SOĞUTUCU AKIŞKAN OLARAK OTOMOBİL İKLİMLENDİRME SİSTEMİNDE R444A KULLANIMINA KOMPRESÖR VE HAVA AKIŞ HIZLARININ ETKİSİ
Year 2019,
, 1082 - 1089, 31.07.2019
Mehmet Direk
,
Fikret Yüksel
Abstract
Bu
çalışmada deneysel bir otomobil klima sisteminde R134a’nın alternatifi olarak
düşük GWP (Küresel ısınma potansiyeli) değerine sahip R444a soğutucu akışkanı
test edilmiştir. İç ünite hava akımı hızlarının değişiminin sistem performansına
olan etkisi araştırılmıştır. Hava akımı hızlarını dikkate alarak sistemin etkin
performans değerlerinin çıkarılması sağlanmıştır. R444a’nın araç iklimlendirme
sistemlerine uygunluğu R134a ile karşılaştırmalı olarak araştırılmıştır. R444a
farklı soğutucu akışkanlardan oluşturulan bir karışımdır. R444a gibi farklı
soğutucu akışkanlardan oluşan karışımlarda soğutucu akışkanların karışım
içindeki yüzdelik payına bağlı olarak performans parametreleri değerlendirilir.
Çalışmalarımızda R444a’nın performansı bu bağlamda değerlendirilmiştir.
Çalışmaların sonucunda hava akış hızı 1,4 m/s’den 4,4 m/s’ye çıkartıldığında ITK
değeri yaklaşık % 10 arttığı gözlenmiştir. R444a’dan elde edilen ısıtma kapasitesi değerleri R134a’ya göre % 10 – % 12
oranında daha düşük olarak bulunmuştur. Bu değerler otomobil klima sistemleri
için kabul edilebilir olarak değerlendirilmektedir. Çevresel faktörler
düşünüldüğünde GWP değerinin belirtilen standartların altında olması açısından
R444a’nın R134a’ya alternatif olarak otomobil klima sistemlerinde kullanılabileceği
görülmüştür.
References
- [1] HOSOZ M., DİREK M., YIGIT K. S., CANAKCI M., TURKCAN A., ALPTEKIN E., SANLI A., “Performance evaluation of an R134a automotive heat pump system for various heat sources in comparison with baseline heating system”, Applied Thermal Engineering, 78, 419-427, 2015.
- [2] HOSOZ, M., DİREK M. “Performance evaluation of an integrated automotive air conditioning and heat pump system”, Energy Conversion Management, 47, 545-559, 2006.
- [3] QI Z,, “Advances on air conditioning and heat pump system in electric vehicles”. A review, Renewable and Sustainable Energy Reviews, 38, 754–764, 2014.
- [4] SARA, B., LEO G. G., MANNO M., SALVATORI, M., AND ZACCAGNINI A., “Reversible Heat Pump HVAC System with Regenerative Heat Exchanger for Electric Vehicles: Analysis of Its Impact on Driving Range”, Applied Thermal Engineering, 129, 290–305, 2018.
- [5] European Parliament and of the Council, “Regulation 2014/517/EU”, Official Journal of the European Union: Fluorinated Greenhouse Gases, Strasbourg, EU. 2014.
- [6] DİREK, M., SOYLU, E., “The Effect of Internal Heat Exchanger Using R1234ze(E) as an Alternative Refrigerant in a Mobile Air-Conditioning System”, Strojniški vestnik - Journal of Mechanical Engineering 64 (2), 114-120, 2018.
- [7] LEMMON, E.W., HUBER, M.L., MCLİNDEN, M.O., “NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP. 9.1”, National Institute of Standards and Technology, Boulder, CO, USA. 2013.
- [8] LEIGHTON, D., HWANG, Y., RADERMACHER, R. “Modeling of household refrigerator performance with low global warming potential alternative refrigerants”, ASHRAE, 118, 658, 2012.
- [9] JANKOVIĆ, Z., ATIENZA, J. S., SUÁREZ, J. A. M., “Thermodynamic and heat transfer analyses for R1234yf and R1234ze (E) as drop-in replacements for R134a in a small power refrigerating system”, Applied Thermal Engineering, 80, 42-54, 2015.
- [10] MOTA-BABILONI, A., NAVARRO-ESBRÍ, J., MENDOZA-MIRANDA, J. M., PERIS, B., “Experimental evaluation of system modifications to increase R1234ze(E) cooling capacity”, Applied Thermal Engineering, 111, 786-792, 2017.
- [11] MASTRULLO, R., MAURO, A.W., VELLUCCI, C., “Refrigerant alternatives for high speed train A/C systems: energy savings and environmental emissions evaluation under variable ambient conditions”, Energy Procedia, 101, 280-287, 2016.
- [12] DEVECİOĞLU, A. G., ORUÇ, V., “The influence of plate-type heat exchanger on energy efficiency and environmental effects of the air-conditioners using R453A as a substitute for R22”, Applied Thermal Engineering, 112, 1364-1372, 2017.
- [13] LEE H., HWANG Y., SONG I., JANG K., “Transient thermal model of passenger car's cabin and implementation to saturation cycle with alternative working fluids”, Energy, 90, 1859-1868, 2015.
- [14] MAJURIN, J., STAATS, S.J., SORENSON, E., GILLES, W., “Material compatibility of HVAC&R system materials with low global warming potential refrigerants”, Science and Technology for the Built Environment, 21, 491-501, 2015.
- [15] CHENG Z., WANG B., SHI W., LI X., “Numerical research on R32/R1234ze(E) air source heat pump under variable mass concentration”, international journal of refrigeration, 82, 1-10, 2017.
Year 2019,
, 1082 - 1089, 31.07.2019
Mehmet Direk
,
Fikret Yüksel
References
- [1] HOSOZ M., DİREK M., YIGIT K. S., CANAKCI M., TURKCAN A., ALPTEKIN E., SANLI A., “Performance evaluation of an R134a automotive heat pump system for various heat sources in comparison with baseline heating system”, Applied Thermal Engineering, 78, 419-427, 2015.
- [2] HOSOZ, M., DİREK M. “Performance evaluation of an integrated automotive air conditioning and heat pump system”, Energy Conversion Management, 47, 545-559, 2006.
- [3] QI Z,, “Advances on air conditioning and heat pump system in electric vehicles”. A review, Renewable and Sustainable Energy Reviews, 38, 754–764, 2014.
- [4] SARA, B., LEO G. G., MANNO M., SALVATORI, M., AND ZACCAGNINI A., “Reversible Heat Pump HVAC System with Regenerative Heat Exchanger for Electric Vehicles: Analysis of Its Impact on Driving Range”, Applied Thermal Engineering, 129, 290–305, 2018.
- [5] European Parliament and of the Council, “Regulation 2014/517/EU”, Official Journal of the European Union: Fluorinated Greenhouse Gases, Strasbourg, EU. 2014.
- [6] DİREK, M., SOYLU, E., “The Effect of Internal Heat Exchanger Using R1234ze(E) as an Alternative Refrigerant in a Mobile Air-Conditioning System”, Strojniški vestnik - Journal of Mechanical Engineering 64 (2), 114-120, 2018.
- [7] LEMMON, E.W., HUBER, M.L., MCLİNDEN, M.O., “NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP. 9.1”, National Institute of Standards and Technology, Boulder, CO, USA. 2013.
- [8] LEIGHTON, D., HWANG, Y., RADERMACHER, R. “Modeling of household refrigerator performance with low global warming potential alternative refrigerants”, ASHRAE, 118, 658, 2012.
- [9] JANKOVIĆ, Z., ATIENZA, J. S., SUÁREZ, J. A. M., “Thermodynamic and heat transfer analyses for R1234yf and R1234ze (E) as drop-in replacements for R134a in a small power refrigerating system”, Applied Thermal Engineering, 80, 42-54, 2015.
- [10] MOTA-BABILONI, A., NAVARRO-ESBRÍ, J., MENDOZA-MIRANDA, J. M., PERIS, B., “Experimental evaluation of system modifications to increase R1234ze(E) cooling capacity”, Applied Thermal Engineering, 111, 786-792, 2017.
- [11] MASTRULLO, R., MAURO, A.W., VELLUCCI, C., “Refrigerant alternatives for high speed train A/C systems: energy savings and environmental emissions evaluation under variable ambient conditions”, Energy Procedia, 101, 280-287, 2016.
- [12] DEVECİOĞLU, A. G., ORUÇ, V., “The influence of plate-type heat exchanger on energy efficiency and environmental effects of the air-conditioners using R453A as a substitute for R22”, Applied Thermal Engineering, 112, 1364-1372, 2017.
- [13] LEE H., HWANG Y., SONG I., JANG K., “Transient thermal model of passenger car's cabin and implementation to saturation cycle with alternative working fluids”, Energy, 90, 1859-1868, 2015.
- [14] MAJURIN, J., STAATS, S.J., SORENSON, E., GILLES, W., “Material compatibility of HVAC&R system materials with low global warming potential refrigerants”, Science and Technology for the Built Environment, 21, 491-501, 2015.
- [15] CHENG Z., WANG B., SHI W., LI X., “Numerical research on R32/R1234ze(E) air source heat pump under variable mass concentration”, international journal of refrigeration, 82, 1-10, 2017.