)-Containing Mixed Plastic Wastes for Recovery of Hydrocarbons. Energy & Fuels, 23 (5), 2743-2749, 2009. https://doi.org/10.1021/ef8011245.
  • S. B. Rasul, U. Som and M. S. Hossain, Liquid fuel oil produced from plastic based medical wastes by thermal cracking. Scientific Reports, 11, 17048, 2021. https://doi.org/10.1038/s41598-021-96424-2.
  • Hospital Waste Characterization. https://www.hprc.org/resources/hospital-waste-characterization , Accessed 26 September 2023.
  • LCA ChemCyclingTM: CO2 Emissions of Pyrolyzed Mixed Plastic Waste and the Mass Balance Approach. https://www.basf.com/global/documents/en/sustainability/we-drive-sustainable-solutions/circular-economy/chemcycling/Intern_Christian%20Kr%C3%BCger_BASF%20Dialog%20Forum.pdf , Accessed 26 September 2023.
  • G. Lopez, M. Artetxe, M. Amutio, J. Bilbao and M. Olazar, Thermochemical Routes for the Valorization of Waste Polyolefinic Plastics to Produce Fuels and Chemicals, A Review. Renewable and Sustainable Energy Reviews, 346–368, 2017. https://doi.org/10.1016/j.rser.2017.01.142.
  • Recycling Breakthrough Makes Plastic Waste a High-Value Commodity. https://oilprice.com/Energy/Energy-General/Recycling-Breakthrough-Makes-Plastic-Waste-A-High-Value-Commodity.html , Accessed 26 September 2023.
  • Plastic Pyrolysis Oil Market Research Report 2023. https://www.transparencymarketresearch.com/pyrolysis-oil-market.html , Accessed 26 September 2023.
  • R. U. Gracida-Alvarez, P. T. Benavides, U. Lee and M. Wang, Life-cycle analysis of recycling of post-use plastic to plastic via pyrolysis. Journal of Cleaner Production, 425, 138867, 2023. https://doi.org/10.1016/j.jclepro.2023.138867.
  • H. Park, K. Kim, M. Yu, Z. Yun and S. Lee, Economic analysis of the circular economy based on waste plastic pyrolysis oil: a case of the university campus. Environment, Development and Sustainability, 15, 1-21, 2023. https://doi.org/10.1007/s10668-023-02963-1.
  • ICIS Launches Pyrolysis Oil Pricing Indexes for Chemical Recycling. https://www.icis.com/explore/press-releases/icis-launches-pyrolysis-oil-pricing-indexes-for-chemical-recycling/ , Accessed 26 September 2023.
  • UNEP. https://www.who.int/news-room/fact-sheets/detail/health-care-waste , Accessed 26 September 2023.
  • S. Burnley, S. Wagland and P. Longhurst, Using life cycle assessment in environmental engineering education. Higher Education Pedagogies, 4, 64–79, 2019. https://doi.org/10.1080/23752696.2019.1627672.
  • European Commission, “Life Cycle Assessment (LCA),” European Platform on Life Cycle Assessment. https://eplca.jrc.ec.europa.eu/lifecycleassessment.html , Accessed 26 September 2023.
  • S. M. A. Rahman, S. Issa, M. E. H. Assad, S. K. Shah, M. A. Abdelkareem, M. E. Hoque and A. G. Olabi, Performance enhancement and life cycle analysis of a novel solar HVAC system using underground water and energy recovery technique. Thermal Science and Engineering Progress, 36, 101515, 2022. https://doi.org/10.1016/j.tsep.2022.101515 .
  • H. Alhazmi, F. H. Almansour and Z. Aldhafeeri, Plastic Waste Management: A Review of Existing Life Cycle Assessment Studies. Sustainability, 13, 5340, 2021. https://doi.org/10.3390/su13105340.
  • M. H. Mushtaq, F. Noor, M. A. Mujtaba, S. Asghar, A. A. Yusuf, M. E. M. Soudagar, A. Hussain, M. F. Badran and K. Shahapurkar, Environmental Performance of Alternative Hospital Waste Management Strategies Using Life Cycle Assessment (LCA) Approach. Sustainability, 14, 14942, 2022. https://doi.org/10.3390/su142214942.
  • Y. Dong, M. U. Hossain, H. Li and P. Liu, Developing Conversion Factors of LCIA Methods for Comparison of LCA Results in the Construction Sector. Sustainability, 13, 9016, 2021. https://doi.org/10.3390/su13169016.

Tıbbi atık plastiklerden yakıt üretiminin çevresel ve ekonomik boyutlarının incelenmesi

Year 2024, , 279 - 293, 15.01.2024
https://doi.org/10.28948/ngumuh.1367080

Abstract

Tıbbi atık plastiklerin yönetiminde giderek artan zorluklar, çeşitli atık yönetimi stratejilerinin araştırılmasını teşvik etmiştir. Bu kapsamlı çalışma; plastiklerin yakıtlara dönüştürülmesine özel olarak odaklanarak, tıbbi atık yönetimine yönelik farklı yaklaşımların (yakma, düzenli depolama ve piroliz) çevresel ve ekonomik yönlerini incelemektedir. Çalışma, bu yöntemlerin detaylı bir değerlendirmesini sunarak sürdürülebilirlik ve çevresel etkilerini vurgulamaktadır. Bu çalışmada, özellikle sera gazı (GHG) emisyonlarının karşılaştırılmasına adına bir Yaşam Döngüsü Analizi (LCA) yapılmıştır. Özellikle, tıbbi atık bertarafı için yaygın olarak kullanılan bir yöntem olan düzenli depolamanın, yakma ve pirolize göre daha düşük sera gazı ürettiği tespit edilmiştir. Bununla birlikte, atığı nihai ürün olarak doğaya bırakma dezavantajına sahiptir ve uzun vadeli çevresel sonuçları belirsizdir, bu da yeni teknolojilerin araştırılması ihtiyacını ortaya koyar. Ayrıca bu çalışma, tıbbi atık plastiklerden elde edilen piroliz yağının döngüsel ekonomi için uygun bir yakıt kaynağına dönüştürülmesini ve büyüyen tıbbi atık plastik sorununa sürdürülebilir bir çözüm getirilmesini öngörmektedir. Adana ilinde 2030 yılında tıbbi atık plastik pirolizinden 799.163 kg yakıt elde edilebileceği öngörülmektedir. Sonuç olarak, tıbbi atık plastiklerinden elde edilen piroliz yağının kullanılması yoluyla döngüsel bir ekonominin uygulanmasının yıllık 4.794.979 $'a kadar ekonomik kazanç sağlayacağı öngörülmektedir. Ayrıca, bu yaklaşımın sera gazı (GHG) emisyonlarını yakmaya kıyasla etkili bir şekilde azalttığı doğrulanmıştır, bu da yakıt eldesini gelecek için çevresel açıdan sorumlu ve ekonomik açıdan umut verici bir çözüm haline getirmektedir.

References

  • Recycling Magazine, Purdue Innovation Converts Plastic Waste into High-Value Fuels. https://www.recycling-magazine.com/2021/06/16/purdue-innovation-converts-plastic-waste-into-high-value-fuels/ , Accessed 26 September 2023.
  • M. Mittal, D. Mittal and N. K. Aggarwal, Plastic accumulation during COVID-19: call for another pandemic; bioplastic a step towards this challenge?. Environmental Science and Pollution Research, 29 (8), 11039-11053, 2022. https://doi.org/10.1007/s11356-021-17792-w.
  • T. T. Onay, M. A. Küçüker, S. Vardar ve T. Yücel, Türkiye’de Plastik Atik Sorunu ve Politika Önerileri, WWF-Türkiye (Doğal Hayatı Koruma Vakfı), Boğaziçi Üniversitesi Çevre Bilimleri Enstitüsü (BÜ-ÇEVRE), 2022.
  • United Nations Environment Programme (UNEP), What You Need to Know About the Plastic Pollution Resolution. https://www.unep.org/news-and-stories/story/what-you-need-know-about-plastic-pollution-resolution/ , Accessed 26 September 2023.
  • W.T. Chen, K. Jin and N.H.L. Wang, Use of Supercritical Water for the Liquefaction of Polypropylene into Oil. ACS Sustainable Chemistry & Engineering, 7, 3749–3758, 2019. https://doi.org/10.1021/acssuschemeng.8b03841.
  • Plastics, the Circular Economy and Global Trade, World Economic Forum (WEF), 2020.
  • E.A. Udofia, G. Gulis and J. Fobil, Solid Medical Waste: A Cross-Sectional Study of Household Disposal Practices and Reported Harm in Southern Ghana. BMC Public Health, 17 (464), 2017. https://doi.org/10.1186/s12889-017-4366-9.
  • Y. Chartier, J. Emmanuel, U. Pieper, A. Prüss, P. Rushbrook, R. Stringer, W. Townend, S. Wilburn and R. Zghondi, Safe Management of Wastes from Health-Care Activities, 2nd ed., World Health Organization (WHO), Geneva, Switzerland, 2014.
  • P. Kanchi, Knowledge, Attitude, Practice Regarding Hospital Waste Management among Interns & Nurses of Tertiary Care Hospitals of Navi Mumbai. Scholars Journal of Applied Medical Sciences, 5 (2), 526–530, 2017.https://doi.org/10.36347/sjams.2017.v05i02.044 .
  • B. Sahiledengle, Self-Reported Healthcare Waste Segregation Practice and Its Correlates among Healthcare Workers in Hospitals of Southeast Ethiopia. BMC Health Services Research, 19 (5910), 2019. https://doi.org/10.1186/s12913-019-4439-9.
  • K. Aydin and Ç. Ün, Usability of Municipal and Medical Waste Plastics as a Fuel in Diesel Engines. Recent Advances in Environmental and Biological Engineering: Proceedings of the 3rd International Conference on Sustainable Cities, Urban Sustainability and Transportation (SCUST '14), Istanbul, Turkiye, 15-17 December 2014. pp. 34-42, 2014.
  • H. K. Shinn, Y. Hwang, B. G. Kim, C. Yang, W. Na, J. H. Song and H. K. Lim, Segregation for Reduction of Regulated Medical Waste in the Operating Room: A Case Report. Korean Journal of Anesthesiology, 70 (1), 100–104, 2017. https://doi.org/10.4097/kjae.2017.70.1.100.
  • V. C. Sengodan, Segregation of biomedical waste in an South Indian tertiary care hospital. Journal of Natural Science, Biology and Medicine, 5 (2), 378–382, 2014. https://doi.org/10.4103/0976-9668.136194.
  • Medical Waste and Climate Change – The Vicious Cycle We CAN Fix. https://envomed.com/medical-waste-and-climate-change-the-vicious-cycle-we-can-fix/ , Accessed 26 September 2023.
  • A. D. Igalavithana, X. Yuan, C. P. Attanayake, S. Wang, S. You, D. C. W. Tsang, A. Nzihou, and Y. S. Ok, Sustainable management of plastic wastes in COVID-19 pandemic: The biochar solution. Environmental Research, 212, 113495, 2022. https://doi.org/10.1016/j.envres.2022.113495.
  • Coronavirus: Disposable Face Masks Creating New Plastic Pollution Crisis, Experts Warn. https://news.sky.com/story/coronavirus-disposable-face-masks-creating-new-plastic-pollution-crisis-experts-warn-12045350 , Accessed 26 September 2023.
  • A. L. Patrício Silva, J. C. Prata, T. R. Walker, A. C. Duarte, W. Ouyang, D. Barcelò and T. Rocha-Santos, Increased plastic pollution due to COVID-19 pandemic: Challenges and recommendations. Chemical Engineering Journal, 405, 126683, 2021. https://doi.org/10.1016/j.cej.2020.126683.
  • A. Hanedar, D. I., Çifçi and N. Zafer, The impact of COVID-19 pandemic in medical waste amounts: a case study from a high-populated city of Turkey. Journal of Material Cycles and Waste Management, 24, 1760–1767, 2022. https://doi.org/10.1007/s10163-022-01428-3.
  • S. Jung, S. Lee, X. Dou and E. E. Kwon, Valorization of disposable COVID-19 mask through the thermo-chemical process. Chemical. Engineering Journal, 405, 126658, 2021. https://doi.org/10.1016/j.cej.2020.126658.
  • Ö. Ak, COVID-19’un Başka Bir Sonucu: Plastik Salgını. TÜBİTAK Bilim ve Teknik Dergisi, 10, 26–35, 2020.
  • M. Minoglou, S. Gerassimidou and D. Komilis, Healthcare Waste Generation Worldwide and Its Dependence on Socio-Economic and Environmental Factors. Sustainability, 9, 220, 2017. https://doi.org/10.3390/su9020220.
  • C. Kenny and A. Priyadarshini, Review of Current Healthcare Waste Management Methods and Their Effect on Global Health. Healthcare, 9, 284, 2021. https://doi.org/10.3390/healthcare9030284.
  • M. E. Boesch, C. Vadenbo, D. Saner, C. Huter and S. Hellweg, An LCA Model for Waste Incineration Enhanced with New Technologies for Metal Recovery and Application to the Case of Switzerland. Waste Management, 34, 378–389, 2014. https://doi.org/10.1016/j.wasman.2013.10.019.
  • S. De and B. Debnath, Prevalence of Health Hazards Associated with Solid Waste Disposal: A Case Study of Kolkata, India. Procedia Environmental Sciences, 35, 201–208, 2016. https://doi.org/10.1016/j.proenv.2016.07.081.
  • X. F. Lou and J. Nair, The impact of landfilling and composting on greenhouse gas emissions – A review. Bioresource Technology, 100 (16), 3792-3798, 2009. https://doi.org/10.1016/j.proenv.2016.07.081.
  • A. Vlasopoulos, J. Malinauskaite, A. Żabnieńska-Góra and H. Jouhara, Life Cycle Assessment of Plastic Waste and Energy Recovery. Energy, 277, 127576, 2023. https://doi.org/10.1016/j.energy.2023.127576.
  • B. Joseph, J. James, N. Kalarikkal and S. Thomas, Recycling of Medical Plastics. Advanced Industrial and Engineering Polymer Research, 4, 199–208, 2021. https://doi.org/10.1016/j.aiepr.2021.06.003.
  • V. Krishnamurthi, R. Frota and B. Turna, Management of Vascular Complications. Section IV: Common Surgical Considerations, Chapter 21, Complications of Urologic Surgery Prevention and Management Book Fourth Edition, 2010. ISBN: 978-1-4160-4572-4.
  • O. A. Alabi, K. I. Ologbonjaye, O. Awosolu and O. E. Alalade, Public and Environmental Health Effects of Plastic Wastes Disposal: A Review. Journal of Toxicology and Risk Assessment, 5 (21), 2019. https://doi.org/10.23937/2572-4061.1510021.
  • M. O. Amankwa, E. K. Tetteh and G. T. Mohale, The Production of Valuable Products and Fuel from Plastic Waste in Africa. Discover Sustainability, 2 (31), 2021. https://doi.org/10.1007/s43621-021-00040-z.
  • J. A. Onwudili, N. Insura and P. T. Williams, Composition of Products from the Pyrolysis of Polyethylene and Polystyrene in a Closed Batch Reactor: Effects of Temperature and Residence Time. Journal of Analytical and Applied Pyrolysis, 86 (2), 293–303, 2009. https://doi.org/10.1016/j.jaap.2009.07.008.
  • U. Som, F. Rahman and S. Hossain, Recovery of Pyrolytic Oil from Thermal Pyrolysis of Medical Waste. Journal of Engineering Sciences, 5 (2), 5-8, 2018. https://doi.org/10.21272/jes.2018.5(2).h2.
  • K. Aydin and Ç. Ün, Development of Solid Waste Management System for Adana Metropolitan Municipality. Exergy for A Better Environment and Improved Sustainability 2; Aloui, F., Dincer, I., Eds., 115–131, Springer: Cham, Switzerland, 2018. https://doi.org/10.1007/978-3-319-62575-1_8.
  • H. K. Musale, Y. C. Bhattacharyulu and R. K. Bhoyar, Design Consideration of Pyrolysis Reactor for Production of Bio-Oil. International Journal of Engineering Trends and Technology (IJETT), 5 (2), 83-85, 2013. ISSN:2231-5381.
  • M. I. Jahirul, M. G. Rasul, D. Schaller, M. M. K. Khan, M. M. Hasan and M. A. Hazrat, Transport fuel from waste plastics pyrolysis – A review on technologies, challenges and opportunities. Energy Conversion and Management, 258, 115451, 2022. https://doi.org/10.1016/j.enconman.2022.11545.
  • J. Wang, J. Shen, D. Ye, X. Yan, Y. Zhang, W. Yang, X. Li, J. Wang, L. Zhang and L. Pan, Disinfection Technology of Hospital Wastes and Wastewater: Suggestions for Disinfection Strategy during Coronavirus Disease 2019 (COVID-19) Pandemic in China. Environmental Pollution, 262, 114665, 2020. https://doi.org/10.1016/j.envpol.2020.114665.
  • N. Asim, M. Badiei and K. Sopian, Review of the Valorization Options for the Proper Disposal of Face Masks during the COVID-19 Pandemic. Environmental Technology & Innovation, 23, 101797, 2021. https://doi.org/10.1016/j.eti.2021.101797.
  • O. A. Fakayode, E. A. A. Aboagarib, C. Zhou and H. Ma, Co-Pyrolysis of Lignocellulosic and Macroalgae Biomasses for the Production of Biochar—A Review. Bioresource Technology, 297, 122408, 2020. https://doi.org/10.1016/j.biortech.2019.122408.
  • G. Su, H. C. Ong, S. Ibrahim, I. M. R. Fattah, M. Mofijur and C. T. Chong, Valorisation of Medical Waste through Pyrolysis for a Cleaner Environment: Progress and Challenges. Environmental Pollution, 279, 116934, 2021. https://doi.org/10.1016/j.envpol.2021.116934.
  • T. A. Aragaw and B. A. Mekonnen, Current Plastics Pollution Threats Due to COVID-19 and Its Possible Mitigation Techniques: A Waste-to-Energy Conversion via Pyrolysis. Environmental Systems Research, 10 (8), 2021. https://doi.org/10.1186/s40068-020-00217-x.
  • R. K. Singh and B. Ruj, Time and Temperature Depended Fuel Gas Generation from Pyrolysis of Real World Municipal Plastic Waste. Fuel, 174, 164–171, 2016. https://doi.org/10.1016/j.fuel.2016.01.049.
  • N. A. Antoniou and A. A. Zorpas, Quality protocol and procedure development to define end-of-waste criteria for tire pyrolysis oil in the framework of circular economy strategy. Waste Management, 15 (95), 161–170, 2019. https://doi.org/10.1016/j.wasman.2019.05.035.
  • W. U. Eze, R. Umunakwe, H. C. Obasi, M. I. Ugbaja, C. C. Uche and I. C. Madufor, Plastics waste management: a review of pyrolysis technology. Clean Technologies and Recycling, 1 (1), 50–69, 2021. https://doi.org/10.3934/ctr.2021003.
  • M. J. B. Kabeyi and A. O. Olanrewaju, Performance analysis and evaluation of Muhoroni 60MW gas turbine power plant. International Conference on Electrical, Computer, Communications and Mechatronics Engineering (ICECCME), Mauritius, 7-8 October 2021, pp. 1–8, 2021.
  • L. Fulgencio-Medrano, S. García-Fernández, A. Asueta, A. Lopez-Urionabarrenechea, B. B. Perez-Martinez and J. M. Arandes, Oil Production by Pyrolysis of Real Plastic Waste. Polymers, 14, 553, 2022. https://doi.org/10.3390/polym14030553.
  • M. J. B. Kabeyi and A. O. Olanrewaju, Review and Design Overview of Plastic Waste-to-Pyrolysis Oil Conversion with Implications on the Energy Transition. Journal of Energy, 1821129, 2023. https://doi.org/10.1155/2023/1821129.
  • M. J. B. Kabeyi and A. O. Olanrewaju, Sustainability Assessment for Non-Combustible Renewable Power Generation. 12th Annual Istanbul International Conference on Industrial Engineering and Operations Management, Istanbul, Turkiye, 7-10 March 2022, pp. 2232–2244, 2022.
  • TMMOB Chamber of Chemical Engineers (KMO) Istanbul Branch Plastics and Rubber Commission. Plastic Recycling and Waste Import Report in Türkiye, 2021.
  • T.R. Ministry of Development. Eleventh Development Plan (2019-2023) Sustainable Management of Environment and Natural Resources, Working Group Report, 2018.
  • Anadolu Agency (AA), Türkiye Her Yıl 1,1 Milyon Ton Plastik Atığı Geri Dönüştürüyor. https://www.aa.com.tr/tr/cevre/turkiye-her-yil-1-1-milyon-ton-plastik-atigi-geri-donusturuyor/2427166 , Accessed 26 September 2023.
  • Turkish Statistical Institute (TÜİK) Waste Statistics-2020. https://data.tuik.gov.tr/Bulten/Index?p=Atik-Istatistikleri-2020-37198 , Accessed 26 September 2023.
  • Adana Governorship, Provincial Directorate of Environment, Urbanization and Climate Change, Adana Province Environmental Status Report, 2022.
  • Adana Metropolitan Municipality Activity Report. https://www.adana.bel.tr/panel/uploads/yillikfaaliyetraporlari_v/files/2022yili-faaliyetraporu-small.pdf , Accessed 26 September 2023.
  • How Should US Health Care Lead Global Change in Plastic Waste Disposal?. https://journalofethics.ama-assn.org/article/how-should-us-health-care-lead-global-change-plastic-waste-disposal/2022-10 , Accessed 26 September 2023.
  • K. V. Wong, R. Narasimhan, R. Kashyap and J. Fu, Medical waste characterization. Journal of Environment and Health, 57 (1), 19-24, 1994.
  • A. Dash, S. Kumar and R. K. Singh, Thermolysis of Medical Waste (Waste Syringe) to Liquid Fuel Using Semi-Batch Reactor. Waste Biomass Valorization, 6 (4), 507–514, 2015. https://doi.org/10.1007/s12649-015-9382-3.
  • UNEP, Compendium of Technologies for Treatment/Destruction of Healthcare Waste, United Nations Environment Programme Division of Technology, Industry and Economics International Environmental Technology Centre Osaka, Japan, 2012.
  • N. Miskolczi, L. Bartha and A. Angyal, Pyrolysis of Polyvinyl Chloride (PVC)-Containing Mixed Plastic Wastes for Recovery of Hydrocarbons. Energy & Fuels, 23 (5), 2743-2749, 2009. https://doi.org/10.1021/ef8011245.
  • S. B. Rasul, U. Som and M. S. Hossain, Liquid fuel oil produced from plastic based medical wastes by thermal cracking. Scientific Reports, 11, 17048, 2021. https://doi.org/10.1038/s41598-021-96424-2.
  • Hospital Waste Characterization. https://www.hprc.org/resources/hospital-waste-characterization , Accessed 26 September 2023.
  • LCA ChemCyclingTM: CO2 Emissions of Pyrolyzed Mixed Plastic Waste and the Mass Balance Approach. https://www.basf.com/global/documents/en/sustainability/we-drive-sustainable-solutions/circular-economy/chemcycling/Intern_Christian%20Kr%C3%BCger_BASF%20Dialog%20Forum.pdf , Accessed 26 September 2023.
  • G. Lopez, M. Artetxe, M. Amutio, J. Bilbao and M. Olazar, Thermochemical Routes for the Valorization of Waste Polyolefinic Plastics to Produce Fuels and Chemicals, A Review. Renewable and Sustainable Energy Reviews, 346–368, 2017. https://doi.org/10.1016/j.rser.2017.01.142.
  • Recycling Breakthrough Makes Plastic Waste a High-Value Commodity. https://oilprice.com/Energy/Energy-General/Recycling-Breakthrough-Makes-Plastic-Waste-A-High-Value-Commodity.html , Accessed 26 September 2023.
  • Plastic Pyrolysis Oil Market Research Report 2023. https://www.transparencymarketresearch.com/pyrolysis-oil-market.html , Accessed 26 September 2023.
  • R. U. Gracida-Alvarez, P. T. Benavides, U. Lee and M. Wang, Life-cycle analysis of recycling of post-use plastic to plastic via pyrolysis. Journal of Cleaner Production, 425, 138867, 2023. https://doi.org/10.1016/j.jclepro.2023.138867.
  • H. Park, K. Kim, M. Yu, Z. Yun and S. Lee, Economic analysis of the circular economy based on waste plastic pyrolysis oil: a case of the university campus. Environment, Development and Sustainability, 15, 1-21, 2023. https://doi.org/10.1007/s10668-023-02963-1.
  • ICIS Launches Pyrolysis Oil Pricing Indexes for Chemical Recycling. https://www.icis.com/explore/press-releases/icis-launches-pyrolysis-oil-pricing-indexes-for-chemical-recycling/ , Accessed 26 September 2023.
  • UNEP. https://www.who.int/news-room/fact-sheets/detail/health-care-waste , Accessed 26 September 2023.
  • S. Burnley, S. Wagland and P. Longhurst, Using life cycle assessment in environmental engineering education. Higher Education Pedagogies, 4, 64–79, 2019. https://doi.org/10.1080/23752696.2019.1627672.
  • European Commission, “Life Cycle Assessment (LCA),” European Platform on Life Cycle Assessment. https://eplca.jrc.ec.europa.eu/lifecycleassessment.html , Accessed 26 September 2023.
  • S. M. A. Rahman, S. Issa, M. E. H. Assad, S. K. Shah, M. A. Abdelkareem, M. E. Hoque and A. G. Olabi, Performance enhancement and life cycle analysis of a novel solar HVAC system using underground water and energy recovery technique. Thermal Science and Engineering Progress, 36, 101515, 2022. https://doi.org/10.1016/j.tsep.2022.101515 .
  • H. Alhazmi, F. H. Almansour and Z. Aldhafeeri, Plastic Waste Management: A Review of Existing Life Cycle Assessment Studies. Sustainability, 13, 5340, 2021. https://doi.org/10.3390/su13105340.
  • M. H. Mushtaq, F. Noor, M. A. Mujtaba, S. Asghar, A. A. Yusuf, M. E. M. Soudagar, A. Hussain, M. F. Badran and K. Shahapurkar, Environmental Performance of Alternative Hospital Waste Management Strategies Using Life Cycle Assessment (LCA) Approach. Sustainability, 14, 14942, 2022. https://doi.org/10.3390/su142214942.
  • Y. Dong, M. U. Hossain, H. Li and P. Liu, Developing Conversion Factors of LCIA Methods for Comparison of LCA Results in the Construction Sector. Sustainability, 13, 9016, 2021. https://doi.org/10.3390/su13169016.
There are 74 citations in total.

Details

Primary Language English
Subjects Environmental and Sustainable Processes, Automotive Combustion and Fuel Engineering
Journal Section Research Articles
Authors

Çağrı Ün 0000-0002-7925-5000

Early Pub Date December 25, 2023
Publication Date January 15, 2024
Submission Date September 27, 2023
Acceptance Date December 4, 2023
Published in Issue Year 2024

Cite

APA Ün, Ç. (2024). Examining the environmental and economic dimensions of producing fuel from medical waste plastics. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 13(1), 279-293. https://doi.org/10.28948/ngumuh.1367080
AMA Ün Ç. Examining the environmental and economic dimensions of producing fuel from medical waste plastics. NÖHÜ Müh. Bilim. Derg. January 2024;13(1):279-293. doi:10.28948/ngumuh.1367080
Chicago Ün, Çağrı. “Examining the Environmental and Economic Dimensions of Producing Fuel from Medical Waste Plastics”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 13, no. 1 (January 2024): 279-93. https://doi.org/10.28948/ngumuh.1367080.
EndNote Ün Ç (January 1, 2024) Examining the environmental and economic dimensions of producing fuel from medical waste plastics. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 13 1 279–293.
IEEE Ç. Ün, “Examining the environmental and economic dimensions of producing fuel from medical waste plastics”, NÖHÜ Müh. Bilim. Derg., vol. 13, no. 1, pp. 279–293, 2024, doi: 10.28948/ngumuh.1367080.
ISNAD Ün, Çağrı. “Examining the Environmental and Economic Dimensions of Producing Fuel from Medical Waste Plastics”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 13/1 (January 2024), 279-293. https://doi.org/10.28948/ngumuh.1367080.
JAMA Ün Ç. Examining the environmental and economic dimensions of producing fuel from medical waste plastics. NÖHÜ Müh. Bilim. Derg. 2024;13:279–293.
MLA Ün, Çağrı. “Examining the Environmental and Economic Dimensions of Producing Fuel from Medical Waste Plastics”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, vol. 13, no. 1, 2024, pp. 279-93, doi:10.28948/ngumuh.1367080.
Vancouver Ün Ç. Examining the environmental and economic dimensions of producing fuel from medical waste plastics. NÖHÜ Müh. Bilim. Derg. 2024;13(1):279-93.

download