Rapid preconcentration and determination of Co (II) ions in aqueous medium using ultrasound assisted cloud point extraction method
Year 2024,
, 799 - 805, 15.07.2024
Yavuz Sürme
,
Gizem Kahve Yıldırım
,
Mustafa Uçan
,
İbrahim Narin
Abstract
A flame atomic absorption spectrophotometric technique was studied for the preconcentration and determination of Co2+ ions in trace amounts after ultrasound enhanced enrichment of its 1-(2-pyridylazo)-2-naphthol (PAN) complexes by cloud point extraction. The Co2+ ions were firstly complexed with PAN molecules at pH 4 and the complex transferred to a surfactant Tergitol NP-7 (TNP-7) rich phase with a very small volume under ultrasound waves. The surfactant rich phase was separated and dissolved by 1 mL, 1.0 M HNO3 in ethanol prior to determination of Co2+ concentration by flame atomic absorption spectrophotometry. The optimization steps of ultrasound interaction time, solution pH and surfactant volumes were achieved by response surface methodology (RSM) which is a combination of statistical approaches. PAN concentration and possible interfering ions were optimized conventionally. The Co2+ ions were extracted only in 150 s at pH 4 quantitatively under optimum conditions (˃95%). The accuracy and validity of developed ultrasound assisted cloud point extraction (UA-CPE) was granted by employing a certified reference material wastewater UME CRM 1204. The technique was applied to wastewater and natural water with satisfactory results.
Supporting Institution
Niğde Ömer Halisdemir University Scientific Research Projects Unit
Project Number
FMT 2023/5-BAGEP
Thanks
Authors thank to Niğde Ömer Halisdemir University Scientific Research Projects Unit for the supporting and funding of this research by the Project Number of FMT 2023/5-BAGEP.
References
- R. E. Davis, Clinical Chemistry of Vitamin B12. Advances in Clinical Chemistry, 24, 163-216, 1985.https://doi.org/10.1016/S0065-2423(08)60273-5.
- M. H. Salmani, M. H. Ehrampoush, H. Eslami and B. Eftekhar, Synthesis, characterization and application of mesoporous silica in removal of cobalt ions from contaminated water. Groundwater for Sustainable Development, 11, 100425-100434, 2020. https://doi.org/10.1016/j.gsd.2020.100425.
- M. H. Dehghani, K. Yetilmezsoy, M. Salari, Z. Heidarinejad, M. Yousefi and M. Sillanpää, Adsorptive removal of cobalt(II) from aqueous solutions using multiwalled carbon nanotubes and γ-alumina as novel adsorbents: Modelling and optimization based on response surface methodology and artificial neural network.Journal of Molecular Liquids, 299, 112154-112168,2020.https://doi.org/10.1016/j.molliq.2019.11215.
- Technical Report – Water Quality Guidelines for Cobalt. https://www2.gov.bc.ca/assets/gov/environment/air-land-water/water/waterquality/water-quality-guidelines/approved-wqgs/cobalt_tech.pdf, Accessed 26 March 2024.
- G. Wang, Y. Zhang, S. Jiang, X. Maand B. Wei, Removal and recovery of cobalt from Co(II)–containing water samples by dithiocarboxylpolyethyleneimine. Separation and Purification Technology, 251, 117338-117347, 2020.
https://doi.org/10.1016/j.seppur.2020.117338.
- R. Wang, L. Deng, X. Fan, K. Li, H. Lu and W. Li, Removal of heavy metal ioncobalt (II) fromwastewaterviaadsorptionmethodusingmicrocrystallinecellulose–magnesiumhydroxide. International Journal of BiologicalMacromolecules, 189, 607-617, 2021.https://doi.org/10.1016/j.ijbiomac.2021.08.156.
- S. Mandal and S. Lahiri, A review on extraction, preconcentration and speciation of metal ions by sustainable cloud point extraction. Microchemical Journal, 175, 107150-107167, 2022. https://doi.org/10.1016/j.microc.2021.107150.
- X. Zhou, Y. Gao, Q, Zhang, X. Li and H. Li, Cloud point extraction coupled with ultrasound-assisted back-extraction for determination of trace legacy and emerging brominated flame retardants in water using isotopic dilution high-performance liquid chromatography-atmospheric pressure chemical ionization-tandem mass spectrometry. Talanta, 224, 121713-121722, 2021. https://doi.org/10.1016/ j.talanta.2020.121713.
- S. Yang, X. Fang, L. Duan, S. Yang, Z. Lei and X. Wen, Comparison of ultrasound-assisted cloud point extraction and ultrasound-assisted dispersive liquidliquidmicroextraction for copper coupled with spectrophotometric determination. SpectrochimicaActa Part A: Molecular and Biomolecular Spectroscopy, 148, 72-77, 2015.
http://dx.doi.org/10.1016/j.saa.2015.03.129.
- N. R. Biata, G. P. MAshile, J. Ramontja, N. Mketo and P. N. Nomngongo, Application of ultrasound-assisted cloud point extraction for preconcentration of antimony, tin and thallium in food and water samples prior to ICP-OES determination. Journal of Food Composition and Analysis, 76, 14-21, 2019.
https://doi.org/10.1016/j.jfca.2018.11.004.
- L. Nyaba and P. N. Nomngongo, Determination of trace metals in vegetables and water samples using dispersive ultrasound-assisted cloud point-dispersive µ-solid phase extraction coupled with inductively coupled plasma optical emission spectrometry. Food Chemistry, 322, 126749-126757, 2020. https://doi.org/10.1016/j.foodchem.2020.126749.
- P. D. Motikar, P. R. More and S. S. Arya, A novel, green environment-friendly cloud point extraction of polyphenols from pomegranate peels: a comparative assessment with ultrasound and microwave-assisted extraction, 56(6), 1014-1025, 2021. https://doi.org/10.1080/01496395.2020.1746969.
- D. Mahmoodnezhad and A. Taheri, Development of a new methodology for determination of Cd, Ni, and Co at trace levels by mixed ultrasonic-assisted cloud point/solid phase extraction in micro micellar media: Optimization through response surface methodology. Journal of Food Composition and Analysis, 111, 104594-1044606, 2022. https://doi.org/10.1016/ j.jfca.2022.104594.
- X. Wen, Y. Zhang, C. Li, X. Fang and X. Zhang, Comparison of rapidly synergistic cloud point extraction and ultrasound-assisted cloud point extraction for trace selenium coupled with spectrophotometric determination. SpectrochimicaActa Part A: Molecular and Biomolecular Spectroscopy, 123, 200-205, 2014. http://dx.doi.org/10.1016/j.saa.2013.12.074.
- D. Duraimurugan, L. Mathuri, J. Indulekha, R. Anantharaj and A. Arunagiri,Performance evaluation of Tergitol NP-7 and Triton X-114 for the removal of crystal violet using cloud-point extraction. Chemical and Biochemical Engineering Quarterly, 30(2), 189-198,2016. https://doi.org/10.15255/ CABEQ.2014.2143.
- F. Pena-Pereira, W. Wojnowski and M. Tobiszewski, Analytical GREEnness metric approach and software. Analytical Chemistry, 92, 10076-10082, 2020. https://dx.doi.org/10.1021/acs.analchem.0c01887.
- Q. Salamat and M. Soylak, Novel reusable and switchable deep eutectic solvent for extraction and determination of curcumin in water and food samples. Talanta, 269, 125401-125410, 2024. https://doi.org/10.1016/j.talanta.2023.125401.
Ultrason destekli bulutlanma noktası ekstraksiyonu yöntemiyle sulu ortamda bulunan Co (II) iyonlarının hızlı önderiştirilmesi ve tayini
Year 2024,
, 799 - 805, 15.07.2024
Yavuz Sürme
,
Gizem Kahve Yıldırım
,
Mustafa Uçan
,
İbrahim Narin
Abstract
Eser miktardaki Co2+ iyonlarının 1-(2-Piridilazo)-2-Naftol (PAN) komplekslerinin ultrason destekli bulutlanma noktası ekstraksiyonu ile zenginleştirilmesi ve alevli atomik absorpsiyon spektrofotometri yöntemi ile tayini için bir yöntem geliştirilmiştir. Co2+ iyonları ilk olarak pH 4'te PAN molekülleri ile kompleksleştirildi ve oluşan kompleksultrasonik dalgalar ile küçük hacimli yüzey aktif madde Tergitol NP-7 (TNP-7) bakımından zengin faza aktarıldı. Yüzey aktif madde açısından zengin faz ayrıldıktan sonra 1 mL 1.0 M HNO3 etanolde çözülmüş ve ardından alevli atomik absorpsiyon spektrofotometrisi ile Co2+ konsantrasyonu belirlenmiştir. Ultrason etkileşim süresi, çözelti pH'sı ve yüzey aktif madde hacimlerinin optimizasyon adımları istatistiksel yaklaşımların bir kombinasyonu olan yüzey yanıt yöntemi (RSM) ile gerçekleştirilmiştir. PAN konsantrasyonu ve olası girişim yapan iyonların etkisi geleneksel olarak optimize edilmiştir. Co2+ iyonları sadece 150 saniye içerisinde pH 4'te optimum koşullar altında kantitatif olarak (˃%95) ekstrakte edilmiştir. Geliştirilen ultrason destekli-bulutlanma noktası ekstraksiyonu (UA-CPE)'nin doğruluğu ve geçerliliği, sertifikalı referans malzeme atıksu UME CRM 1204 kullanılarak sağlanmıştır. Yöntem, atık su ve doğal sulara tatmin edici sonuçlarla uygulanmıştır.
Supporting Institution
Niğde Ömer Halisdemir University Scientific Research Projects Unit
Project Number
FMT 2023/5-BAGEP
Thanks
Authors thank to Niğde Ömer Halisdemir University Scientific Research Projects Unit for the supporting and funding of this research by the Project Number of FMT 2023/5-BAGEP.
References
- R. E. Davis, Clinical Chemistry of Vitamin B12. Advances in Clinical Chemistry, 24, 163-216, 1985.https://doi.org/10.1016/S0065-2423(08)60273-5.
- M. H. Salmani, M. H. Ehrampoush, H. Eslami and B. Eftekhar, Synthesis, characterization and application of mesoporous silica in removal of cobalt ions from contaminated water. Groundwater for Sustainable Development, 11, 100425-100434, 2020. https://doi.org/10.1016/j.gsd.2020.100425.
- M. H. Dehghani, K. Yetilmezsoy, M. Salari, Z. Heidarinejad, M. Yousefi and M. Sillanpää, Adsorptive removal of cobalt(II) from aqueous solutions using multiwalled carbon nanotubes and γ-alumina as novel adsorbents: Modelling and optimization based on response surface methodology and artificial neural network.Journal of Molecular Liquids, 299, 112154-112168,2020.https://doi.org/10.1016/j.molliq.2019.11215.
- Technical Report – Water Quality Guidelines for Cobalt. https://www2.gov.bc.ca/assets/gov/environment/air-land-water/water/waterquality/water-quality-guidelines/approved-wqgs/cobalt_tech.pdf, Accessed 26 March 2024.
- G. Wang, Y. Zhang, S. Jiang, X. Maand B. Wei, Removal and recovery of cobalt from Co(II)–containing water samples by dithiocarboxylpolyethyleneimine. Separation and Purification Technology, 251, 117338-117347, 2020.
https://doi.org/10.1016/j.seppur.2020.117338.
- R. Wang, L. Deng, X. Fan, K. Li, H. Lu and W. Li, Removal of heavy metal ioncobalt (II) fromwastewaterviaadsorptionmethodusingmicrocrystallinecellulose–magnesiumhydroxide. International Journal of BiologicalMacromolecules, 189, 607-617, 2021.https://doi.org/10.1016/j.ijbiomac.2021.08.156.
- S. Mandal and S. Lahiri, A review on extraction, preconcentration and speciation of metal ions by sustainable cloud point extraction. Microchemical Journal, 175, 107150-107167, 2022. https://doi.org/10.1016/j.microc.2021.107150.
- X. Zhou, Y. Gao, Q, Zhang, X. Li and H. Li, Cloud point extraction coupled with ultrasound-assisted back-extraction for determination of trace legacy and emerging brominated flame retardants in water using isotopic dilution high-performance liquid chromatography-atmospheric pressure chemical ionization-tandem mass spectrometry. Talanta, 224, 121713-121722, 2021. https://doi.org/10.1016/ j.talanta.2020.121713.
- S. Yang, X. Fang, L. Duan, S. Yang, Z. Lei and X. Wen, Comparison of ultrasound-assisted cloud point extraction and ultrasound-assisted dispersive liquidliquidmicroextraction for copper coupled with spectrophotometric determination. SpectrochimicaActa Part A: Molecular and Biomolecular Spectroscopy, 148, 72-77, 2015.
http://dx.doi.org/10.1016/j.saa.2015.03.129.
- N. R. Biata, G. P. MAshile, J. Ramontja, N. Mketo and P. N. Nomngongo, Application of ultrasound-assisted cloud point extraction for preconcentration of antimony, tin and thallium in food and water samples prior to ICP-OES determination. Journal of Food Composition and Analysis, 76, 14-21, 2019.
https://doi.org/10.1016/j.jfca.2018.11.004.
- L. Nyaba and P. N. Nomngongo, Determination of trace metals in vegetables and water samples using dispersive ultrasound-assisted cloud point-dispersive µ-solid phase extraction coupled with inductively coupled plasma optical emission spectrometry. Food Chemistry, 322, 126749-126757, 2020. https://doi.org/10.1016/j.foodchem.2020.126749.
- P. D. Motikar, P. R. More and S. S. Arya, A novel, green environment-friendly cloud point extraction of polyphenols from pomegranate peels: a comparative assessment with ultrasound and microwave-assisted extraction, 56(6), 1014-1025, 2021. https://doi.org/10.1080/01496395.2020.1746969.
- D. Mahmoodnezhad and A. Taheri, Development of a new methodology for determination of Cd, Ni, and Co at trace levels by mixed ultrasonic-assisted cloud point/solid phase extraction in micro micellar media: Optimization through response surface methodology. Journal of Food Composition and Analysis, 111, 104594-1044606, 2022. https://doi.org/10.1016/ j.jfca.2022.104594.
- X. Wen, Y. Zhang, C. Li, X. Fang and X. Zhang, Comparison of rapidly synergistic cloud point extraction and ultrasound-assisted cloud point extraction for trace selenium coupled with spectrophotometric determination. SpectrochimicaActa Part A: Molecular and Biomolecular Spectroscopy, 123, 200-205, 2014. http://dx.doi.org/10.1016/j.saa.2013.12.074.
- D. Duraimurugan, L. Mathuri, J. Indulekha, R. Anantharaj and A. Arunagiri,Performance evaluation of Tergitol NP-7 and Triton X-114 for the removal of crystal violet using cloud-point extraction. Chemical and Biochemical Engineering Quarterly, 30(2), 189-198,2016. https://doi.org/10.15255/ CABEQ.2014.2143.
- F. Pena-Pereira, W. Wojnowski and M. Tobiszewski, Analytical GREEnness metric approach and software. Analytical Chemistry, 92, 10076-10082, 2020. https://dx.doi.org/10.1021/acs.analchem.0c01887.
- Q. Salamat and M. Soylak, Novel reusable and switchable deep eutectic solvent for extraction and determination of curcumin in water and food samples. Talanta, 269, 125401-125410, 2024. https://doi.org/10.1016/j.talanta.2023.125401.