BibTex RIS Cite

BETONARME KESİTLERİN DOĞRUSAL ELASTİK ÖTESİ DAVRANIŞINDA TÜKETİLEN ENERJİYE BOYUNA DONATI ORANININ, ENİNE DONATI ARALIĞININ VE EKSENEL YÜKÜN ETKİSİ

Year 2015, , 21 - 39, 11.07.2016
https://doi.org/10.28948/ngumuh.239360

Abstract

Gerçek malzeme davranışları esas alınarak veya deneysel yoldan elde edilen eğilme momenti-eğrilik ilişkisi yardımıyla kesitlerin elastik ötesi davranışı ile ilgili birçok soruya cevap bulunabilmektedir. Kesit akma eğriliğinden en büyük eğrilik değerine kadar olan eğilme momenti-eğrilik grafiğinin alanı, elastik ötesi davranışta kesitte tüketilen enerjiyi ifade etmektedir. Tüketilen enerjideki artış kesit sünekliğindeki artışa da karşılık gelmektedir. Bu çalışma kapsamında, monotonik yükleme altındaki betonarme kesitlerin doğrusal olmayan davranışta tükettikleri enerji hesaplanmış ve kesit enerji tüketimlerine boyuna donatı oranının, enine donatı adım aralığının ve eksenel yükün etkisi araştırılmıştır. Seçilen betonarme kesitlerde pratikteki mühendislik uygulamalarında sıkça karşılaşılan farklı boyuna donatı oranları, farklı sargı donatısı aralıkları ve farklı eksenel yükler için eğilme momenti-eğrilik ve enerji analizleri gerçekleştirilmiştir. Enerji tüketimi açısından enine donatı adım aralığı ile kesit sünekliği arasında ters orantılı bir ilişki olduğu, eksenel yükteki artışın genel olarak sünekliği azalttığı ve betonarme elemandaki enerji tüketiminin eksenel yükteki artışla birlikte azaldığı sonucu elde edilmiştir.

References

  • ERSOY, U., ÖZCEBE, G., Betonarme, Evrim Yayınevi ve Bilgisayar San. Tic. Ltd. Şti, İstanbul, 2004.
  • CELEP, Z., KUMBASAR, N., Betonarme Yapılar, Beta Dağıtım, İstanbul, 2005.
  • ZAHN, F.A., PARK, R. and PRİESTLY, M.J.N., “Strength and Ductility of Square Reinforced Concrete Column Sections Subjected to Biaxial Bending”, Structural Journal, 86(2), 123-131, 1989.
  • AL-HADDAD, M.S., “Curvature Ductility of RC Beams Under Low and High Strain Rates”, Structural Journal, 92(5), 526-534, 1995.
  • ŞENEL, Ş.M., KAPLAN, H., “Farklı Uç Sargı Şekillerinin Perde Duvarların Moment Eğrilik Davranışı Üzerindeki Etkilerinin Doğrusal Olmayan Analizi (Kuramsal Çalışma)”, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 8(2), 189-194, 2002.
  • CİHANLI, E., ARSLAN, G., “Yüksek Beton Dayanımlı Sargısız Betonarme Kiriş Kesitlerinde Eğrilik Sünekliği”, Sigma Mühendislik ve Fen Bilimleri Dergisi, 27(2), 139-150, 2009.
  • KİRACI, S., ERDEM, R.T., BAĞCI, M., “Betonarme Bir Elemanda Eğrilik Sünekliğinin İncelenmesi”, Celal Bayar Üniversitesi Fen Bilimleri Dergisi, 6(2), 141-154, 2010.
  • HOUSNER, G. W., “Limit Design of Structures to Resist Earthquakes”, Proceedings of the World Conference on Earthquake Engineering, 5, 1-11, 1956.
  • UANG, C. M. and BERTERO, V. V., “Evaluation of Seismic Energy in Structures”, Earthquake Engineering and Structural Dynamics, 19(1), 77-90, 1990.
  • SUCUOĞLU, H., ERBERİK, A., “Energy Based Hysteresis and Damage Models”, Earthquake Engineering and Structural Dynamics, 33(1), 69-88, 2004.
  • PARK, H. G. and EOM, T. S., “A Simplified Method for Estimating the Amount of Energy Dissipated by Flexure Dominated Reinforced Concrete Members for Moderate Cyclic Deformations”, Earthquake Spectra, 22(3), 459-490, 2006.
  • UANG, C.M. and BERTERO, V.V., Use of Energy as a Design Criterion in Earthquake-Resistant Design, Report No: UCB/EERC-88/18, Earthquake Engineering Research Center, University of California, Berkeley, CA, 1988.
  • Akbaş, B. and Shen, J., “Earthquake Resistant Design and Energy Concepts”, Technical JournalDigest, 865-888, 2003.
  • AKBAŞ, B., ÇETİNER, A. N., “Tek Serbestlik Dereceli Sistemlerde Enerji Parametreleri”, Kocaeli Üniversitesi Deprem Sempozyumu Bildiriler Kitabı, 637-646, Kocaeli, Türkiye, 2005.
  • PARK, Y.J. and ANG, A.H.S., “Mechanistic Seismic Damage Model for Reinforced Concrete”, Journal of Structural Engineering, 111(4), 722-739, 1985.
  • FAJFAR, P., “Equivalent Ductility Factors Taking Into Account Low-Cycle Fatigue”, Earthquake Engineering and Structural Dynamics, 21(10), 837-848, 1992.
  • VIDIC, T., Inelastic Seismic Response of SDOF Systems, Doctoral Dissertation, University of Ljubljana, Slovenia, 1993.
  • BERTERO, V.V. and TERAN-GİLMORE, A., Use of Energy Concepts in Earthquake-Resistant Analysis and Design: Issues and Future Directions, Advances in Earthquake Engineering Practice, Short Course in Structural Engineering, Architectural and Economic Issues, University of California, Berkeley, 1994.
  • MANFREDİ, G., “Evaluation of Seismic Energy Demand”, Earthquake Engineering and Structural Dynamics, 30(4), 485-499, 2001.
  • FAJFAR, P. and VİDİC, T., “Seismic Demand in Short-Period Structures”, Structural Mechanics in Reactor Technology, 2, 7-12, 1993.
  • ATC-40, Seismic Evaluation and Retrofit of Concrete Buildings,.Applied Technology Council, Redwood City, CA, 1996.
  • FEMA 356, Prestandard and Commentary for the Seismic Rehabilitation of Buildings, Federal Emergency Management Agency, Washington, DC, 2000.
  • PARK, H-G. and EOM, T-S., “A Simplified Method for Estimating The Amount of Energy Dissipated by Flexure-Dominated Reinforced Concrete Members for Moderate Cyclic Deformations”, Earthquake Spectra, 22(3), 459-90, 2006.
  • EOM, T.S., PARK, H.G. and KANG, S.M., “Evaluation of Energy Dissipation of Slender Reinforced Concrete Members and Its Applications”, Engineering Structures, 32(9), 2884-2893, 2010.
  • UANG, C.M. and BERTERO, V.V., “Evaluation of Seismic Energy in Structures”, Earthquake Engineering and Structural Dynamics, 19(1), 77-90, 1990.
  • FAJFAR, P. and VİDİC, T., “Consistent Inelastic Design Spectra: Hysteretic and Input Energy”, Earthquake Engineering and Structural Dynamics, 23(5), 523-537, 1994.
  • AKBAŞ, B. and SHEN, J., “Energy-Based Earthquake Resistant Design in Steel Moment Resisting Frames”, Second International Conference on Behavior of Steel Structures in Seismic Areas: STESSA 97. Kyoto, Japonya, 1997.
  • EOM, T.S., PARK, H.G. and KANG, S.M., “Energy Based Cyclic Force-Displacement Relationship for Reinforced Concrete Short Coupling Beams”, Engineering Structures, 31(9), 2020-2031, 2009.
  • DEPREM YÖNETMELİĞİ-DBYBHY, Deprem Bölgelerinde Yapılacak Binalar Hakkında Yönetmelik, Bayındırlık ve İskan Bakanlığı, Ankara, 2007.
  • MANDER, J.B., PRİESTLEY, M.J.N. and PARK, R., “Theoretical Stress-Strain Model for Confined Concrete”, Journal of Structural Division (ASCE), 114(8), 1804-1826, 1988.
  • BETONARME YAPILARIN TASARIM ve YAPIM KURALLARI, TS500, Türk Standartları Enstitüsü, Ankara, 2000.
  • XTRACT Educational 3.0.7, Imbsen Software Systems, Sacramento, 2006.

EFFECTS OF LONGITUDINAL REINFORCEMENT RATIO, TRANSVERSE REINFORCEMENT SPACING AND AXIAL LOAD ON THE INELASTIC ENERGY CONSUMPTION OF REINFORCED CONCRETE SECTIONS

Year 2015, , 21 - 39, 11.07.2016
https://doi.org/10.28948/ngumuh.239360

Abstract

Many questions about nonlinear behavior of RC sections can be answered by the help of moment-curvature relations which can be obtained from experimental ways or theoretical approach by considering material stress- strain curves. Area of the moment-curvature relation of the section from yield curvature to ultimate curvature expresses the inelastic energy consumption of the section in its unit length. Increase in inelastic energy consumption of the section corresponds to the increase in ductility of the section with the same time. Within the scope of this study, the inelastic energy consumption of RC sections under monotonic loading is calculated and the effect of longitudinal reinforcement ratio, transverse reinforcement spacing and axial load of the section to the inelastic energy consumption is researched analytically. Moment-curvature and inelastic energy consumption analyses of the RC sections which are frequently used in engineering applications are performed for different longitudinal reinforcement ratios, different transverse reinforcement spacing’s and different axial loads. It is obtained from the study that there is inversely proportional relation between transverse reinforcement spacing and inelastic energy consumption of the section. Increase in axial load of the section decreases the section ductility and energy consumption of the section and this result can be seen from the inelastic energyconsumption versus curvature graphs by obtaining the inelastic energy consumption values that correspond to different axial load levels.

References

  • ERSOY, U., ÖZCEBE, G., Betonarme, Evrim Yayınevi ve Bilgisayar San. Tic. Ltd. Şti, İstanbul, 2004.
  • CELEP, Z., KUMBASAR, N., Betonarme Yapılar, Beta Dağıtım, İstanbul, 2005.
  • ZAHN, F.A., PARK, R. and PRİESTLY, M.J.N., “Strength and Ductility of Square Reinforced Concrete Column Sections Subjected to Biaxial Bending”, Structural Journal, 86(2), 123-131, 1989.
  • AL-HADDAD, M.S., “Curvature Ductility of RC Beams Under Low and High Strain Rates”, Structural Journal, 92(5), 526-534, 1995.
  • ŞENEL, Ş.M., KAPLAN, H., “Farklı Uç Sargı Şekillerinin Perde Duvarların Moment Eğrilik Davranışı Üzerindeki Etkilerinin Doğrusal Olmayan Analizi (Kuramsal Çalışma)”, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 8(2), 189-194, 2002.
  • CİHANLI, E., ARSLAN, G., “Yüksek Beton Dayanımlı Sargısız Betonarme Kiriş Kesitlerinde Eğrilik Sünekliği”, Sigma Mühendislik ve Fen Bilimleri Dergisi, 27(2), 139-150, 2009.
  • KİRACI, S., ERDEM, R.T., BAĞCI, M., “Betonarme Bir Elemanda Eğrilik Sünekliğinin İncelenmesi”, Celal Bayar Üniversitesi Fen Bilimleri Dergisi, 6(2), 141-154, 2010.
  • HOUSNER, G. W., “Limit Design of Structures to Resist Earthquakes”, Proceedings of the World Conference on Earthquake Engineering, 5, 1-11, 1956.
  • UANG, C. M. and BERTERO, V. V., “Evaluation of Seismic Energy in Structures”, Earthquake Engineering and Structural Dynamics, 19(1), 77-90, 1990.
  • SUCUOĞLU, H., ERBERİK, A., “Energy Based Hysteresis and Damage Models”, Earthquake Engineering and Structural Dynamics, 33(1), 69-88, 2004.
  • PARK, H. G. and EOM, T. S., “A Simplified Method for Estimating the Amount of Energy Dissipated by Flexure Dominated Reinforced Concrete Members for Moderate Cyclic Deformations”, Earthquake Spectra, 22(3), 459-490, 2006.
  • UANG, C.M. and BERTERO, V.V., Use of Energy as a Design Criterion in Earthquake-Resistant Design, Report No: UCB/EERC-88/18, Earthquake Engineering Research Center, University of California, Berkeley, CA, 1988.
  • Akbaş, B. and Shen, J., “Earthquake Resistant Design and Energy Concepts”, Technical JournalDigest, 865-888, 2003.
  • AKBAŞ, B., ÇETİNER, A. N., “Tek Serbestlik Dereceli Sistemlerde Enerji Parametreleri”, Kocaeli Üniversitesi Deprem Sempozyumu Bildiriler Kitabı, 637-646, Kocaeli, Türkiye, 2005.
  • PARK, Y.J. and ANG, A.H.S., “Mechanistic Seismic Damage Model for Reinforced Concrete”, Journal of Structural Engineering, 111(4), 722-739, 1985.
  • FAJFAR, P., “Equivalent Ductility Factors Taking Into Account Low-Cycle Fatigue”, Earthquake Engineering and Structural Dynamics, 21(10), 837-848, 1992.
  • VIDIC, T., Inelastic Seismic Response of SDOF Systems, Doctoral Dissertation, University of Ljubljana, Slovenia, 1993.
  • BERTERO, V.V. and TERAN-GİLMORE, A., Use of Energy Concepts in Earthquake-Resistant Analysis and Design: Issues and Future Directions, Advances in Earthquake Engineering Practice, Short Course in Structural Engineering, Architectural and Economic Issues, University of California, Berkeley, 1994.
  • MANFREDİ, G., “Evaluation of Seismic Energy Demand”, Earthquake Engineering and Structural Dynamics, 30(4), 485-499, 2001.
  • FAJFAR, P. and VİDİC, T., “Seismic Demand in Short-Period Structures”, Structural Mechanics in Reactor Technology, 2, 7-12, 1993.
  • ATC-40, Seismic Evaluation and Retrofit of Concrete Buildings,.Applied Technology Council, Redwood City, CA, 1996.
  • FEMA 356, Prestandard and Commentary for the Seismic Rehabilitation of Buildings, Federal Emergency Management Agency, Washington, DC, 2000.
  • PARK, H-G. and EOM, T-S., “A Simplified Method for Estimating The Amount of Energy Dissipated by Flexure-Dominated Reinforced Concrete Members for Moderate Cyclic Deformations”, Earthquake Spectra, 22(3), 459-90, 2006.
  • EOM, T.S., PARK, H.G. and KANG, S.M., “Evaluation of Energy Dissipation of Slender Reinforced Concrete Members and Its Applications”, Engineering Structures, 32(9), 2884-2893, 2010.
  • UANG, C.M. and BERTERO, V.V., “Evaluation of Seismic Energy in Structures”, Earthquake Engineering and Structural Dynamics, 19(1), 77-90, 1990.
  • FAJFAR, P. and VİDİC, T., “Consistent Inelastic Design Spectra: Hysteretic and Input Energy”, Earthquake Engineering and Structural Dynamics, 23(5), 523-537, 1994.
  • AKBAŞ, B. and SHEN, J., “Energy-Based Earthquake Resistant Design in Steel Moment Resisting Frames”, Second International Conference on Behavior of Steel Structures in Seismic Areas: STESSA 97. Kyoto, Japonya, 1997.
  • EOM, T.S., PARK, H.G. and KANG, S.M., “Energy Based Cyclic Force-Displacement Relationship for Reinforced Concrete Short Coupling Beams”, Engineering Structures, 31(9), 2020-2031, 2009.
  • DEPREM YÖNETMELİĞİ-DBYBHY, Deprem Bölgelerinde Yapılacak Binalar Hakkında Yönetmelik, Bayındırlık ve İskan Bakanlığı, Ankara, 2007.
  • MANDER, J.B., PRİESTLEY, M.J.N. and PARK, R., “Theoretical Stress-Strain Model for Confined Concrete”, Journal of Structural Division (ASCE), 114(8), 1804-1826, 1988.
  • BETONARME YAPILARIN TASARIM ve YAPIM KURALLARI, TS500, Türk Standartları Enstitüsü, Ankara, 2000.
  • XTRACT Educational 3.0.7, Imbsen Software Systems, Sacramento, 2006.
There are 32 citations in total.

Details

Other ID JA44FP53MK
Journal Section Articles
Authors

Onur Merter This is me

Taner Uçar This is me

Publication Date July 11, 2016
Submission Date July 11, 2016
Published in Issue Year 2015

Cite

APA Merter, O., & Uçar, T. (2016). BETONARME KESİTLERİN DOĞRUSAL ELASTİK ÖTESİ DAVRANIŞINDA TÜKETİLEN ENERJİYE BOYUNA DONATI ORANININ, ENİNE DONATI ARALIĞININ VE EKSENEL YÜKÜN ETKİSİ. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 4(1), 21-39. https://doi.org/10.28948/ngumuh.239360
AMA Merter O, Uçar T. BETONARME KESİTLERİN DOĞRUSAL ELASTİK ÖTESİ DAVRANIŞINDA TÜKETİLEN ENERJİYE BOYUNA DONATI ORANININ, ENİNE DONATI ARALIĞININ VE EKSENEL YÜKÜN ETKİSİ. NÖHÜ Müh. Bilim. Derg. July 2016;4(1):21-39. doi:10.28948/ngumuh.239360
Chicago Merter, Onur, and Taner Uçar. “BETONARME KESİTLERİN DOĞRUSAL ELASTİK ÖTESİ DAVRANIŞINDA TÜKETİLEN ENERJİYE BOYUNA DONATI ORANININ, ENİNE DONATI ARALIĞININ VE EKSENEL YÜKÜN ETKİSİ”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 4, no. 1 (July 2016): 21-39. https://doi.org/10.28948/ngumuh.239360.
EndNote Merter O, Uçar T (July 1, 2016) BETONARME KESİTLERİN DOĞRUSAL ELASTİK ÖTESİ DAVRANIŞINDA TÜKETİLEN ENERJİYE BOYUNA DONATI ORANININ, ENİNE DONATI ARALIĞININ VE EKSENEL YÜKÜN ETKİSİ. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 4 1 21–39.
IEEE O. Merter and T. Uçar, “BETONARME KESİTLERİN DOĞRUSAL ELASTİK ÖTESİ DAVRANIŞINDA TÜKETİLEN ENERJİYE BOYUNA DONATI ORANININ, ENİNE DONATI ARALIĞININ VE EKSENEL YÜKÜN ETKİSİ”, NÖHÜ Müh. Bilim. Derg., vol. 4, no. 1, pp. 21–39, 2016, doi: 10.28948/ngumuh.239360.
ISNAD Merter, Onur - Uçar, Taner. “BETONARME KESİTLERİN DOĞRUSAL ELASTİK ÖTESİ DAVRANIŞINDA TÜKETİLEN ENERJİYE BOYUNA DONATI ORANININ, ENİNE DONATI ARALIĞININ VE EKSENEL YÜKÜN ETKİSİ”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 4/1 (July 2016), 21-39. https://doi.org/10.28948/ngumuh.239360.
JAMA Merter O, Uçar T. BETONARME KESİTLERİN DOĞRUSAL ELASTİK ÖTESİ DAVRANIŞINDA TÜKETİLEN ENERJİYE BOYUNA DONATI ORANININ, ENİNE DONATI ARALIĞININ VE EKSENEL YÜKÜN ETKİSİ. NÖHÜ Müh. Bilim. Derg. 2016;4:21–39.
MLA Merter, Onur and Taner Uçar. “BETONARME KESİTLERİN DOĞRUSAL ELASTİK ÖTESİ DAVRANIŞINDA TÜKETİLEN ENERJİYE BOYUNA DONATI ORANININ, ENİNE DONATI ARALIĞININ VE EKSENEL YÜKÜN ETKİSİ”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, vol. 4, no. 1, 2016, pp. 21-39, doi:10.28948/ngumuh.239360.
Vancouver Merter O, Uçar T. BETONARME KESİTLERİN DOĞRUSAL ELASTİK ÖTESİ DAVRANIŞINDA TÜKETİLEN ENERJİYE BOYUNA DONATI ORANININ, ENİNE DONATI ARALIĞININ VE EKSENEL YÜKÜN ETKİSİ. NÖHÜ Müh. Bilim. Derg. 2016;4(1):21-39.

download