Research Article
BibTex RIS Cite

Hidrojen oluşum reaksiyonu için p-tipi Cr2O3 fotokatodun fotokatalitik performansının incelenmesi

Year 2024, , 925 - 931, 15.07.2024
https://doi.org/10.28948/ngumuh.1450948

Abstract

Atmosfere salınan sera gazları, küresel çapta iklim değişikliğine neden olmaktadır bu nedenle ivedilikle yenilenebilir enerji kaynaklarının kullanıldığı enerji üretim sistemlerine geçilmesi gerekmektedir. Yenilenebilir enerji kaynaklarından bir tanesi olan güneş enerjisi ile hidrojen gazı üretimi, sürdürülebilir ve çevre dostu olması nedeniyle umut vericidir. Foto-elektrokimyasal hidrojen üretimi için n-tipi/p-tipi yarı iletkenleri kullanılmaktadır. Kullanılan bu yarı iletkenlerin daha verimli hale getirebilmek için fotokatalitik ve foto-dayanıklılık özelliklerinin geliştirilmesi gerekmektedir. Bir p-tipi yarı iletken olan Cr2O3, foto-dayanıklı ve görünür bölgede absorpsiyon gösterme gibi avantajlara sahiptir. Gerçekleştirdiğimiz bu çalışmada, p-tipi Cr2O3 yarı iletkeni, glikoz (G) ile KCl içeren ve içermeyen hidrotermal yöntemlerle flor katkılı kalay oksit (FTO) üzerine çöktürülmüştür. Fotoelektrokimyasal suyun ayrıştırılmasında fotokatot olarak hidrojen oluşum reaksiyonunda (HER) elektrotların fotokatalitik performansı incelenmiştir. Fotoelektrotların kristal yapısının karakterizasyonu X-ışını kırınımı (XRD), yüzey topografisi emisyon taramalı elektron mikroskobu (SEM) ile, güneş ışığı absorpsiyonu da Uv-vis spektrometresi ile gerçekleştirilmiştir. HER sürecindeki fotokatalitik performans doğrusal tarama voltametrisi (LSV) ile gerçekleştirilmiştir. Elektriksel çift tabakanın direnç ve kapasitans değerleri elektrokimyasal empedans spektroskopisi (EIS) ve foto-stabilite testleri kronoamperometrik ölçüm ile gerçekleştirilmiştir. FESEM görüntüleri, hidrotermal yöntemle G/KCl içeren çöktürme banyosunun glikoz içermeyenlere kıyasla yüzey homojenliğini geliştirdiğini ve daha küçük nano boyutlarda Cr2O3 sentezlendiğini göstermiştir. XRD deseni ölçümü tüm ortam ve koşullarda Cr2O3 elektrotlarının hekzagonal yapıda sentezlendiğini göstermiştir. LSV ölçümü, G/KCl elektrodunun p-tipi yarı iletken olarak daha yüksek fotokatalitik performans sergilediğini göstermektedir.

Supporting Institution

Çukurova Üniversitesi Bilimsel Araştırma Projesi Birimi

Project Number

FBA-2019-12171

Thanks

Bu çalışma Çukurova Üniversitesi Bilimsel Araştırma Projesi Birimi (FBA-2019-12171) tarafından desteklenmiştir.

References

  • S.K. Saraswat, D.D. Rodene, R.B. Gupta, Recent advancements in semiconductor materials for photoelectrochemical water splitting for hydrogen production using visible light, Renewable and Sustainable Energy Reviews 89, 228–248, 2018 https://doi.org/10.1016/J.RSER.2018.03.063.
  • A. Ikram, M. Zulfequar, V.R. Satsangi, Role and prospects of green quantum dots in photoelectrochemical hydrogen generation: A review. Int J Hydrogen Energy, 47, 11472–11491, 2022 https://doi.org/https://doi.org/10.1016/j.ijhydene.
  • C.E.S. Thomas, Conclusions: Stopping climate change: The case for coal and hydrogen, in: Lecture Notes in Energy, 2017. https://doi.org/10.1007/978-3-319-31655-0_12.
  • M. Ahmed, I. Dincer, A review on photoelectrochemical hydrogen production systems: Challenges and future directions. Int J Hydrogen Energy, 442474–2507. 2019. https://doi.org/10.1016/J.IJHYDENE.2018.12.037.
  • Y.P. Moreno, C.C. de Escobar, E. Skovroinski, D.E. Weibel, J.H.Z. dos Santos, TiO2/SiO2 dopant-free nanophotocatalysts for highly efficient photocatalytic water splitting: Challenging traditional TiO2-based systems. J Mol Struct, 1269, 2022. https://doi.org/10.1016/j.molstruc.2022.133792.
  • P. Nandi, D. Das, ZnO/CdS/CuS heterostructure: A suitable candidate for applications in visible-light photocatalysis. Journal of Physics and Chemistry of Solids, 160, 2022. https://doi.org/10.1016/ j.jpcs.2021.110344.
  • S. Majumder, M. Gu, K. Hyeon Kim, Facile fabrication of BiVO4/Bi2S3/NiCoO2 for significant photo electrochemical water splitting, Appl Surf Sci, 574, 2022. https://doi.org/10.1016/j.apsusc.2021.151562.
  • P.I. Kyesmen, N. Nombona, M. Diale, Heterojunction of nanostructured α-Fe2O3/CuO for enhancement of photoelectrochemical water splitting. J Alloys Compound, 863, 2021. https://doi.org/10.1016/ j.jallcom.2021.158724.
  • H. Kim, S. Bae, D. Jeon, J. Ryu, Fully solution-processable Cu2O-BiVO4 photoelectrochemical cells for bias-free solar water splitting. Green Chemistry, 20, 2018. https://doi.org/10.1039/c8gc00681d.
  • S. Bai, K. Tian, J.C. Meng, Y. Zhao, J. Sun, K. Zhang, Y. Feng, R. Luo, D. Li, A. Chen, Reduced graphene oxide decorated SnO2/BiVO4 photoanode for photoelectrochemical water splitting. J Alloys Compound, 855, 2021. https://doi.org/10.1016/ j.jallcom.2020.156780.
  • Y. Wang, Z. Xing, H. Zhao, S. Song, M. Liu, Z. Li, W. Zhou, MoS2@In2S3/Bi2S3 Core-shell dual Z-scheme tandem heterojunctions with Broad-spectrum response and enhanced Photothermal-photocatalytic performance. Chemical Engineering Journal, 43, 2022. https://doi.org/10.1016/j.cej.2021.133355.
  • S.N.F. Mohd Nasir, M.A. Mat-Teridi, Photoelectrochemical tandem cell of Se/BiVO4 photoanode and Cr2O3/CuO:Ni photocathode in aqueous medium. J Solgel Sci Technol, 93, 2020. https://doi.org/10.1007/s10971-019-05179-w.
  • G. Yasmeen, S. Hussain, A. Tajammal, Z. Mustafa, M. Sagir, M. Shahid, M. Ibrar, Mehr-un-Nisa, Z.M. Elqahtani, M. Iqbal, Green synthesis of Cr2O3 nanoparticles by Cassia fistula, their electrochemical and antibacterial potential. Arabian Journal of Chemistry, 16, 2023. https://doi.org/10.1016/ J.ARABJC.2023.104912.
  • H.R. Mahmoud, Highly dispersed Cr2O3–ZrO2 binary oxide nanomaterials as novel catalysts for ethanol conversion. J Mol Catal A Chem, 392,216–222,2014 https://doi.org/10.1016/J.MOLCATA.2014.05.021.
  • O.A. Zelekew, P.A. Fufa, F.K. Sabir, A.D. Duma, Water hyacinth plant extract mediated green synthesis of Cr2O3/ZnO composite photocatalyst for the degradation of organic dye. Heliyon, 7, 2021. https://doi.org/10.1016/j.heliyon.2021.e07652.
  • S.N.F. Mohd Nasir, M.A. Mat-Teridi, Photoelectrochemical tandem cell of Se/BiVO4 photoanode and Cr2O3/CuO:Ni photocathode in aqueous medium. J Solgel Sci Technol, 93, 2020. https://doi.org/10.1007/s10971-019-05179-w.
  • H.N. Deepak, K.S. Choudhari, S.A. Shivashankar, C. Santhosh, S.D. Kulkarni, Facile microwave-assisted synthesis of Cr2O3 nanoparticles with high near-infrared reflection for roof-top cooling applications, J Alloys Compd, 785, 747–753, 2019. https://doi.org/10.1016/J.JALLCOM.2019.01.254.
  • M.G. Tsegay, H.G. Gebretinsae, G. G.Welegergs, M. Maaza, Z.Y. Nuru, Novel green synthesized Cr2O3 for selective solar absorber: Investigation of structural, morphological, chemical, and optical properties. Solar Energy, 236, 308–319,2022. https://doi.org/10.1016/ J.SOLENER.2022.03.011.
  • S. Khamlich, E. Manikandan, B.D. Ngom, J. Sithole, O. Nemraoui, I. Zorkani, R. McCrindle, N. Cingo, M. Maaza, Synthesis, characterization, and growth mechanism of α-Cr2O3 monodispersed particles. Journal of Physics and Chemistry of Solids, 72,714–718, 2011. https://doi.org/10.1016/J.JPCS. 2011.02.015.
  • L. Bastakys, L. Marcinauskas, M. Milieška, M. Kalin, R. Kėželis, Tribological Properties of Cr2O3, Cr2O3–SiO2-TiO2 and Cr2O3–SiO2-TiO2-graphite coatings deposited by atmospheric plasma spraying. Coatings,13,2023.https://doi.org/10.3390/coatings13020408.
  • F. Tezcan, M. Kahya Düdükcü, G. Kardaş, Photocorrosion protection of BiVO4 electrode by α-Cr2O3 core–shell for photoelectrochemical hydrogen production. Journal of Electroanalytical Chemistry, 920 2022. https://doi.org/10.1016/ j.jelechem.2022.116595.
  • A.B. Khelifa, A. Soum-Glaude, S. Khamlich, H. Glénat, M. Balghouthi, A.A. Guizani, M. Maaza, W. Dimassi, Optical simulation, characterization and thermal stability of Cr2O3/Cr/Cr2O3multilayer solar selective absorber coatings. J Alloys Compd, 783,533–544, 2019 https://doi.org/10.1016/ J.JALLCOM.2018.12.286.
  • B.T. Sone, E. Manikandan, A. Gurib-Fakim, M. Maaza, Single-phase α-Cr2O3nanoparticles’ green synthesis using Callistemon viminalis’ red flower extract. Green Chem Lett Rev, 9, 2016. https://doi.org/10.1080/17518253.2016.1151083.
  • J. Wang, Z. Lu, Y. Ling, R. Wang, Y. Li, Q. Zhou, Z. Zhang, Hydrogen permeation properties of CrxCy@Cr2O3/Al2O3 composite coating derived from selective oxidation of a Cr–C alloy and atomic layer deposition. Int J Hydrogen Energy, 43,2018. https://doi.org/10.1016/j.ijhydene.2018.08.192.
  • S.N.F. Mohd Nasir, M.K.N. Yahya, N.W. Mohamad Sapian, N. Ahmad Ludin, M.A. Ibrahim, K. Sopian, M.A. Mat Teridi, Heterojunction Cr2O3/CuO:Ni photocathodes for enhanced photoelectrochemical performance. RSC Adv, 6, 2016. https://doi.org/10.1039/c6ra03904a.

Investigation of photocatalytic performance of p-type Cr2O3 photocathode for hydrogen evolution reaction

Year 2024, , 925 - 931, 15.07.2024
https://doi.org/10.28948/ngumuh.1450948

Abstract

Greenhouse gases released into the atmosphere cause climate change on a global scale, therefore, it is urgently necessary to switch to energy production systems using renewable energy sources. Hydrogen gas production with solar energy, one of the renewable energy sources, is promising because it is sustainable and environmentally friendly. The n-type/p-type semiconductors are used for photo-electrochemical hydrogen production and their photocatalytic and photostability properties need to be improved. Cr2O3, a p-type semiconductor, has the advantages of being photostable and showing absorption in the visible region. In this study, p-type Cr2O3 semiconductor was deposited on fluorine-doped tin oxide (FTO) by hydrothermal methods with and without glucose (G) and KCl. The photocatalytic performance of the electrodes was investigated in the hydrogen evolution reaction (HER) as a photocathode for photoelectrochemical water splitting. The electrode characterization of the crystalline structure of the photoelectrodes was carried out by X-ray diffraction (XRD), surface topography by field emission scanning electron microscopy (FESEM), sunlight absorption by UV-vis spectrometry. The photocatalytic performance in the HER process was performed by linear sweep voltammetry (LSV). Resistance and capacitance values of the electrical double layer were determined by electrochemical impedance spectroscopy (EIS) and photo-stability tests were performed by chronoamperometric measurement. FESEM images showed that the deposition bath containing G/KCl by hydrothermal method improved the surface homogeneity and synthesized smaller nano-sized Cr2O3 compared to those without glucose. XRD pattern measurement showed that Cr2O3 electrodes were synthesized with hexagonal structure in all media and conditions. LSV measurement shows that the G/KCl electrode exhibits higher photocatalytic performance as a p-type semiconductor.

Project Number

FBA-2019-12171

References

  • S.K. Saraswat, D.D. Rodene, R.B. Gupta, Recent advancements in semiconductor materials for photoelectrochemical water splitting for hydrogen production using visible light, Renewable and Sustainable Energy Reviews 89, 228–248, 2018 https://doi.org/10.1016/J.RSER.2018.03.063.
  • A. Ikram, M. Zulfequar, V.R. Satsangi, Role and prospects of green quantum dots in photoelectrochemical hydrogen generation: A review. Int J Hydrogen Energy, 47, 11472–11491, 2022 https://doi.org/https://doi.org/10.1016/j.ijhydene.
  • C.E.S. Thomas, Conclusions: Stopping climate change: The case for coal and hydrogen, in: Lecture Notes in Energy, 2017. https://doi.org/10.1007/978-3-319-31655-0_12.
  • M. Ahmed, I. Dincer, A review on photoelectrochemical hydrogen production systems: Challenges and future directions. Int J Hydrogen Energy, 442474–2507. 2019. https://doi.org/10.1016/J.IJHYDENE.2018.12.037.
  • Y.P. Moreno, C.C. de Escobar, E. Skovroinski, D.E. Weibel, J.H.Z. dos Santos, TiO2/SiO2 dopant-free nanophotocatalysts for highly efficient photocatalytic water splitting: Challenging traditional TiO2-based systems. J Mol Struct, 1269, 2022. https://doi.org/10.1016/j.molstruc.2022.133792.
  • P. Nandi, D. Das, ZnO/CdS/CuS heterostructure: A suitable candidate for applications in visible-light photocatalysis. Journal of Physics and Chemistry of Solids, 160, 2022. https://doi.org/10.1016/ j.jpcs.2021.110344.
  • S. Majumder, M. Gu, K. Hyeon Kim, Facile fabrication of BiVO4/Bi2S3/NiCoO2 for significant photo electrochemical water splitting, Appl Surf Sci, 574, 2022. https://doi.org/10.1016/j.apsusc.2021.151562.
  • P.I. Kyesmen, N. Nombona, M. Diale, Heterojunction of nanostructured α-Fe2O3/CuO for enhancement of photoelectrochemical water splitting. J Alloys Compound, 863, 2021. https://doi.org/10.1016/ j.jallcom.2021.158724.
  • H. Kim, S. Bae, D. Jeon, J. Ryu, Fully solution-processable Cu2O-BiVO4 photoelectrochemical cells for bias-free solar water splitting. Green Chemistry, 20, 2018. https://doi.org/10.1039/c8gc00681d.
  • S. Bai, K. Tian, J.C. Meng, Y. Zhao, J. Sun, K. Zhang, Y. Feng, R. Luo, D. Li, A. Chen, Reduced graphene oxide decorated SnO2/BiVO4 photoanode for photoelectrochemical water splitting. J Alloys Compound, 855, 2021. https://doi.org/10.1016/ j.jallcom.2020.156780.
  • Y. Wang, Z. Xing, H. Zhao, S. Song, M. Liu, Z. Li, W. Zhou, MoS2@In2S3/Bi2S3 Core-shell dual Z-scheme tandem heterojunctions with Broad-spectrum response and enhanced Photothermal-photocatalytic performance. Chemical Engineering Journal, 43, 2022. https://doi.org/10.1016/j.cej.2021.133355.
  • S.N.F. Mohd Nasir, M.A. Mat-Teridi, Photoelectrochemical tandem cell of Se/BiVO4 photoanode and Cr2O3/CuO:Ni photocathode in aqueous medium. J Solgel Sci Technol, 93, 2020. https://doi.org/10.1007/s10971-019-05179-w.
  • G. Yasmeen, S. Hussain, A. Tajammal, Z. Mustafa, M. Sagir, M. Shahid, M. Ibrar, Mehr-un-Nisa, Z.M. Elqahtani, M. Iqbal, Green synthesis of Cr2O3 nanoparticles by Cassia fistula, their electrochemical and antibacterial potential. Arabian Journal of Chemistry, 16, 2023. https://doi.org/10.1016/ J.ARABJC.2023.104912.
  • H.R. Mahmoud, Highly dispersed Cr2O3–ZrO2 binary oxide nanomaterials as novel catalysts for ethanol conversion. J Mol Catal A Chem, 392,216–222,2014 https://doi.org/10.1016/J.MOLCATA.2014.05.021.
  • O.A. Zelekew, P.A. Fufa, F.K. Sabir, A.D. Duma, Water hyacinth plant extract mediated green synthesis of Cr2O3/ZnO composite photocatalyst for the degradation of organic dye. Heliyon, 7, 2021. https://doi.org/10.1016/j.heliyon.2021.e07652.
  • S.N.F. Mohd Nasir, M.A. Mat-Teridi, Photoelectrochemical tandem cell of Se/BiVO4 photoanode and Cr2O3/CuO:Ni photocathode in aqueous medium. J Solgel Sci Technol, 93, 2020. https://doi.org/10.1007/s10971-019-05179-w.
  • H.N. Deepak, K.S. Choudhari, S.A. Shivashankar, C. Santhosh, S.D. Kulkarni, Facile microwave-assisted synthesis of Cr2O3 nanoparticles with high near-infrared reflection for roof-top cooling applications, J Alloys Compd, 785, 747–753, 2019. https://doi.org/10.1016/J.JALLCOM.2019.01.254.
  • M.G. Tsegay, H.G. Gebretinsae, G. G.Welegergs, M. Maaza, Z.Y. Nuru, Novel green synthesized Cr2O3 for selective solar absorber: Investigation of structural, morphological, chemical, and optical properties. Solar Energy, 236, 308–319,2022. https://doi.org/10.1016/ J.SOLENER.2022.03.011.
  • S. Khamlich, E. Manikandan, B.D. Ngom, J. Sithole, O. Nemraoui, I. Zorkani, R. McCrindle, N. Cingo, M. Maaza, Synthesis, characterization, and growth mechanism of α-Cr2O3 monodispersed particles. Journal of Physics and Chemistry of Solids, 72,714–718, 2011. https://doi.org/10.1016/J.JPCS. 2011.02.015.
  • L. Bastakys, L. Marcinauskas, M. Milieška, M. Kalin, R. Kėželis, Tribological Properties of Cr2O3, Cr2O3–SiO2-TiO2 and Cr2O3–SiO2-TiO2-graphite coatings deposited by atmospheric plasma spraying. Coatings,13,2023.https://doi.org/10.3390/coatings13020408.
  • F. Tezcan, M. Kahya Düdükcü, G. Kardaş, Photocorrosion protection of BiVO4 electrode by α-Cr2O3 core–shell for photoelectrochemical hydrogen production. Journal of Electroanalytical Chemistry, 920 2022. https://doi.org/10.1016/ j.jelechem.2022.116595.
  • A.B. Khelifa, A. Soum-Glaude, S. Khamlich, H. Glénat, M. Balghouthi, A.A. Guizani, M. Maaza, W. Dimassi, Optical simulation, characterization and thermal stability of Cr2O3/Cr/Cr2O3multilayer solar selective absorber coatings. J Alloys Compd, 783,533–544, 2019 https://doi.org/10.1016/ J.JALLCOM.2018.12.286.
  • B.T. Sone, E. Manikandan, A. Gurib-Fakim, M. Maaza, Single-phase α-Cr2O3nanoparticles’ green synthesis using Callistemon viminalis’ red flower extract. Green Chem Lett Rev, 9, 2016. https://doi.org/10.1080/17518253.2016.1151083.
  • J. Wang, Z. Lu, Y. Ling, R. Wang, Y. Li, Q. Zhou, Z. Zhang, Hydrogen permeation properties of CrxCy@Cr2O3/Al2O3 composite coating derived from selective oxidation of a Cr–C alloy and atomic layer deposition. Int J Hydrogen Energy, 43,2018. https://doi.org/10.1016/j.ijhydene.2018.08.192.
  • S.N.F. Mohd Nasir, M.K.N. Yahya, N.W. Mohamad Sapian, N. Ahmad Ludin, M.A. Ibrahim, K. Sopian, M.A. Mat Teridi, Heterojunction Cr2O3/CuO:Ni photocathodes for enhanced photoelectrochemical performance. RSC Adv, 6, 2016. https://doi.org/10.1039/c6ra03904a.
There are 25 citations in total.

Details

Primary Language Turkish
Subjects Semiconductors, Energy
Journal Section Research Articles
Authors

Ender Fakı 0000-0002-0098-4148

Fatih Tezcan 0000-0001-7656-3529

Gülfeza Kardaş 0000-0002-7871-6303

Project Number FBA-2019-12171
Early Pub Date June 11, 2024
Publication Date July 15, 2024
Submission Date March 12, 2024
Acceptance Date May 20, 2024
Published in Issue Year 2024

Cite

APA Fakı, E., Tezcan, F., & Kardaş, G. (2024). Hidrojen oluşum reaksiyonu için p-tipi Cr2O3 fotokatodun fotokatalitik performansının incelenmesi. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 13(3), 925-931. https://doi.org/10.28948/ngumuh.1450948
AMA Fakı E, Tezcan F, Kardaş G. Hidrojen oluşum reaksiyonu için p-tipi Cr2O3 fotokatodun fotokatalitik performansının incelenmesi. NÖHÜ Müh. Bilim. Derg. July 2024;13(3):925-931. doi:10.28948/ngumuh.1450948
Chicago Fakı, Ender, Fatih Tezcan, and Gülfeza Kardaş. “Hidrojen oluşum Reaksiyonu için P-Tipi Cr2O3 Fotokatodun Fotokatalitik performansının Incelenmesi”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 13, no. 3 (July 2024): 925-31. https://doi.org/10.28948/ngumuh.1450948.
EndNote Fakı E, Tezcan F, Kardaş G (July 1, 2024) Hidrojen oluşum reaksiyonu için p-tipi Cr2O3 fotokatodun fotokatalitik performansının incelenmesi. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 13 3 925–931.
IEEE E. Fakı, F. Tezcan, and G. Kardaş, “Hidrojen oluşum reaksiyonu için p-tipi Cr2O3 fotokatodun fotokatalitik performansının incelenmesi”, NÖHÜ Müh. Bilim. Derg., vol. 13, no. 3, pp. 925–931, 2024, doi: 10.28948/ngumuh.1450948.
ISNAD Fakı, Ender et al. “Hidrojen oluşum Reaksiyonu için P-Tipi Cr2O3 Fotokatodun Fotokatalitik performansının Incelenmesi”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 13/3 (July 2024), 925-931. https://doi.org/10.28948/ngumuh.1450948.
JAMA Fakı E, Tezcan F, Kardaş G. Hidrojen oluşum reaksiyonu için p-tipi Cr2O3 fotokatodun fotokatalitik performansının incelenmesi. NÖHÜ Müh. Bilim. Derg. 2024;13:925–931.
MLA Fakı, Ender et al. “Hidrojen oluşum Reaksiyonu için P-Tipi Cr2O3 Fotokatodun Fotokatalitik performansının Incelenmesi”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, vol. 13, no. 3, 2024, pp. 925-31, doi:10.28948/ngumuh.1450948.
Vancouver Fakı E, Tezcan F, Kardaş G. Hidrojen oluşum reaksiyonu için p-tipi Cr2O3 fotokatodun fotokatalitik performansının incelenmesi. NÖHÜ Müh. Bilim. Derg. 2024;13(3):925-31.

download