Research Article
BibTex RIS Cite

Termosifon ısı borusu performansının iş akışkanına hibrit nano parçacık katkısıyla değişiminin incelenmesi

Year 2024, , 852 - 860, 15.07.2024
https://doi.org/10.28948/ngumuh.1404537

Abstract

Nano parçacık katkısının ısıl sistemlerin ısıl verimini artırmada önemli etkileri olduğu bilinmektedir. Bu çalışmanın amacı, imalat maliyeti en düşük ısı borusu tiplerinden biri olan termosifon ısı borularının (TIB) ısıl performansını iş akışkanına hibrit nano parçacık katkısı yapılarak ele alınması ve hibrit nano parçacık eklentisinin etkilerinin araştırılmasıdır. Doldurma oranı ve konsantrasyonun ısıl performans üzerindeki etkileri incelenmiştir. Al2O3+TiO2–H2O hibrit nano akışkanının tekil nano akışkanlardan birinin sahip olduğu yüksek stabilite özelliği ile diğerinin sahip olduğu yüksek ısıl iletkenlik özelliklerini bir araya getirebildiği görülmüştür. Hibrit nano akışkanla dolu sistemde en yüksek ısıl verimin %65 doldurma oranında elde edildiği görülmüştür. Doldurma oranının nano akışkan konsantrasyonu ile birlikte ele alınarak iki parametrenin bileşik etkisi dikkate alındığında maksimum performansın elde edildiği koşulun %65 doldurma oranı ve %0.5 nano akışkan konsantrasyonu olduğu görülmüştür.

References

  • H. Zhou, C. Dai, Y. Liu, X. Fu, and Y. Du, Experimental investigation of battery thermal management and safety with heat pipe and immersion phase change liquid, Journal of Power Sources, 473228545, 2020. https://doi.org/10.1016/j.jpowsour.2020.228545.
  • N. Watanabe, N. Phan, Y. Saito, S. Hayashi, N. Katayama, and H. Nagano, Operating characteristics of an anti-gravity loop heat pipe with a flat evaporator that has the capability of a loop thermosyphon, Energy Conversion and Management, 205112431, 2020. https://doi.org/10.1016/j.enconman.2019.112431.
  • Y. Zhao, X. Yang, L. Yan, Y. Bai, S. Li, P. Sorokin, and L. Shao, Biomimetic nanoparticle-engineered superwettable membranes for efficient oil/water separation, Journal of Membrane Science, 618118525, 2021. https://doi.org/10.1016/j.memsci.2020.118525.
  • C. Shen, Y. Zhang, Z. Wang, D. Zhang, and Z. Liu, Experimental investigation on the heat transfer performance of a flat parallel flow heat pipe, International Journal of Heat and Mass Transfer, 168120856, 2021. https://doi.org/10.1016/j.ijheatmasstransfer.2020.120856.
  • Z. Zhang, R. Zhao, Z. Liu, and W. Liu, Application of biporous wick in flat-plate loop heat pipe with long heat transfer distance, Applied Thermal Engineering, 184116283, 2021. https://doi.org/10.1016/j.applthermaleng.2020.116283.
  • D. Karimi, Md S. Hosen, H. Behi, S. Khaleghi, M. Akbarzadeh, J. V. Mierlo, and M. Berecibar, A hybrid thermal management system for high power lithium-ion capacitors combining heat pipe with phase change materials, Heliyon, 7, (8), e07773, 2021. https://doi.org/10.1016/j.heliyon.2021.e07773.
  • Z. Zhou, Y. Lv, J. Qu, Q. Sun, and D. Grachev, Performance evaluation of hybrid oscillating heat pipe with carbon nanotube nanofluids for electric vehicle battery cooling, Applied Thermal Engineering, 196117300, 2021. https://doi.org/10.1016/j.applthermaleng.2021.117300.
  • H. Ghorabaee, M. R. S. Emami, F. Moosakazemi, N. Karimi, G. Cheraghian, and M. Afrand, The use of nanofluids in thermosyphon heat pipe: A comprehensive review, Powder Technology, 394250–269, 2021. https://doi.org/10.1016/j.powtec.2021.08.045.
  • K. Martin, A. Sözen, E. Çiftçi, and H. M. Ali, An experimental investigation on aqueous Fe–CuO hybrid nanofluid usage in a plain heat pipe, International Journal of Thermophysics, 411–21, 2020. https://doi.org/10.1007/s10765-020-02716-6.
  • D. Yılmaz Aydın, E. Çiftçi, M. Gürü, and A. Sözen, The Impacts of Nanoparticle Concentration and Surfactant Type on Thermal Performance of A Thermosyphon Heat Pipe Working With Bauxite Nanofluid, Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 43, (12), 1524–1548, 2021. https://doi.org/10.1080/15567036.2020.1800141.
  • S. Hoseinzadeh, S. A. R. Sahebi, R. Ghasemiasl, and A. R. Majidian, Experimental analysis to improving thermosyphon (TPCT) thermal efficiency using nanoparticles/based fluids (water), The european physical journal plus, 1321–8, 2017. https://doi.org/10.1140/epjp/i2017-11455-3
  • M. M. Sarafraz, O. Pourmehran, B. Yang, and M. Arjomandi, Assessment of the thermal performance of a thermosyphon heat pipe using zirconia-acetone nanofluids, Renewable Energy, 136884–895, 2019. https://doi.org/10.1016/j.renene.201.01.035.
  • A. K. Reji, G. Kumaresan, A. Sarathi, A. G. P. Saiganesh, R. Suriya Kumar, and M. M. Shelton, Performance analysis of thermosyphon heat pipe using aluminum oxide nanofluid under various angles of inclination, Materials Today: Proceedings, 451211–1216, 2021. https://doi.org/10.1016/j.matpr.2020.04.247.
  • M. Gürü, A. Sözen, U. Karakaya, and E. Çiftçi, Influences of bentonite-deionized water nanofluid utilization at different concentrations on heat pipe performance: An experimental study, Applied Thermal Engineering, 148632–640, 2019. https://doi.org/10.1016/j.applthermaleng.2018.11.024.
  • E. Sadeghinezhad, A. R. Akhiani, H. S. C. Metselaar, S. Tahan Latibari, M. Mehrali, and M. Mehrali, Parametric study on the thermal performance enhancement of a thermosyphon heat pipe using covalent functionalized graphene nanofluids, Applied Thermal Engineering, 175115385, 2020. https://doi.org/10.1016/j.applthermaleng.2020.115385.
  • H. Jouhara, S. Almahmoud, D. Brough, V. Guichet, B. Delpech, A. Chauhan, L. Ahmad, and N. Serey, Experimental and theoretical investigation of the performance of an air to water multi-pass heat pipe-based heat exchanger, Energy, 219119624, 2021. https://doi.org/10.1016/j.energy.2020.119624.
  • B. Fikri, E. Sofia, and N. Putra, Experimental analysis of a multistage direct-indirect evaporative cooler using a straight heat pipe, Applied Thermal Engineering, 171115133, 2020. https://doi.org/10.1016/j.applthermaleng.2020.115133.
  • A. Shafieian, M. Khiadani, and A. Nosrati, A review of latest developments, progress, and applications of heat pipe solar collectors, Renewable and Sustainable Energy Reviews, 95273–304, 2018. https://doi.org/10.1016/j.rser.2018.07.014
  • R. Ramachandran, K. Ganesan, M. R. Rajkumar, L. G. Asirvatham, and S. Wongwises, Comparative study of the effect of hybrid nanoparticle on the thermal performance of cylindrical screen mesh heat pipe, International Communications in Heat and Mass Transfer, 76294–300, 2016. https://doi.org/10.1016/j.icheatmasstransfer.2016.05.030.
  • J. Qu, H. Wu, and P. Cheng, Thermal performance of an oscillating heat pipe with Al2O3–water nanofluids, International Communications in Heat and Mass Transfer, 37, (2), 111–115, 2010. https://doi.org/10.1016/j.icheatmasstransfer.2009.10.001.
  • M. Keshavarz Moraveji and S. Razvarz, Experimental investigation of aluminum oxide nanofluid on heat pipe thermal performance, International Communications in Heat and Mass Transfer, 39, (9), 1444–1448, 2012. https://doi.org/10.1016/j.icheatmasstransfer.2012.07.024.
  • A. B. Solomon, K. Ramachandran, and B. C. Pillai, Thermal performance of a heat pipe with nanoparticles coated wick, Applied Thermal Engineering, 36106–112, 2012. https://doi.org/10.1016/j.applthermaleng.2011.12.004.
  • T. Tharayil, L. G. Asirvatham, V. Ravindran, and S. Wongwises, Thermal performance of miniature loop heat pipe with graphene–water nanofluid, International Journal of Heat and Mass Transfer, 93957–968, 2016. https://doi.org/10.1016/j.ijheatmasstransfer.2015.11.011.

Investigation of the change of thermosyphon heat pipe performance with hybrid nano particle addition to the work fluid

Year 2024, , 852 - 860, 15.07.2024
https://doi.org/10.28948/ngumuh.1404537

Abstract

It is known that nanoparticle additives have significant effects on increasing the thermal efficiency of thermal systems. The aim of this study is to examine the thermal performance of thermosiphon heat pipes (THP), one of the heat pipe types with the lowest manufacturing costs, by adding hybrid nanoparticles to the working fluid and to investigate the effects of hybrid nanoparticle addition. The effects of filling ratio and concentration on thermal performance were examined. It has been observed that the Al2O3+TiO2–H2O hybrid nanofluid can combine the high stability feature of one of the individual nanofluids with the high thermal conductivity feature of the other. It has been observed that the highest thermal efficiency in the hybrid nanofluid-filled system was achieved at 65% filling rate. Considering the combined effect of the two parameters by considering the filling rate together with the nanofluid concentration, it was seen that the condition where maximum performance was achieved was 65% filling rate and 0.5% nanofluid concentration.

References

  • H. Zhou, C. Dai, Y. Liu, X. Fu, and Y. Du, Experimental investigation of battery thermal management and safety with heat pipe and immersion phase change liquid, Journal of Power Sources, 473228545, 2020. https://doi.org/10.1016/j.jpowsour.2020.228545.
  • N. Watanabe, N. Phan, Y. Saito, S. Hayashi, N. Katayama, and H. Nagano, Operating characteristics of an anti-gravity loop heat pipe with a flat evaporator that has the capability of a loop thermosyphon, Energy Conversion and Management, 205112431, 2020. https://doi.org/10.1016/j.enconman.2019.112431.
  • Y. Zhao, X. Yang, L. Yan, Y. Bai, S. Li, P. Sorokin, and L. Shao, Biomimetic nanoparticle-engineered superwettable membranes for efficient oil/water separation, Journal of Membrane Science, 618118525, 2021. https://doi.org/10.1016/j.memsci.2020.118525.
  • C. Shen, Y. Zhang, Z. Wang, D. Zhang, and Z. Liu, Experimental investigation on the heat transfer performance of a flat parallel flow heat pipe, International Journal of Heat and Mass Transfer, 168120856, 2021. https://doi.org/10.1016/j.ijheatmasstransfer.2020.120856.
  • Z. Zhang, R. Zhao, Z. Liu, and W. Liu, Application of biporous wick in flat-plate loop heat pipe with long heat transfer distance, Applied Thermal Engineering, 184116283, 2021. https://doi.org/10.1016/j.applthermaleng.2020.116283.
  • D. Karimi, Md S. Hosen, H. Behi, S. Khaleghi, M. Akbarzadeh, J. V. Mierlo, and M. Berecibar, A hybrid thermal management system for high power lithium-ion capacitors combining heat pipe with phase change materials, Heliyon, 7, (8), e07773, 2021. https://doi.org/10.1016/j.heliyon.2021.e07773.
  • Z. Zhou, Y. Lv, J. Qu, Q. Sun, and D. Grachev, Performance evaluation of hybrid oscillating heat pipe with carbon nanotube nanofluids for electric vehicle battery cooling, Applied Thermal Engineering, 196117300, 2021. https://doi.org/10.1016/j.applthermaleng.2021.117300.
  • H. Ghorabaee, M. R. S. Emami, F. Moosakazemi, N. Karimi, G. Cheraghian, and M. Afrand, The use of nanofluids in thermosyphon heat pipe: A comprehensive review, Powder Technology, 394250–269, 2021. https://doi.org/10.1016/j.powtec.2021.08.045.
  • K. Martin, A. Sözen, E. Çiftçi, and H. M. Ali, An experimental investigation on aqueous Fe–CuO hybrid nanofluid usage in a plain heat pipe, International Journal of Thermophysics, 411–21, 2020. https://doi.org/10.1007/s10765-020-02716-6.
  • D. Yılmaz Aydın, E. Çiftçi, M. Gürü, and A. Sözen, The Impacts of Nanoparticle Concentration and Surfactant Type on Thermal Performance of A Thermosyphon Heat Pipe Working With Bauxite Nanofluid, Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 43, (12), 1524–1548, 2021. https://doi.org/10.1080/15567036.2020.1800141.
  • S. Hoseinzadeh, S. A. R. Sahebi, R. Ghasemiasl, and A. R. Majidian, Experimental analysis to improving thermosyphon (TPCT) thermal efficiency using nanoparticles/based fluids (water), The european physical journal plus, 1321–8, 2017. https://doi.org/10.1140/epjp/i2017-11455-3
  • M. M. Sarafraz, O. Pourmehran, B. Yang, and M. Arjomandi, Assessment of the thermal performance of a thermosyphon heat pipe using zirconia-acetone nanofluids, Renewable Energy, 136884–895, 2019. https://doi.org/10.1016/j.renene.201.01.035.
  • A. K. Reji, G. Kumaresan, A. Sarathi, A. G. P. Saiganesh, R. Suriya Kumar, and M. M. Shelton, Performance analysis of thermosyphon heat pipe using aluminum oxide nanofluid under various angles of inclination, Materials Today: Proceedings, 451211–1216, 2021. https://doi.org/10.1016/j.matpr.2020.04.247.
  • M. Gürü, A. Sözen, U. Karakaya, and E. Çiftçi, Influences of bentonite-deionized water nanofluid utilization at different concentrations on heat pipe performance: An experimental study, Applied Thermal Engineering, 148632–640, 2019. https://doi.org/10.1016/j.applthermaleng.2018.11.024.
  • E. Sadeghinezhad, A. R. Akhiani, H. S. C. Metselaar, S. Tahan Latibari, M. Mehrali, and M. Mehrali, Parametric study on the thermal performance enhancement of a thermosyphon heat pipe using covalent functionalized graphene nanofluids, Applied Thermal Engineering, 175115385, 2020. https://doi.org/10.1016/j.applthermaleng.2020.115385.
  • H. Jouhara, S. Almahmoud, D. Brough, V. Guichet, B. Delpech, A. Chauhan, L. Ahmad, and N. Serey, Experimental and theoretical investigation of the performance of an air to water multi-pass heat pipe-based heat exchanger, Energy, 219119624, 2021. https://doi.org/10.1016/j.energy.2020.119624.
  • B. Fikri, E. Sofia, and N. Putra, Experimental analysis of a multistage direct-indirect evaporative cooler using a straight heat pipe, Applied Thermal Engineering, 171115133, 2020. https://doi.org/10.1016/j.applthermaleng.2020.115133.
  • A. Shafieian, M. Khiadani, and A. Nosrati, A review of latest developments, progress, and applications of heat pipe solar collectors, Renewable and Sustainable Energy Reviews, 95273–304, 2018. https://doi.org/10.1016/j.rser.2018.07.014
  • R. Ramachandran, K. Ganesan, M. R. Rajkumar, L. G. Asirvatham, and S. Wongwises, Comparative study of the effect of hybrid nanoparticle on the thermal performance of cylindrical screen mesh heat pipe, International Communications in Heat and Mass Transfer, 76294–300, 2016. https://doi.org/10.1016/j.icheatmasstransfer.2016.05.030.
  • J. Qu, H. Wu, and P. Cheng, Thermal performance of an oscillating heat pipe with Al2O3–water nanofluids, International Communications in Heat and Mass Transfer, 37, (2), 111–115, 2010. https://doi.org/10.1016/j.icheatmasstransfer.2009.10.001.
  • M. Keshavarz Moraveji and S. Razvarz, Experimental investigation of aluminum oxide nanofluid on heat pipe thermal performance, International Communications in Heat and Mass Transfer, 39, (9), 1444–1448, 2012. https://doi.org/10.1016/j.icheatmasstransfer.2012.07.024.
  • A. B. Solomon, K. Ramachandran, and B. C. Pillai, Thermal performance of a heat pipe with nanoparticles coated wick, Applied Thermal Engineering, 36106–112, 2012. https://doi.org/10.1016/j.applthermaleng.2011.12.004.
  • T. Tharayil, L. G. Asirvatham, V. Ravindran, and S. Wongwises, Thermal performance of miniature loop heat pipe with graphene–water nanofluid, International Journal of Heat and Mass Transfer, 93957–968, 2016. https://doi.org/10.1016/j.ijheatmasstransfer.2015.11.011.
There are 23 citations in total.

Details

Primary Language Turkish
Subjects Experimental Methods in Fluid Flow, Heat and Mass Transfer, Microfluidics and Nanofluidics
Journal Section Research Articles
Authors

Erman Çelik 0000-0002-4254-9611

Filiz Özgen 0000-0003-2278-2093

Umut Deniz 0000-0001-5622-3295

Early Pub Date May 31, 2024
Publication Date July 15, 2024
Submission Date December 13, 2023
Acceptance Date May 13, 2024
Published in Issue Year 2024

Cite

APA Çelik, E., Özgen, F., & Deniz, U. (2024). Termosifon ısı borusu performansının iş akışkanına hibrit nano parçacık katkısıyla değişiminin incelenmesi. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 13(3), 852-860. https://doi.org/10.28948/ngumuh.1404537
AMA Çelik E, Özgen F, Deniz U. Termosifon ısı borusu performansının iş akışkanına hibrit nano parçacık katkısıyla değişiminin incelenmesi. NÖHÜ Müh. Bilim. Derg. July 2024;13(3):852-860. doi:10.28948/ngumuh.1404537
Chicago Çelik, Erman, Filiz Özgen, and Umut Deniz. “Termosifon ısı Borusu performansının Iş akışkanına Hibrit Nano parçacık katkısıyla değişiminin Incelenmesi”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 13, no. 3 (July 2024): 852-60. https://doi.org/10.28948/ngumuh.1404537.
EndNote Çelik E, Özgen F, Deniz U (July 1, 2024) Termosifon ısı borusu performansının iş akışkanına hibrit nano parçacık katkısıyla değişiminin incelenmesi. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 13 3 852–860.
IEEE E. Çelik, F. Özgen, and U. Deniz, “Termosifon ısı borusu performansının iş akışkanına hibrit nano parçacık katkısıyla değişiminin incelenmesi”, NÖHÜ Müh. Bilim. Derg., vol. 13, no. 3, pp. 852–860, 2024, doi: 10.28948/ngumuh.1404537.
ISNAD Çelik, Erman et al. “Termosifon ısı Borusu performansının Iş akışkanına Hibrit Nano parçacık katkısıyla değişiminin Incelenmesi”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 13/3 (July 2024), 852-860. https://doi.org/10.28948/ngumuh.1404537.
JAMA Çelik E, Özgen F, Deniz U. Termosifon ısı borusu performansının iş akışkanına hibrit nano parçacık katkısıyla değişiminin incelenmesi. NÖHÜ Müh. Bilim. Derg. 2024;13:852–860.
MLA Çelik, Erman et al. “Termosifon ısı Borusu performansının Iş akışkanına Hibrit Nano parçacık katkısıyla değişiminin Incelenmesi”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, vol. 13, no. 3, 2024, pp. 852-60, doi:10.28948/ngumuh.1404537.
Vancouver Çelik E, Özgen F, Deniz U. Termosifon ısı borusu performansının iş akışkanına hibrit nano parçacık katkısıyla değişiminin incelenmesi. NÖHÜ Müh. Bilim. Derg. 2024;13(3):852-60.

download