Research Article
BibTex RIS Cite

Fabrication of sulfur cathode with cZIF-8/Ti3C2 nanocomposites and its use in lithium-sulfur batteries

Year 2024, , 1364 - 1371, 15.10.2024
https://doi.org/10.28948/ngumuh.1529404

Abstract

It is of great importance to develop the high-performance energy storage systems that modern society needs for innovative technologies such as electric vehicles, consumer electronics, and grid-scale storage. Today, the unit cost of energy produced from renewable solar and wind sources has reached levels competitive with fossil fuels. Unit costs of energy storage systems have not yet reached the desired levels and are still very expensive. Therefore, there is a need to develop high-performance energy storage systems using sustainable and economical methods. In this study, the fabrication and characterization of S/c-ZIF-8/Ti3C2 cathodes were done, and the structural and electrochemical stability of high-capacity lithium-sulfur batteries (LSBs) was improved. After the structural and chemical characterization of the produced materials and cathodes, they were used in Li-S batteries and their performance-related properties were examined. The fabricated Li-S batteries have a specific capacity of approximately 1000 mAh/g. With the fabricated S/c-ZIF-8/Ti3C2 cathodes, the adverse effects caused by the insulating nature of sulfur and lithium polysulfide are eliminated.

Project Number

FBG-2021-1703

References

  • R. Yuksel, O. Buyukcakir, W.K. Seong, and R.S. Ruoff, Metal-Organic Framework Integrated Anodes for Aqueous Zinc-Ion Batteries, Advanced Energy Materials 10(16), 2020. https://doi.org/10.1002 /aenm.201904215
  • R. Yuksel, O. Buyukcakir, P.K. Panda, S.H. Lee, Y. Jiang, D. Singh, S. Hansen, R. Adelung, Y.K. Mishra, R. Ahuja, and R.S. Ruoff, Necklace-like Nitrogen-Doped Tubular Carbon 3D Frameworks for Electrochemical Energy Storage, Advanced Functional Materials 30(10), 2020. https://doi.org/10.1002/ adfm.201909725
  • H. Wang, Q.-L. Zhu, R. Zou, and Q. Xu, Metal-organic frameworks for energy applications, Chem 2(1), 52-80, 2017. https://doi.org/10.1016/j.chempr.2016.12.002
  • M. Zhao, B.-Q. Li, X.-Q. Zhang, J.-Q. Huang, and Q. Zhang, A Perspective toward Practical Lithium–Sulfur Batteries, ACS Central Science 6(7) 1095-1104, 2020. https://doi.org/10.1021/acscentsci.0c00449
  • Q. Pang, X. Liang, C.Y. Kwok, and L.F. Nazar, Advances in lithium–sulfur batteries based on multifunctional cathodes and electrolytes, Nature Energy 1(9), 16132, 2016. https://doi.org/ 10.1038/nenergy.2016.132
  • J. Lim, J. Pyun, and K. Char, Recent approaches for the direct use of elemental sulfur in the synthesis and processing of advanced materials, Angewandte Chemie International Edition 54(11), 3249-3258, 2015. https://doi.org/10.1002/anie.201409468
  • H.F. Schaeffer, and G.D. Palmer, Plastic and allotropic forms of sulfur, Journal of Chemical Education 17(10), 473, 1940. https://doi.org/ 10.1021/ed017p473
  • D.A. Boyd, Sulfur and its role in modern materials science, Angewandte Chemie International Edition 55(50) 15486-15502, 2016. https://doi.org/10.1002/ anie.201604615
  • R. Fang, S. Zhao, Z. Sun, D.-W. Wang, H.-M. Cheng, and F. Li, More Reliable Lithium-Sulfur Batteries: Status, Solutions and Prospects, Advanced Materials 29(48) 1606823, 2017. https://doi.org/10.1002/ adma.201606823
  • M. Rana, S.A. Ahad, M. Li, B. Luo, L. Wang, I. Gentle, and R. Knibbe, Review on areal capacities and long-term cycling performances of lithium sulfur battery at high sulfur loading, Energy Storage Materials 18, 289-310, 2019. https://doi.org/10.1016/j.ensm.2018.12.024
  • L. Huang, J. Li, B. Liu, Y. Li, S. Shen, S. Deng, C. Lu, W. Zhang, Y. Xia, G. Pan, X. Wang, Q. Xiong, X. Xia, and J. Tu, Electrode Design for Lithium–Sulfur Batteries: Problems and Solutions, Advanced Functional Materials 30(22), 1910375, 2020. https://doi.org/https://doi.org/10.1002/adfm.201910375
  • T. Qiu, Z. Liang, W. Guo, H. Tabassum, S. Gao, and R. Zou, Metal–Organic Framework-Based Materials for Energy Conversion and Storage, ACS Energy Letters 5(2), 520-532, 2020. https://doi.org/10.1021/ acsenergylett.9b02625
  • M. Rana, H.A. Al-Fayaad, B. Luo, T. Lin, L. Ran, J.K. Clegg, I. Gentle, and R. Knibbe, Oriented nanoporous MOFs to mitigate polysulfides migration in lithium-sulfur batteries, Nano Energy 75, 105009, 2020. https://doi.org/10.1016/j.nanoen.2020.105009
  • S.-D. Seo, D. Park, S. Park,and D.-W. Kim, “Brain-Coral-Like” Mesoporous Hollow CoS2@N-Doped Graphitic Carbon Nanoshells as Efficient Sulfur Reservoirs for Lithium–Sulfur Batteries, Advanced Functional Materials 29(38), 1903712, 2019. https://doi.org/10.1002/adfm.201903712
  • X. Ji, K.T. Lee, and L.F. Nazar, A highly ordered nanostructured carbon–sulphur cathode for lithium–sulphur batteries, Nature Materials 8(6), 500-506, 2009. https://doi.org/10.1038/nmat2460.
  • H. Kim, J. Lee, H. Ahn, O. Kim, and M.J. Park, Synthesis of three-dimensionally interconnected sulfur-rich polymers for cathode materials of high-rate lithium–sulfur batteries, Nature Communications 6(1), 7278, 2015. https://doi.org/10.1038/ncomms8278
  • J. Tang, R.R. Salunkhe, J. Liu, N.L. Torad, M. Imura, S. Furukawa, and Y. Yamauchi, Thermal Conversion of Core–Shell Metal–Organic Frameworks: A New Method for Selectively Functionalized Nanoporous Hybrid Carbon, Journal of the American Chemical Society 137(4), 1572-1580, 2015. https://doi.org/ 10.1021/ja511539a
  • G. Li, X. Jiang, C. Liu, M. Song, S. Yang, J. Lian, and J.Y. Lee, A microporous carbon derived from metal-organic frameworks for long-life lithium sulfur batteries, International Journal of Energy Research 44(3), 2126-2136, 2020. https://doi.org/ 10.1002/er.5070.
  • B. Guan, Y. Zhang, L. Fan, X. Wu, M. Wang, Y. Qiu, N. Zhang, and K. Sun, Blocking Polysulfide with Co2B@ CNT via “Synergetic Adsorptive Effect” toward Ultrahigh-Rate Capability and Robust Lithium–Sulfur Battery, ACS Nano 13(6), 6742-6750, 2019. https://doi.org/10.1021/acsnano.9b01329
  • K. Li, M. Liang, H. Wang, X. Wang, Y. Huang, J. Coelho, S. Pinilla, Y. Zhang, F. Qi, and V. Nicolosi, Y. Xu, 3D MXene Architectures for Efficient Energy Storage and Conversion, Advanced Functional Materials 30(47), 2000842, 2020. https://doi.org/ 10.1002/adfm.202000842.
  • X. Liang, A. Garsuch, and L.F. Nazar, Sulfur cathodes based on conductive MXene nanosheets for high‐performance lithium–sulfur batteries, Angewandte Chemie International Edition 127(13), 3979-3983, 2015. https://doi.org/10.1002/anie.201410174
  • Q. Zhao, Q. Zhu, J. Miao, P. Zhang, and B. Xu, 2D MXene nanosheets enable small-sulfur electrodes to be flexible for lithium–sulfur batteries, Nanoscale 11(17) 8442-8448, 2019. https://doi.org/10.1039/ C8NR09653H
  • M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu, M. Heon, L. Hultman, Y. Gogotsi, and M.W. Barsoum, Two-Dimensional Nanocrystals Produced by Exfoliation of Ti3AlC2, Advanced Materials 23(37), 4248-4253, 2011. https://doi.org/10.1002/adma. 20110230

cZIF-8/Ti3C2 nanokompozitlerle kükürt katot üretimi ve lityum-sülfür bataryalarda kullanımı

Year 2024, , 1364 - 1371, 15.10.2024
https://doi.org/10.28948/ngumuh.1529404

Abstract

Modern toplumun elektrikli araçlar, tüketici elektroniği ve şebeke-boyutu (grid-scale) depolama gibi yenilikçi teknolojiler için ihtiyaç duyduğu yüksek performanslı enerji depolama sistemlerinin geliştirilmesi büyük önem arz etmektedir. Günümüzde yenilenebilir güneş ve rüzgâr kaynaklarından üretilen enerjinin birim maliyeti fosil yakıtlar ile rekabet edebilir seviyelere gelmiştir. Enerji depolama sistemlerinin birim maliyetleri ise henüz istenilen seviyelere gelememiştir ve hala çok pahalıdırlar. Bu nedenle sürdürülebilir ve ekonomik yöntemler ile yüksek performanslı enerji depolama sistemlerinin geliştirilmesine ihtiyaç vardır. Bu çalışmada S/c-ZIF-8/Ti3C2 katotların üretimi ve karakterizasyonu yapıldı ve de yüksek-kapasiteli lityum-sülfür bataryaların (LSBların) yapısal ve elektrokimyasal stabiliteleri geliştirildi. Üretilen malzemeler ve katotlar yapısal ve kimyasal karakterizasyon sonrasında Li-S bataryalarda kullanılarak performans ilintili özellikleri incelenmiştir. Üretilen Li-S bataryalar yaklaşık 1000 mAh/g spesifik kapasiteye sahiptir. Üretilen S/c-ZIF-8/Ti3C2 katotlar ile kükürtün yalıtkan doğasından kaynaklanan ve lityum polisülfürün neden olduğu olumsuz etkiler giderildi.

Supporting Institution

Eskişehir Osmangazi Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi

Project Number

FBG-2021-1703

Thanks

Bu çalışma Eskişehir Osmangazi Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi tarafından FBG-2021-1703 nolu proje kapsamında desteklenmiştir. Araştırmacı desteklerinden dolayı ESOGÜ BAP koordinatörlüğüne teşekkür ederler.

References

  • R. Yuksel, O. Buyukcakir, W.K. Seong, and R.S. Ruoff, Metal-Organic Framework Integrated Anodes for Aqueous Zinc-Ion Batteries, Advanced Energy Materials 10(16), 2020. https://doi.org/10.1002 /aenm.201904215
  • R. Yuksel, O. Buyukcakir, P.K. Panda, S.H. Lee, Y. Jiang, D. Singh, S. Hansen, R. Adelung, Y.K. Mishra, R. Ahuja, and R.S. Ruoff, Necklace-like Nitrogen-Doped Tubular Carbon 3D Frameworks for Electrochemical Energy Storage, Advanced Functional Materials 30(10), 2020. https://doi.org/10.1002/ adfm.201909725
  • H. Wang, Q.-L. Zhu, R. Zou, and Q. Xu, Metal-organic frameworks for energy applications, Chem 2(1), 52-80, 2017. https://doi.org/10.1016/j.chempr.2016.12.002
  • M. Zhao, B.-Q. Li, X.-Q. Zhang, J.-Q. Huang, and Q. Zhang, A Perspective toward Practical Lithium–Sulfur Batteries, ACS Central Science 6(7) 1095-1104, 2020. https://doi.org/10.1021/acscentsci.0c00449
  • Q. Pang, X. Liang, C.Y. Kwok, and L.F. Nazar, Advances in lithium–sulfur batteries based on multifunctional cathodes and electrolytes, Nature Energy 1(9), 16132, 2016. https://doi.org/ 10.1038/nenergy.2016.132
  • J. Lim, J. Pyun, and K. Char, Recent approaches for the direct use of elemental sulfur in the synthesis and processing of advanced materials, Angewandte Chemie International Edition 54(11), 3249-3258, 2015. https://doi.org/10.1002/anie.201409468
  • H.F. Schaeffer, and G.D. Palmer, Plastic and allotropic forms of sulfur, Journal of Chemical Education 17(10), 473, 1940. https://doi.org/ 10.1021/ed017p473
  • D.A. Boyd, Sulfur and its role in modern materials science, Angewandte Chemie International Edition 55(50) 15486-15502, 2016. https://doi.org/10.1002/ anie.201604615
  • R. Fang, S. Zhao, Z. Sun, D.-W. Wang, H.-M. Cheng, and F. Li, More Reliable Lithium-Sulfur Batteries: Status, Solutions and Prospects, Advanced Materials 29(48) 1606823, 2017. https://doi.org/10.1002/ adma.201606823
  • M. Rana, S.A. Ahad, M. Li, B. Luo, L. Wang, I. Gentle, and R. Knibbe, Review on areal capacities and long-term cycling performances of lithium sulfur battery at high sulfur loading, Energy Storage Materials 18, 289-310, 2019. https://doi.org/10.1016/j.ensm.2018.12.024
  • L. Huang, J. Li, B. Liu, Y. Li, S. Shen, S. Deng, C. Lu, W. Zhang, Y. Xia, G. Pan, X. Wang, Q. Xiong, X. Xia, and J. Tu, Electrode Design for Lithium–Sulfur Batteries: Problems and Solutions, Advanced Functional Materials 30(22), 1910375, 2020. https://doi.org/https://doi.org/10.1002/adfm.201910375
  • T. Qiu, Z. Liang, W. Guo, H. Tabassum, S. Gao, and R. Zou, Metal–Organic Framework-Based Materials for Energy Conversion and Storage, ACS Energy Letters 5(2), 520-532, 2020. https://doi.org/10.1021/ acsenergylett.9b02625
  • M. Rana, H.A. Al-Fayaad, B. Luo, T. Lin, L. Ran, J.K. Clegg, I. Gentle, and R. Knibbe, Oriented nanoporous MOFs to mitigate polysulfides migration in lithium-sulfur batteries, Nano Energy 75, 105009, 2020. https://doi.org/10.1016/j.nanoen.2020.105009
  • S.-D. Seo, D. Park, S. Park,and D.-W. Kim, “Brain-Coral-Like” Mesoporous Hollow CoS2@N-Doped Graphitic Carbon Nanoshells as Efficient Sulfur Reservoirs for Lithium–Sulfur Batteries, Advanced Functional Materials 29(38), 1903712, 2019. https://doi.org/10.1002/adfm.201903712
  • X. Ji, K.T. Lee, and L.F. Nazar, A highly ordered nanostructured carbon–sulphur cathode for lithium–sulphur batteries, Nature Materials 8(6), 500-506, 2009. https://doi.org/10.1038/nmat2460.
  • H. Kim, J. Lee, H. Ahn, O. Kim, and M.J. Park, Synthesis of three-dimensionally interconnected sulfur-rich polymers for cathode materials of high-rate lithium–sulfur batteries, Nature Communications 6(1), 7278, 2015. https://doi.org/10.1038/ncomms8278
  • J. Tang, R.R. Salunkhe, J. Liu, N.L. Torad, M. Imura, S. Furukawa, and Y. Yamauchi, Thermal Conversion of Core–Shell Metal–Organic Frameworks: A New Method for Selectively Functionalized Nanoporous Hybrid Carbon, Journal of the American Chemical Society 137(4), 1572-1580, 2015. https://doi.org/ 10.1021/ja511539a
  • G. Li, X. Jiang, C. Liu, M. Song, S. Yang, J. Lian, and J.Y. Lee, A microporous carbon derived from metal-organic frameworks for long-life lithium sulfur batteries, International Journal of Energy Research 44(3), 2126-2136, 2020. https://doi.org/ 10.1002/er.5070.
  • B. Guan, Y. Zhang, L. Fan, X. Wu, M. Wang, Y. Qiu, N. Zhang, and K. Sun, Blocking Polysulfide with Co2B@ CNT via “Synergetic Adsorptive Effect” toward Ultrahigh-Rate Capability and Robust Lithium–Sulfur Battery, ACS Nano 13(6), 6742-6750, 2019. https://doi.org/10.1021/acsnano.9b01329
  • K. Li, M. Liang, H. Wang, X. Wang, Y. Huang, J. Coelho, S. Pinilla, Y. Zhang, F. Qi, and V. Nicolosi, Y. Xu, 3D MXene Architectures for Efficient Energy Storage and Conversion, Advanced Functional Materials 30(47), 2000842, 2020. https://doi.org/ 10.1002/adfm.202000842.
  • X. Liang, A. Garsuch, and L.F. Nazar, Sulfur cathodes based on conductive MXene nanosheets for high‐performance lithium–sulfur batteries, Angewandte Chemie International Edition 127(13), 3979-3983, 2015. https://doi.org/10.1002/anie.201410174
  • Q. Zhao, Q. Zhu, J. Miao, P. Zhang, and B. Xu, 2D MXene nanosheets enable small-sulfur electrodes to be flexible for lithium–sulfur batteries, Nanoscale 11(17) 8442-8448, 2019. https://doi.org/10.1039/ C8NR09653H
  • M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu, M. Heon, L. Hultman, Y. Gogotsi, and M.W. Barsoum, Two-Dimensional Nanocrystals Produced by Exfoliation of Ti3AlC2, Advanced Materials 23(37), 4248-4253, 2011. https://doi.org/10.1002/adma. 20110230
There are 23 citations in total.

Details

Primary Language Turkish
Subjects Electrochemical Energy Storage and Conversion, Energy Generation, Conversion and Storage (Excl. Chemical and Electrical)
Journal Section Research Articles
Authors

Recep Yüksel 0000-0001-8178-0165

Project Number FBG-2021-1703
Early Pub Date September 12, 2024
Publication Date October 15, 2024
Submission Date August 6, 2024
Acceptance Date August 28, 2024
Published in Issue Year 2024

Cite

APA Yüksel, R. (2024). cZIF-8/Ti3C2 nanokompozitlerle kükürt katot üretimi ve lityum-sülfür bataryalarda kullanımı. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 13(4), 1364-1371. https://doi.org/10.28948/ngumuh.1529404
AMA Yüksel R. cZIF-8/Ti3C2 nanokompozitlerle kükürt katot üretimi ve lityum-sülfür bataryalarda kullanımı. NÖHÜ Müh. Bilim. Derg. October 2024;13(4):1364-1371. doi:10.28948/ngumuh.1529404
Chicago Yüksel, Recep. “CZIF-8/Ti3C2 Nanokompozitlerle kükürt Katot üretimi Ve Lityum-sülfür Bataryalarda kullanımı”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 13, no. 4 (October 2024): 1364-71. https://doi.org/10.28948/ngumuh.1529404.
EndNote Yüksel R (October 1, 2024) cZIF-8/Ti3C2 nanokompozitlerle kükürt katot üretimi ve lityum-sülfür bataryalarda kullanımı. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 13 4 1364–1371.
IEEE R. Yüksel, “cZIF-8/Ti3C2 nanokompozitlerle kükürt katot üretimi ve lityum-sülfür bataryalarda kullanımı”, NÖHÜ Müh. Bilim. Derg., vol. 13, no. 4, pp. 1364–1371, 2024, doi: 10.28948/ngumuh.1529404.
ISNAD Yüksel, Recep. “CZIF-8/Ti3C2 Nanokompozitlerle kükürt Katot üretimi Ve Lityum-sülfür Bataryalarda kullanımı”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 13/4 (October 2024), 1364-1371. https://doi.org/10.28948/ngumuh.1529404.
JAMA Yüksel R. cZIF-8/Ti3C2 nanokompozitlerle kükürt katot üretimi ve lityum-sülfür bataryalarda kullanımı. NÖHÜ Müh. Bilim. Derg. 2024;13:1364–1371.
MLA Yüksel, Recep. “CZIF-8/Ti3C2 Nanokompozitlerle kükürt Katot üretimi Ve Lityum-sülfür Bataryalarda kullanımı”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, vol. 13, no. 4, 2024, pp. 1364-71, doi:10.28948/ngumuh.1529404.
Vancouver Yüksel R. cZIF-8/Ti3C2 nanokompozitlerle kükürt katot üretimi ve lityum-sülfür bataryalarda kullanımı. NÖHÜ Müh. Bilim. Derg. 2024;13(4):1364-71.

download