Research Article
BibTex RIS Cite

Eriyik yığma modelleme ile farklı yazdırma parametrelerinde üretilen yapıların titreşim sönümleme özelliklerinin torna tezgâhı üzerinde deneysel araştırılması

Year 2024, , 1498 - 1503, 15.10.2024
https://doi.org/10.28948/ngumuh.1521381

Abstract

Eriyik yığma modelleme teknolojisinin gelişimi ile istenilen özelliklerde tasarımı yapılan malzemelerin ve yapıların üretilmesi mümkün hale gelmiştir. Özellikle yazdırma açısı, doluluk oranı ve içyapı gibi yapısal yazdırma parametrelerinin, üretilen yapının mekanik özellikleri üzerinde son derece etkili olduğu yapılan çalışmalarda ortaya konulmuştur. Bu çalışmada ise, farklı doluluk oranı ve içyapılarda üretilen yapıların titreşim sönümleme özellikleri, bir torna tezgâhı üzerinde deneysel olarak incelenmiştir. Deneyler sonucunda, içyapı ve doluluk oranının yapının sönümleme özelliği üzerinde etkili olduğu saptanmış ve bu sayede farklı yazdırma parametreleriyle uygulamaya özel ve istenilen sönüm özelliğini gösterebilecek izolatörlerin tasarlanabileceği ortaya konulmuştur.

References

  • S.C. Joshi and A. A. Sheikh, 3D printing in aerospace and its long-term sustainability. Virtual and Physical Prototyping, 10, 175-185, 2015. https://doi.org/10.1080/17452759.2015.1111519
  • A. Aimar, A. Palermo and B. Innocenti, The role of 3D printing in medical applications: A state of the art, Journal of Healthcare Engineering, 2019. https://doi.org/10.1155/2019/5340616
  • H. Gao, W. Zhang, Z. Yu, F. Xin and M. Jiang, Emerging Applications of 3D printing in biomanufacturing, Trends Biotechnology, 39(11), P1114-1116, 2021. https://doi.org/10.1016/j.tibtech.2021.04.005
  • ISO/TC 261; Additive manufacturing ISO/ASTM 52900:2021 (En), Additive Manufacturing—General Principles—Fundamentals and Vocabulary. ISO: Geneva, Switzerland, 2021.
  • V. Shanmugam, O. Das, K. Babu, U. Marimuthu, A. Veerasimman, D. J. Johnson, R. E. Neisiany, M. S. Hedenqvist, S. Ramakrishna and F. Berto, Fatigue behaviour of FDM-3D printed polymers, polymeric composites and architected cellular materials. International Journal of Fatigue, 143, 106007, 2021. https://doi.org/10.1016/j.ijfatigue.2020.106007
  • D. Popescu, A. Zapciu, C. Amza, F. Baciu, and R. Marinescu, FDM process parameters influence over the mechanical properties of polymer specimens: A review. Polymer Testing, 69, 157–166, 2018. https://doi.org/10.1016/j.polymertesting.2018.05.020
  • T. J. Gordelier, P. R. Thies, L. Turner and L. Johanning, Optimising the FDM additive manufacturing process to achieve maximum tensile strength: A state-of-the-art review, Rapid Prototype Journal, 25(6), 953–971, 2019. https://doi.org/10.1108/RPJ-07-2018-0183
  • F. M. Mwema and E. T. Akinlabi, Basics of Fused Deposition Modelling (FDM). In: Fused Deposition Modeling, Part of the book series: SpringerBriefs in Applied Sciences and Technology, Springer, 2020. https://doi.org/10.1007/978-3-030-48259-6_1
  • F. Bárnik, M. Vaško, M. Sága, M. Handrik and A. Sapietová, Mechanical properties of structures produced by 3D printing from composite materials, MATEC Web of Conferences, 254, 01018, 2019.
  • P. Wang, B. Zou, S. Ding, L. Li and C. Huang, Effects of FDM-3D printing parameters on mechanical properties and microstructure of CF/PEEK and GF/PEEK, Chinese Journal of Aeronautics, 34, 236–246, 2021. https://doi.org/10.1016/j.cja.2020.05.040
  • J. C. Camargo, Á.R. Machado, E. C. Almeida, and E. F. M. S. Silva, Mechanical properties of PLA-graphene filament for FDM 3D printing, The International Journal of Advanced Manufacturing Technology,103, 2423–2443, 2019. https://doi.org/10.1007/s00170-019-03532-5
  • J. Fernandes, A. M. Deus, L. Reis, M. F. Vaz and M. Leite, Study of the influence of 3D printing parameters on the mechanical properties of PLA, In Proceedings of the International Conference on Progress in Additive Manufacturing, Singapore, 14–17 May 2018.
  • D. Lee and G. Y. Wu, Parameters affecting the mechanical properties of three-dimensional (3D) printed carbon fiber-reinforced polylactide composites, Polymers, 12, 2456, 2020. https://doi.org/10.3390/polym12112456
  • R. Gautam and S. Idapalati, Compressive Properties of Additively Manufactured Functionally Graded Kagome Lattice Structure, Metals, 9(5), 517, 2019. https://doi.org/10.3390/met9050517
  • J. T. Cantrell, S. Rohde, D. Damiani, R. Gurnani, L. DiSandro, J. Anton, A. Young, A. Jerez, D. Steinbach, C. Kroese, and P. G. Ifju, Experimental characterization of the mechanical properties of 3D-printed ABS and polycarbonate parts. Rapid Prototyping Journal, 23(4), 811-824, 2017. https://doi.org/10.1108/RPJ-03-2016-0042
  • M. Al Rifaie, A. Lian and R. Srinivasan, Compression behavior of three-dimensional printed polymer lattice structures, Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 233, 1574–1584, 2018. https://doi.org/10.1177/1464420718770475
  • G. J. Calise and A. Saigal, Anisotropy and failure in octahedral lattice structure parts fabricated using the fdm technology. In Proceedings of the ASME 2017 International Mechanical Engineering Congress and Exposition, Tampa, FL, USA, 3–9 November 2017.
  • M. Helou, S. Vongbunyong, and S. Kara, Finite Element Analysis and Validation of Cellular Structures. Procedia CIRP, 50, 94–99, 2016. https://doi.org/10.1016/j.procir.2016.05.018
  • J. Bauer, S. Hengsbach, I. Tesari, R. Schwaiger and O. Kraft, High-strength cellular ceramic composites with 3D microarchitecture, Proceedings of the National Academy of Sciences, 111(7), 2453–2458, 2014. https://doi.org/10.1073/pnas.1315147111
  • J. Fei, B. Lin, S. Yan, M. Ding, J. Xiao, J. Zhang, X. Zhang, C. Ji, and T. Sui, Chatter mitigation using moving damper, Journal of Sound and Vibration, 410, 49–63, 2017. https://doi.org/10.1016/j.jsv.2017.08.033
  • G. Stepan, A. K. Kiss, B. Ghalamchi, J. Sopanen and D. Bachrathy, Chatter avoidance in cutting highly flexible workpieces, CIRP Annals, 66(1), 377–380, 2017. https://doi.org/10.1016/j.cirp.2017.04.054
  • X. L. Yang, H. T. Wu, B. Chen, S. Z. Kang and S. L. Cheng, Dynamic modeling and decoupled control of a flexible Stewart platform for vibration isolation, Journal of Sound and Vibration, 439, 398–412, 2019. https://doi.org/10.1016/j.jsv.2018.10.007

Experimental investigation of the vibration damping properties of structures produced with different printing parameters on a lathe using fused deposition modeling

Year 2024, , 1498 - 1503, 15.10.2024
https://doi.org/10.28948/ngumuh.1521381

Abstract

With the advancement of fused deposition modeling technology, it has become possible to produce materials and structures designed with desired properties. Studies have shown that structural printing parameters such as printing angle, infill density, and internal structure significantly affect the mechanical properties of the produced structure. In this study, the vibration damping properties of structures produced with different infill densities and internal structures were experimentally investigated on a lathe. The experiments revealed that internal structure and infill density significantly influence the damping properties of the structure. Consequently, it was demonstrated that isolators with application-specific and desired damping properties can be designed using different printing parameters.

References

  • S.C. Joshi and A. A. Sheikh, 3D printing in aerospace and its long-term sustainability. Virtual and Physical Prototyping, 10, 175-185, 2015. https://doi.org/10.1080/17452759.2015.1111519
  • A. Aimar, A. Palermo and B. Innocenti, The role of 3D printing in medical applications: A state of the art, Journal of Healthcare Engineering, 2019. https://doi.org/10.1155/2019/5340616
  • H. Gao, W. Zhang, Z. Yu, F. Xin and M. Jiang, Emerging Applications of 3D printing in biomanufacturing, Trends Biotechnology, 39(11), P1114-1116, 2021. https://doi.org/10.1016/j.tibtech.2021.04.005
  • ISO/TC 261; Additive manufacturing ISO/ASTM 52900:2021 (En), Additive Manufacturing—General Principles—Fundamentals and Vocabulary. ISO: Geneva, Switzerland, 2021.
  • V. Shanmugam, O. Das, K. Babu, U. Marimuthu, A. Veerasimman, D. J. Johnson, R. E. Neisiany, M. S. Hedenqvist, S. Ramakrishna and F. Berto, Fatigue behaviour of FDM-3D printed polymers, polymeric composites and architected cellular materials. International Journal of Fatigue, 143, 106007, 2021. https://doi.org/10.1016/j.ijfatigue.2020.106007
  • D. Popescu, A. Zapciu, C. Amza, F. Baciu, and R. Marinescu, FDM process parameters influence over the mechanical properties of polymer specimens: A review. Polymer Testing, 69, 157–166, 2018. https://doi.org/10.1016/j.polymertesting.2018.05.020
  • T. J. Gordelier, P. R. Thies, L. Turner and L. Johanning, Optimising the FDM additive manufacturing process to achieve maximum tensile strength: A state-of-the-art review, Rapid Prototype Journal, 25(6), 953–971, 2019. https://doi.org/10.1108/RPJ-07-2018-0183
  • F. M. Mwema and E. T. Akinlabi, Basics of Fused Deposition Modelling (FDM). In: Fused Deposition Modeling, Part of the book series: SpringerBriefs in Applied Sciences and Technology, Springer, 2020. https://doi.org/10.1007/978-3-030-48259-6_1
  • F. Bárnik, M. Vaško, M. Sága, M. Handrik and A. Sapietová, Mechanical properties of structures produced by 3D printing from composite materials, MATEC Web of Conferences, 254, 01018, 2019.
  • P. Wang, B. Zou, S. Ding, L. Li and C. Huang, Effects of FDM-3D printing parameters on mechanical properties and microstructure of CF/PEEK and GF/PEEK, Chinese Journal of Aeronautics, 34, 236–246, 2021. https://doi.org/10.1016/j.cja.2020.05.040
  • J. C. Camargo, Á.R. Machado, E. C. Almeida, and E. F. M. S. Silva, Mechanical properties of PLA-graphene filament for FDM 3D printing, The International Journal of Advanced Manufacturing Technology,103, 2423–2443, 2019. https://doi.org/10.1007/s00170-019-03532-5
  • J. Fernandes, A. M. Deus, L. Reis, M. F. Vaz and M. Leite, Study of the influence of 3D printing parameters on the mechanical properties of PLA, In Proceedings of the International Conference on Progress in Additive Manufacturing, Singapore, 14–17 May 2018.
  • D. Lee and G. Y. Wu, Parameters affecting the mechanical properties of three-dimensional (3D) printed carbon fiber-reinforced polylactide composites, Polymers, 12, 2456, 2020. https://doi.org/10.3390/polym12112456
  • R. Gautam and S. Idapalati, Compressive Properties of Additively Manufactured Functionally Graded Kagome Lattice Structure, Metals, 9(5), 517, 2019. https://doi.org/10.3390/met9050517
  • J. T. Cantrell, S. Rohde, D. Damiani, R. Gurnani, L. DiSandro, J. Anton, A. Young, A. Jerez, D. Steinbach, C. Kroese, and P. G. Ifju, Experimental characterization of the mechanical properties of 3D-printed ABS and polycarbonate parts. Rapid Prototyping Journal, 23(4), 811-824, 2017. https://doi.org/10.1108/RPJ-03-2016-0042
  • M. Al Rifaie, A. Lian and R. Srinivasan, Compression behavior of three-dimensional printed polymer lattice structures, Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 233, 1574–1584, 2018. https://doi.org/10.1177/1464420718770475
  • G. J. Calise and A. Saigal, Anisotropy and failure in octahedral lattice structure parts fabricated using the fdm technology. In Proceedings of the ASME 2017 International Mechanical Engineering Congress and Exposition, Tampa, FL, USA, 3–9 November 2017.
  • M. Helou, S. Vongbunyong, and S. Kara, Finite Element Analysis and Validation of Cellular Structures. Procedia CIRP, 50, 94–99, 2016. https://doi.org/10.1016/j.procir.2016.05.018
  • J. Bauer, S. Hengsbach, I. Tesari, R. Schwaiger and O. Kraft, High-strength cellular ceramic composites with 3D microarchitecture, Proceedings of the National Academy of Sciences, 111(7), 2453–2458, 2014. https://doi.org/10.1073/pnas.1315147111
  • J. Fei, B. Lin, S. Yan, M. Ding, J. Xiao, J. Zhang, X. Zhang, C. Ji, and T. Sui, Chatter mitigation using moving damper, Journal of Sound and Vibration, 410, 49–63, 2017. https://doi.org/10.1016/j.jsv.2017.08.033
  • G. Stepan, A. K. Kiss, B. Ghalamchi, J. Sopanen and D. Bachrathy, Chatter avoidance in cutting highly flexible workpieces, CIRP Annals, 66(1), 377–380, 2017. https://doi.org/10.1016/j.cirp.2017.04.054
  • X. L. Yang, H. T. Wu, B. Chen, S. Z. Kang and S. L. Cheng, Dynamic modeling and decoupled control of a flexible Stewart platform for vibration isolation, Journal of Sound and Vibration, 439, 398–412, 2019. https://doi.org/10.1016/j.jsv.2018.10.007
There are 22 citations in total.

Details

Primary Language Turkish
Subjects Dynamics, Vibration and Vibration Control
Journal Section Research Articles
Authors

Çağlar Sevim 0000-0001-6456-5949

Mehmet Parlak 0000-0002-3033-9887

Early Pub Date September 30, 2024
Publication Date October 15, 2024
Submission Date July 29, 2024
Acceptance Date September 25, 2024
Published in Issue Year 2024

Cite

APA Sevim, Ç., & Parlak, M. (2024). Eriyik yığma modelleme ile farklı yazdırma parametrelerinde üretilen yapıların titreşim sönümleme özelliklerinin torna tezgâhı üzerinde deneysel araştırılması. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 13(4), 1498-1503. https://doi.org/10.28948/ngumuh.1521381
AMA Sevim Ç, Parlak M. Eriyik yığma modelleme ile farklı yazdırma parametrelerinde üretilen yapıların titreşim sönümleme özelliklerinin torna tezgâhı üzerinde deneysel araştırılması. NÖHÜ Müh. Bilim. Derg. October 2024;13(4):1498-1503. doi:10.28948/ngumuh.1521381
Chicago Sevim, Çağlar, and Mehmet Parlak. “Eriyik yığma Modelleme Ile Farklı yazdırma Parametrelerinde üretilen yapıların titreşim sönümleme özelliklerinin Torna tezgâhı üzerinde Deneysel araştırılması”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 13, no. 4 (October 2024): 1498-1503. https://doi.org/10.28948/ngumuh.1521381.
EndNote Sevim Ç, Parlak M (October 1, 2024) Eriyik yığma modelleme ile farklı yazdırma parametrelerinde üretilen yapıların titreşim sönümleme özelliklerinin torna tezgâhı üzerinde deneysel araştırılması. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 13 4 1498–1503.
IEEE Ç. Sevim and M. Parlak, “Eriyik yığma modelleme ile farklı yazdırma parametrelerinde üretilen yapıların titreşim sönümleme özelliklerinin torna tezgâhı üzerinde deneysel araştırılması”, NÖHÜ Müh. Bilim. Derg., vol. 13, no. 4, pp. 1498–1503, 2024, doi: 10.28948/ngumuh.1521381.
ISNAD Sevim, Çağlar - Parlak, Mehmet. “Eriyik yığma Modelleme Ile Farklı yazdırma Parametrelerinde üretilen yapıların titreşim sönümleme özelliklerinin Torna tezgâhı üzerinde Deneysel araştırılması”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 13/4 (October 2024), 1498-1503. https://doi.org/10.28948/ngumuh.1521381.
JAMA Sevim Ç, Parlak M. Eriyik yığma modelleme ile farklı yazdırma parametrelerinde üretilen yapıların titreşim sönümleme özelliklerinin torna tezgâhı üzerinde deneysel araştırılması. NÖHÜ Müh. Bilim. Derg. 2024;13:1498–1503.
MLA Sevim, Çağlar and Mehmet Parlak. “Eriyik yığma Modelleme Ile Farklı yazdırma Parametrelerinde üretilen yapıların titreşim sönümleme özelliklerinin Torna tezgâhı üzerinde Deneysel araştırılması”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, vol. 13, no. 4, 2024, pp. 1498-03, doi:10.28948/ngumuh.1521381.
Vancouver Sevim Ç, Parlak M. Eriyik yığma modelleme ile farklı yazdırma parametrelerinde üretilen yapıların titreşim sönümleme özelliklerinin torna tezgâhı üzerinde deneysel araştırılması. NÖHÜ Müh. Bilim. Derg. 2024;13(4):1498-503.

download