Research Article
BibTex RIS Cite

Groundwater level estimation with analytical hierarchy method

Year 2024, , 1277 - 1290, 15.10.2024
https://doi.org/10.28948/ngumuh.1499537

Abstract

Groundwater is an important component of the hydrological cycle and a critical resource for ecosystems and human life on Earth. Estimating groundwater levels is important for strategic planning and management in many areas such as agriculture, industry, engineering studies, and drinking water. In particular, it is necessary to determine the groundwater accurately and clearly to carry out both ground and hydraulic works. In this study, the estimation of the groundwater level of Diyarbakır province was made by analytical hierarchy method. Groundwater level estimation was made using slope, geology, geomorphology, land use, precipitation, fault density, drainage density classes. Especially in areas where data supply is short, positive and accurate results can be obtained with AHP, which is a fast and practical application. It is expected that the findings obtained will benefit public and private institutions and organizations for future studies.

References

  • I. K. Seidenfaden et al., Evaluating recharge estimates based on groundwater head from different lumped models in Europe. J Hydrol Reg Stud., 47, 2023. https://doi.org/10.1016/j.ejrh.2023.101399
  • V. Agarwal et al., Machine learning based downscaling of GRACE-estimated groundwater in Central Valley, California. Science of the Total Environment, 865, Mar. 2023. https://doi.org/10.1016/ j.scitotenv.2022.161138
  • A. Mochizuki and E. Ishii, Paleohydrogeology of the Horonobe area, Northern Hokkaido, Japan: Groundwater flow conditions during glacial and postglacial periods estimated from chemical and isotopic data for fracture and pore water. Applied Geochemistry, 155, 2023. https://doi.org/10.1016/j.apgeochem.2023.105737
  • S. Yalvaç, S. Alemdağ, H. İ. Zeybek, and M. Yalvaç, Excessive groundwater withdrawal and resultant land subsidence in the Küçük Menderes River Basin, Turkey as estimated from InSAR-SBAS and GNSS measurements. Advances in Space Research, 72(10), 4282–4297, 2023. https://doi.org/10.1016/ j.asr.2023.08.001
  • N. Zheng, Z. Li, X. Xia, S. Gu, X. Li, and S. Jiang, Estimating line contaminant sources in non-Gaussian groundwater conductivity fields using deep learning-based framework. J Hydrol (Amst), 630, 2024. https://doi.org/10.1016/j.jhydrol.2024.130727
  • A. Intriago, P. Galvão, and B. Conicelli, Use of GIS and R to estimate climate change impacts on groundwater recharge in Portoviejo River watershed, Ecuador. J South Am Earth Sci., 124, 2023. https://doi.org/10.1016/j.jsames.2023.104288
  • F. Felfelani et al., Simulation of groundwater-flow dynamics in the U.S. Northern High Plains driven by multi-model estimates of surficial aquifer recharge. J Hydrol (Amst), 630, 2024. https://doi.org/10.1016/ j.jhydrol.2024.130703
  • M. F. Alam et al., Energy consumption as a proxy to estimate groundwater abstraction in irrigation. Groundw Sustain Dev, 23, 2023. https://doi.org/10.1016/j.gsd.2023.101035
  • A. O. Affum, E. E. Kwaansa-Ansah, and S. D. Osae, Estimating groundwater geogenic arsenic contamination and the affected population of river basins underlain mostly with crystalline rocks in Ghana. Environmental Challenges, 15, 2024. https://doi.org/10.1016/j.envc.2024.100898
  • R. P. Chapuis et al., Numerical convergence does not mean mathematical convergence: Examples of simple saturated steady-state groundwater models with pumping wells. Comput Geotech, 162, 2023. https://doi.org/10.1016/j.compgeo.2023.105615
  • M. D. Faye, V. Y. B. Loyara, A. C. Biaou, R. Yonaba, M. Koita, and H. Yacouba, Modelling groundwater pollutant transfer mineral micropollutants in a multi-layered aquifer in Burkina Faso (West African Sahel). Helion, 10(1), 2024. https://doi.org/10.1016/ j.heliyon.2023.e23557
  • M. F. P. Bierkens, L. P. H. Rens van Beek, and N. Wanders, Gisser-Sánchez revisited: A model of optimal groundwater withdrawal under irrigation including surface–groundwater interaction. J Hydrol (Amst), 635, 2024. https://doi.org/ 10.1016/j.jhydrol.2024.131145
  • J. Sabah Mustafa and D. Khider Mawlood, Mathematical modeling for groundwater management for multilayers aquifers (Erbil basin). Ain Shams Engineering Journal, 2024. https://doi.org/ 10.1016/j.asej.2024.102781
  • M. A. Habib et al., Evaluating arsenic contamination in northwestern Bangladesh: A GIS-Based assessment of groundwater vulnerability and human health impacts. Helion, e27917, 2024, https://doi.org/10.1016/j.heliyon.2024.e27917
  • S. A. M. Querishi and S. M. Ghavami, AquMADE: A GIS-based web application to assess groundwater quality by introducing a risk-based irrigation water quality index (RB-IWQI). Environmental Modelling & Software, 106009, 2024. https://doi.org/10.1016/j.envsoft.2024.106009
  • J. Hornero, M. Manzano, L. Ortega, and E. Custodio, Integrating soil water and tracer balances, numerical modelling and GIS tools to estimate regional groundwater recharge: Application to the Alcadozo Aquifer System (SE Spain). Science of the Total Environment, 568, 415–432, 2016. https://doi.org/10.1016/j.scitotenv.2016.06.011
  • G. Bennett, "Analysis of methods used to validate remote sensing and GIS-based groundwater potential maps in the last two decades: A review. Geosystems and Geoenvironment, 3(1), 2024. https://doi.org/10.1016/j.geogeo.2023.100245
  • V. N. Prapanchan, T. Subramani, and D. Karunanidhi, GIS and fuzzy analytical hierarchy process to delineate groundwater potential zones in southern parts of India. Groundw Sustain Dev, 25, 2024. https://doi.org/10.1016/j.gsd.2024.101110
  • M. Badika, S. Capdevielle, P. Forquin, D. Saletti, and M. Briffaut, Experimental study of the shear behavior of concrete-rock interfaces under static and dynamic loading in the context of low confinement stress. Eng Struct., 309, 2024. https://doi.org/10.1016/ j.engstruct.2024.118059
  • J. Torres, M. Vivar, M. Fuentes, A. M. Palacios, and M. J. Rodrigo, Performance of the SolWat system operating in static mode vs. dynamic for wastewater treatment: Power generation and obtaining reclaimed water. J Environ Manage, 324, 2022, https://doi.org/10.1016/j.jenvman.2022.116373
  • C. Leng, M. Jia, H. Zheng, J. Deng, and D. Niu, Dynamic liquid level prediction in oil wells during oil extraction based on WOA-AM-LSTM-ANN model using dynamic and static information. Energy, 282, 2023. https://doi.org/10.1016/j.energy.2023.128981
  • M. Krzaczek, J. Tejchman, and M. Nitka, Coupled DEM/CDF analysis of impact of free water on the static and dynamic response of concrete in tension regime. Comput Geotech, 172, 2024. https://doi.org/10.1016/j.compgeo.2024.106449
  • M. Öztürk, R. Çelik, Diyarbakır Ovası’nın yeraltı su seviye haritalarının coğrafik bilgi sistemi (Cbs) ile tespiti. İMO su konferansı, 125-135, 2008. https://www.researchgate.net/publication/291115759
  • B. Gül, N. Kayaalp; Investigation of the floodevent under global climate change with different analysis methods for both historical and future periods. Journal of Water and Climate Change, 15(8), 3939-65, 2024. https://doi.org/10.2166/wcc.2024.196

Analitik hiyerarşi yöntemi ile yeraltı suyu seviyesi tahmini

Year 2024, , 1277 - 1290, 15.10.2024
https://doi.org/10.28948/ngumuh.1499537

Abstract

Yeraltı suyu, hidrolojik döngünün önemli bir bileşenidir ve Dünya'daki ekosistemler ve insan yaşamı için kritik bir kaynaktır. Yeraltı suyu seviyelerinin tahmini, tarım, sanayi, mühendislik çalışmaları ve içme suyu gibi birçok alanda stratejik planlama ve yönetim için önemlidir. Özellikle hem zemin hem de hidrolik işlerin yapılabilmesi için yeraltı suyunun doğru ve net bir şekilde belirlenmesi gerekmektedir. Bu çalışmada Diyarbakır ilinin yeraltı suyu seviyesinin tahmini analitik hiyerarşi yöntemi ile yapılmıştır. Eğim, jeoloji, jeomorfoloji, arazi kullanımı, yağış, fay yoğunluğu, drenaj yoğunluk sınıfları kullanılarak yeraltı suyu seviyesi tahmini yapılmıştır. Özellikle veri tedariğinin kısa olduğu alanlarda hızlı ve pratik bir uygulama olan AHP ile olumlu ve doğru sonuçlar alınabilmektedir. Elde edilen bulguların ileride yapılacak çalışmalar için kamu ve özel kurum ve kuruluşlara fayda sağlaması beklenmektedir.

References

  • I. K. Seidenfaden et al., Evaluating recharge estimates based on groundwater head from different lumped models in Europe. J Hydrol Reg Stud., 47, 2023. https://doi.org/10.1016/j.ejrh.2023.101399
  • V. Agarwal et al., Machine learning based downscaling of GRACE-estimated groundwater in Central Valley, California. Science of the Total Environment, 865, Mar. 2023. https://doi.org/10.1016/ j.scitotenv.2022.161138
  • A. Mochizuki and E. Ishii, Paleohydrogeology of the Horonobe area, Northern Hokkaido, Japan: Groundwater flow conditions during glacial and postglacial periods estimated from chemical and isotopic data for fracture and pore water. Applied Geochemistry, 155, 2023. https://doi.org/10.1016/j.apgeochem.2023.105737
  • S. Yalvaç, S. Alemdağ, H. İ. Zeybek, and M. Yalvaç, Excessive groundwater withdrawal and resultant land subsidence in the Küçük Menderes River Basin, Turkey as estimated from InSAR-SBAS and GNSS measurements. Advances in Space Research, 72(10), 4282–4297, 2023. https://doi.org/10.1016/ j.asr.2023.08.001
  • N. Zheng, Z. Li, X. Xia, S. Gu, X. Li, and S. Jiang, Estimating line contaminant sources in non-Gaussian groundwater conductivity fields using deep learning-based framework. J Hydrol (Amst), 630, 2024. https://doi.org/10.1016/j.jhydrol.2024.130727
  • A. Intriago, P. Galvão, and B. Conicelli, Use of GIS and R to estimate climate change impacts on groundwater recharge in Portoviejo River watershed, Ecuador. J South Am Earth Sci., 124, 2023. https://doi.org/10.1016/j.jsames.2023.104288
  • F. Felfelani et al., Simulation of groundwater-flow dynamics in the U.S. Northern High Plains driven by multi-model estimates of surficial aquifer recharge. J Hydrol (Amst), 630, 2024. https://doi.org/10.1016/ j.jhydrol.2024.130703
  • M. F. Alam et al., Energy consumption as a proxy to estimate groundwater abstraction in irrigation. Groundw Sustain Dev, 23, 2023. https://doi.org/10.1016/j.gsd.2023.101035
  • A. O. Affum, E. E. Kwaansa-Ansah, and S. D. Osae, Estimating groundwater geogenic arsenic contamination and the affected population of river basins underlain mostly with crystalline rocks in Ghana. Environmental Challenges, 15, 2024. https://doi.org/10.1016/j.envc.2024.100898
  • R. P. Chapuis et al., Numerical convergence does not mean mathematical convergence: Examples of simple saturated steady-state groundwater models with pumping wells. Comput Geotech, 162, 2023. https://doi.org/10.1016/j.compgeo.2023.105615
  • M. D. Faye, V. Y. B. Loyara, A. C. Biaou, R. Yonaba, M. Koita, and H. Yacouba, Modelling groundwater pollutant transfer mineral micropollutants in a multi-layered aquifer in Burkina Faso (West African Sahel). Helion, 10(1), 2024. https://doi.org/10.1016/ j.heliyon.2023.e23557
  • M. F. P. Bierkens, L. P. H. Rens van Beek, and N. Wanders, Gisser-Sánchez revisited: A model of optimal groundwater withdrawal under irrigation including surface–groundwater interaction. J Hydrol (Amst), 635, 2024. https://doi.org/ 10.1016/j.jhydrol.2024.131145
  • J. Sabah Mustafa and D. Khider Mawlood, Mathematical modeling for groundwater management for multilayers aquifers (Erbil basin). Ain Shams Engineering Journal, 2024. https://doi.org/ 10.1016/j.asej.2024.102781
  • M. A. Habib et al., Evaluating arsenic contamination in northwestern Bangladesh: A GIS-Based assessment of groundwater vulnerability and human health impacts. Helion, e27917, 2024, https://doi.org/10.1016/j.heliyon.2024.e27917
  • S. A. M. Querishi and S. M. Ghavami, AquMADE: A GIS-based web application to assess groundwater quality by introducing a risk-based irrigation water quality index (RB-IWQI). Environmental Modelling & Software, 106009, 2024. https://doi.org/10.1016/j.envsoft.2024.106009
  • J. Hornero, M. Manzano, L. Ortega, and E. Custodio, Integrating soil water and tracer balances, numerical modelling and GIS tools to estimate regional groundwater recharge: Application to the Alcadozo Aquifer System (SE Spain). Science of the Total Environment, 568, 415–432, 2016. https://doi.org/10.1016/j.scitotenv.2016.06.011
  • G. Bennett, "Analysis of methods used to validate remote sensing and GIS-based groundwater potential maps in the last two decades: A review. Geosystems and Geoenvironment, 3(1), 2024. https://doi.org/10.1016/j.geogeo.2023.100245
  • V. N. Prapanchan, T. Subramani, and D. Karunanidhi, GIS and fuzzy analytical hierarchy process to delineate groundwater potential zones in southern parts of India. Groundw Sustain Dev, 25, 2024. https://doi.org/10.1016/j.gsd.2024.101110
  • M. Badika, S. Capdevielle, P. Forquin, D. Saletti, and M. Briffaut, Experimental study of the shear behavior of concrete-rock interfaces under static and dynamic loading in the context of low confinement stress. Eng Struct., 309, 2024. https://doi.org/10.1016/ j.engstruct.2024.118059
  • J. Torres, M. Vivar, M. Fuentes, A. M. Palacios, and M. J. Rodrigo, Performance of the SolWat system operating in static mode vs. dynamic for wastewater treatment: Power generation and obtaining reclaimed water. J Environ Manage, 324, 2022, https://doi.org/10.1016/j.jenvman.2022.116373
  • C. Leng, M. Jia, H. Zheng, J. Deng, and D. Niu, Dynamic liquid level prediction in oil wells during oil extraction based on WOA-AM-LSTM-ANN model using dynamic and static information. Energy, 282, 2023. https://doi.org/10.1016/j.energy.2023.128981
  • M. Krzaczek, J. Tejchman, and M. Nitka, Coupled DEM/CDF analysis of impact of free water on the static and dynamic response of concrete in tension regime. Comput Geotech, 172, 2024. https://doi.org/10.1016/j.compgeo.2024.106449
  • M. Öztürk, R. Çelik, Diyarbakır Ovası’nın yeraltı su seviye haritalarının coğrafik bilgi sistemi (Cbs) ile tespiti. İMO su konferansı, 125-135, 2008. https://www.researchgate.net/publication/291115759
  • B. Gül, N. Kayaalp; Investigation of the floodevent under global climate change with different analysis methods for both historical and future periods. Journal of Water and Climate Change, 15(8), 3939-65, 2024. https://doi.org/10.2166/wcc.2024.196
There are 24 citations in total.

Details

Primary Language English
Subjects Water Resources Engineering, Water Resources and Water Structures
Journal Section Research Articles
Authors

Burak Gül 0009-0005-7735-2455

Mehmet Hayrullah Akyıldız 0000-0001-7239-3518

Early Pub Date September 4, 2024
Publication Date October 15, 2024
Submission Date June 11, 2024
Acceptance Date August 15, 2024
Published in Issue Year 2024

Cite

APA Gül, B., & Akyıldız, M. H. (2024). Groundwater level estimation with analytical hierarchy method. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 13(4), 1277-1290. https://doi.org/10.28948/ngumuh.1499537
AMA Gül B, Akyıldız MH. Groundwater level estimation with analytical hierarchy method. NÖHÜ Müh. Bilim. Derg. October 2024;13(4):1277-1290. doi:10.28948/ngumuh.1499537
Chicago Gül, Burak, and Mehmet Hayrullah Akyıldız. “Groundwater Level Estimation With Analytical Hierarchy Method”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 13, no. 4 (October 2024): 1277-90. https://doi.org/10.28948/ngumuh.1499537.
EndNote Gül B, Akyıldız MH (October 1, 2024) Groundwater level estimation with analytical hierarchy method. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 13 4 1277–1290.
IEEE B. Gül and M. H. Akyıldız, “Groundwater level estimation with analytical hierarchy method”, NÖHÜ Müh. Bilim. Derg., vol. 13, no. 4, pp. 1277–1290, 2024, doi: 10.28948/ngumuh.1499537.
ISNAD Gül, Burak - Akyıldız, Mehmet Hayrullah. “Groundwater Level Estimation With Analytical Hierarchy Method”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 13/4 (October 2024), 1277-1290. https://doi.org/10.28948/ngumuh.1499537.
JAMA Gül B, Akyıldız MH. Groundwater level estimation with analytical hierarchy method. NÖHÜ Müh. Bilim. Derg. 2024;13:1277–1290.
MLA Gül, Burak and Mehmet Hayrullah Akyıldız. “Groundwater Level Estimation With Analytical Hierarchy Method”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, vol. 13, no. 4, 2024, pp. 1277-90, doi:10.28948/ngumuh.1499537.
Vancouver Gül B, Akyıldız MH. Groundwater level estimation with analytical hierarchy method. NÖHÜ Müh. Bilim. Derg. 2024;13(4):1277-90.

download