Review
BibTex RIS Cite

İLETKEN MALZEMELERİN KATI ORGANİK ATIKLARDAN BİYOGAZ ÜRETİMİNE ETKİSİ

Year 2019, , 712 - 720, 31.07.2019
https://doi.org/10.28948/ngumuh.496486

Abstract

   Anaerobik proses (AP)  ile hem atık bertarafı gerçekleşir, hem de
yenilenebilir enerji kaynağı olan biyogaz üretilir. Ancak, AP uzun lag fazına
sahip olması ve işletme koşullarındaki değişimlere karşı hassas olması gibi
dezavantajlara sahiptir. Sistem stabilizasyonunun sağlanması, biyogaz
üretiminin ve arıtmanın sürekliliği önem arz etmektedir. Bu durumun sağlanması
için uygulanan güncel yöntemlerden biri de AP’lerin iletken malzemeler ile
desteklenmesidir. Bu çalışmada organik katı atıkların besin maddesi olarak
kullanıldığı iletken malzemeler ile desteklenen AP ’lerin, sistem
stabilizasyonu, biyogaz-biyometan üretimi ve mikrobiyal dağılım üzerindeki
etkileri incelenmiştir.  

References

  • MAO, C., FENG,,Y., WANG, X. AND REN, G., “Review on research achievements of biogas from anaerobic digestion”, Renew. Sustain. Energy Rev., 45, 540–555, 2015.
  • LIN, R., CHENG, J., DING, L. AND MURPHY, J. D., “Improved efficiency of anaerobic digestion through direct interspecies electron transfer at mesophilic and thermophilic temperature ranges”, Chem. Eng. J., 350, 681–691, 2018.
  • PARK, J., LEE, B., TIAN, D. AND JUN, H., “Bioelectrochemical enhancement of methane production from highly concentrated food waste in a combined anaerobic digester and microbial electrolysis cell”, Bioresour. Technol., 247, 226–233, 2018.
  • ZHANG, L., LOH, K.C. AND ZHANG, J., “Enhanced biogas production from anaerobic digestion of solid organic wastes: Current status and prospects”. Bioresour. Technol., DOI: 10.1016/j.biteb.2018.07.005, 2018.
  • TRZCINSKI, A. P. AND STUCKEY, D. C., “Anaerobic digestion of the organic fraction of municipal solid waste in a two-stage membrane process”, Water Sci. Technol., 60:8, 1965–1978, 2009.
  • R. LIN, J. CHENG, J. ZHANG, J. ZHOU, K. CEN, AND J. D. MURPHY, “Boosting biomethane yield and production rate with graphene: The potential of direct interspecies electron transfer in anaerobic digestion”, Bioresour. Technol., 239, 345–352, 2017.
  • ARIUNBAATAR, J., PANICO, A., ESPOSITO, G., PIROZZI, F. AND LENS, P. N. L., “Pretreatment methods to enhance anaerobic digestion of organic solid waste”, Appl. Energy, 123, 143–156, 2014.
  • KHAN, M. A., NGO, H.H., GUO, W.S., LIU, Y., NGHIEM, L.D., HAI, F.I., DENG, L.J., WANG, J., WU, Y., “Optimization of process parameters for production of volatile fatty acid, biohydrogen and methane from anaerobic digestion”, Bioresour. Technol., 219, 738–748, 2016.
  • STAMS, A. J. M. and PLUGGE, C. M., “Electron transfer in syntrophic communities of anaerobic bacteria and archaea”, Nat. Rev. Microbiol., 7:8, 568–577, 2009.
  • BAEK, G., KIM, J., KIM, J. and LEE, C., “Role and potential of direct interspecies electron transfer in anaerobic digestion”, Energies, 11:1, 1-20, 2018.
  • WANG, Y., REN, G., ZHANG, T., ZOU, S., MAO, C. and WANG, X., “Effect of magnetite powder on anaerobic co-digestion of pig manure and wheat straw”, Waste Manag., 66, 46–52, 2017.
  • LEE, S. H., KANG, H-J., LEE, Y. H., LEE, T. J., HAN, K., CHOI, Y. and PARK, H-D., “Monitoring bacterial community structure and variability in time scale in full-scale anaerobic digesters”, J. Environ. Monit., 14, 7, 1893–1905, 2012.
  • TIAN, T., QIAO, S., LI, X., ZHANG, M. and ZHOU, J., “Nano-graphene induced positive effects on methanogenesis in anaerobic digestion”, Bioresour. Technol., 224, 41–47, 2017.
  • TROSCHINETZ, A. M. and MIHELCIC, J. R., “Sustainable recycling of municipal solid waste in developing countries”, Waste Manag., 29, 2, 915–923, 2009.
  • ÖZTÜRK, İ., “Anaerobik Arıtma ve Uygulamaları”, Su Vakfı Yayınları, İstanbul, 2007.
  • YAO, Z., LI, W., KAN, X., DAI, Y. TONG, Y. W. and WANG, C.-H. “Anaerobic digestion and gasification hybrid system for potential energy recovery from yard waste and woody biomass”, Energy, 124, 133–145, 2017.
  • LI, L.-L., TONG, Z.-H., FANG, C.-Y., CHU, J. and YU, H.-Q., “Response of anaerobic granular sludge to single-wall carbon nanotube exposure”, Water Res., 70, 1–8, 2015.
  • ZHANG, Y., FENG, Y. and QUAN, X., “Zero-valent iron enhanced methanogenic activity in anaerobic digestion of waste activated sludge after heat and alkali pretreatment”, Waste Manag., 38, 297–302, 2015.
  • LI, Y., LI, Y., ZHANG, D., LI, G., LU, J. and LI, S., “Solid state anaerobic co-digestion of tomato residues with dairy manure and corn stover for biogas production”, Bioresour. Technol., 217, 50–55, 2016.
  • LEE, C., KIM, J. HWANG, K., O’FLAHERTY, V. and HWANG, S. “Quantitative analysis of methanogenic community dynamics in three anaerobic batch digesters treating different wastewaters”, Water Res., 43:1, 157–165, 2009.
  • JINGURA, R. M. and MATENGAIFA, R., “Optimization of biogas production by anaerobic digestion for sustainable energy development in Zimbabwe”, Renew. Sustain. Energy Rev., 13:5, 1116–1120, 2009.
  • FERNÁNDEZ, J., PÉREZ, M. and ROMERO, L. I. “Kinetics of mesophilic anaerobic digestion of the organic fraction of municipal solid waste: Influence of initial total solid concentration”, Bioresour. Technol., 101:16, 6322–6328, 2010.
  • KHALID, A., ARSHAD, M., ANJUM, M., MAHMOOD, T. and DAWSON, L., “The anaerobic digestion of solid organic waste”, Waste Manag., 31:8, 1737–1744, 2011.
  • CHEN, S., SUN, D. and CHUNG, J.-S., “Simultaneous removal of COD and ammonium from landfill leachate using an anaerobic–aerobic moving-bed biofilm reactor system”, Waste Manag., 28:2, 339–346, 2008.
  • BEHERA, S. K., PARK, J. M., KIM, K. H. and PARK, H.-S. “Methane production from food waste leachate in laboratory-scale simulated landfill”, Waste Manag., 30:8–9, 1502–1508, 2010.
  • JEONG, J., KANG, H. and SCHUCHARDT, F., “Maximum Methane Production from Energy Crop (Sorghum ) using Thermophilic Anaerobic Plug Flow Reactor”, Proceedings of the Annual Conference of Japan Society of Material Cycles and Waste Management, 3-4, 2010.
  • ANGENENT, L. T., KARIM, K., AL-DAHHAN, M. H., WRENN, B. A. and DOMIGUEZ-ESPINOSA, R., “Production of bioenergy and biochemicals from industrial and agricultural wastewater”, Trends Biotechnol., 22:9, 477–485, 2004.
  • KIM, J. K., OH, B. R., CHUN, Y. N. and KIM, S. W., “Effects of temperature and hydraulic retention time on anaerobic digestion of food waste”, J. Biosci. Bioeng., 102:4, 328–332, 2006.
  • DANG, Y., SUN, D., WOODARD, T. L., WANG, L. Y., NEVIN, K. P. and HOLMES, D. E., “Stimulation of the anaerobic digestion of the dry organic fraction of municipal solid waste (OFMSW) with carbon-based conductive materials”, Bioresour. Technol., 238, 30–38, 2017.
  • CRUZ VIGGI, C., ROSSETTI, S., FAZI, S., PAIANO, P., MAJONE, M. and AULENTA, F. “Magnetite particles triggering a faster and more robust syntrophic pathway of methanogenic propionate degradation”, Environ. Sci. Technol., 48:13, 7536–7543, 2014.
  • LIU, F., ROTARU, A. E., SHRESTHA, P. M., MALVANKAR, N. S., NEVIN, K. P. and LOVLEY, D. R. “Promoting direct interspecies electron transfer with activated carbon”, Energy Environ. Sci., 5:10, 8982–8989, 2012.
  • ZHANG, J., ZHAO, W., ZHANG, H., WANG, Z., FAN, C. and ZANG, L., “Recent achievements in enhancing anaerobic digestion with carbon- based functional materials”, Bioresour. Technol., 266, 555–567, 2018.
  • QIN, Y., WANG, H., LI, X., CHENG, J. J. and WU, W., “Improving methane yield from organic fraction of municipal solid waste (OFMSW) with magnetic rice-straw biochar”, Bioresour. Technol., 245, 1058–1066, 2017.
  • LEI, Y., SUN, D., DANG, Y., CHEN, H., ZHAO, Z., ZHANG, Y. AND HOLMES, D. E. “Stimulation of methanogenesis in anaerobic digesters treating leachate from a municipal solid waste incineration plant with carbon cloth”, Bioresour. Technol., 222, 270–276, 2016.
  • LU, F., LUO, C., SHAO, L. AND HE, P., “Biochar alleviates combined stress of ammonium and acids by firstly enriching Methanosaeta and then Methanosarcina”, Water Res., 90, 34–43, 2016.
  • ZHAO, Z., ZHANG, Y., YU, Q., DANG, Y., LI, Y. and QUAN, X. “Communities stimulated with ethanol to perform direct interspecies electron transfer for syntrophic metabolism of propionate and butyrate”, Water Res., 102, 475–484, 2016.
  • SHRESTHA, P. M. and ROTARU, A. E., “Plugging in or going wireless: Strategies for interspecies electron transfer”, Front. Microbiol., 5, 1–8, 2014.
  • LI, J., XIAO, L., ZHENG, S., ZHANG, Y., LUO, M., TONG, C., XU, H., TAN, Y., LIU, J., WANG, O. AND LIU, F. “A new insight into the strategy for methane production affected by conductive carbon cloth in wetland soil: Beneficial to acetoclastic methanogenesis instead of CO2 reduction”, Sci. Total Environ., 643, 1024–1030, 2018.
  • LUO, C., LU, F., SHAO, L. and HE, P., “Application of eco-compatible biochar in anaerobic digestion to relieve acid stress and promote the selective colonization of functional microbes”, Water Res., 68, 710–718, 2015.
  • ZHAO, Z., ZHANG, Y., WOODARD, T. L., NEVIN, K. P. and LOVLEY, D. R., “Enhancing syntrophic metabolism in up-flow anaerobic sludge blanket reactors with conductive carbon materials”, Bioresour. Technol., 191, 140–145, 2015.
  • ZHAO, Z. ZHANG, Y., LI, Y., DANG, Y., ZHU, T. and QUAN, X., “Potentially shifting from interspecies hydrogen transfer to direct interspecies electron transfer for syntrophic metabolism to resist acidic impact with conductive carbon cloth”, Chem. Eng. J., 313, 10–18, 2017.
  • YANG, Y., ZHANG, Y., LI, Z., ZHAO, Z., QUAN, X. and ZHAO, Z., “Adding granular activated carbon into anaerobic sludge digestion to promote methane production and sludge decomposition”, J. Clean. Prod., 149, 1101–1108, 2017.
  • ZHANG, J. and LU, Y., “Conductive Fe3O4nanoparticles accelerate syntrophic methane production from butyrate oxidation in two different lake sediments”, Front. Microbiol., 7, 1–9, 2016.
  • YIN, Q., MIAO, J., LI, B. and WU, G., “Enhancing electron transfer by ferroferric oxide during the anaerobic treatment of synthetic wastewater with mixed organic carbon”, Int. Biodeterior. Biodegradation, 119, 104–110, 2017.
  • JING, Y., WAN, J., ANGELIDAKI, I., ZHANG, S. and LUO, G., “iTRAQ quantitative proteomic analysis reveals the pathways for methanation of propionate facilitated by magnetite”, Water Res., 108, 212–221, 2017.
  • KATO, S., HASHIMOTO, K. and WATANABE, K., “Methanogenesis facilitated by electric syntrophy via (semi)conductive iron-oxide minerals”, Environ. Microbiol., 14:7, 1646–1654, 2012.
  • LI, Y., ZHANG, Y., YANG, Y., QUAN, X. and ZHAO, Z., “Potentially direct interspecies electron transfer of methanogenesis for syntrophic metabolism under sulfate reducing conditions with stainless steel”, Bioresour. Technol., 234, 303–309, 2017.
  • BARREDO, M. S. and EVISON, L. M., “Effect of propionate toxicity on methanogen-enriched sludge, Methanobrevibacter smithii, and Methanospirillum hungatii at different pH values”, Appl. Environ. Microbiol., 57:6, 1764–1769, 1991.
  • BARUA, S. and DHAR, B. R., “Advances towards understanding and engineering direct interspecies electron transfer in anaerobic digestion”, Bioresour. Technol., 244, 698–707, 2017.
  • XU, S., HE, C., LUO, L., LU, F., HE, P. and CUI, L., “Comparing activated carbon of different particle sizes on enhancing methane generation in upflow anaerobic digester”, Bioresour. Technol., 196, 606–612, 2015.
  • LI, Q., XU, M., WANG, G., CHEN, R., QIAO, W. and WANG, X., “Biochar assisted thermophilic co-digestion of food waste and waste activated sludge under high feedstock to seed sludge ratio in batch experiment”, Bioresour. Technol., 249, 1009–1016, 2018.

EFFECT OF CONDUCTIVE MATERIALS ON BIOGAS PRODUCTION FROM ORGANIC SOLID WASTES

Year 2019, , 712 - 720, 31.07.2019
https://doi.org/10.28948/ngumuh.496486

Abstract

   With the anaerobic process (AP), both waste disposal and biogas
production as a renewable energy source are possible. However, the AP process
has the disadvantages of having a long lag phase, being susceptible to high
organic loads and sensitive to changes in operating conditions. Ensuring system
stabilization, continuity of the biogas production and treatment is important.
One of the
current methods for achieving this is to support AP processes with conductive
materials.
In this study, effects of AP processes supported by conductive materials
used as nutrients in organic solid wastes on system stabilization,
biogas-biomethane production and microbial distribution were investigated. In
this study, effects of conductive materials on system stabilization,
biogas-biomethane production and microbial distribution at organic solid wastes
feed AP processes were investigated.

References

  • MAO, C., FENG,,Y., WANG, X. AND REN, G., “Review on research achievements of biogas from anaerobic digestion”, Renew. Sustain. Energy Rev., 45, 540–555, 2015.
  • LIN, R., CHENG, J., DING, L. AND MURPHY, J. D., “Improved efficiency of anaerobic digestion through direct interspecies electron transfer at mesophilic and thermophilic temperature ranges”, Chem. Eng. J., 350, 681–691, 2018.
  • PARK, J., LEE, B., TIAN, D. AND JUN, H., “Bioelectrochemical enhancement of methane production from highly concentrated food waste in a combined anaerobic digester and microbial electrolysis cell”, Bioresour. Technol., 247, 226–233, 2018.
  • ZHANG, L., LOH, K.C. AND ZHANG, J., “Enhanced biogas production from anaerobic digestion of solid organic wastes: Current status and prospects”. Bioresour. Technol., DOI: 10.1016/j.biteb.2018.07.005, 2018.
  • TRZCINSKI, A. P. AND STUCKEY, D. C., “Anaerobic digestion of the organic fraction of municipal solid waste in a two-stage membrane process”, Water Sci. Technol., 60:8, 1965–1978, 2009.
  • R. LIN, J. CHENG, J. ZHANG, J. ZHOU, K. CEN, AND J. D. MURPHY, “Boosting biomethane yield and production rate with graphene: The potential of direct interspecies electron transfer in anaerobic digestion”, Bioresour. Technol., 239, 345–352, 2017.
  • ARIUNBAATAR, J., PANICO, A., ESPOSITO, G., PIROZZI, F. AND LENS, P. N. L., “Pretreatment methods to enhance anaerobic digestion of organic solid waste”, Appl. Energy, 123, 143–156, 2014.
  • KHAN, M. A., NGO, H.H., GUO, W.S., LIU, Y., NGHIEM, L.D., HAI, F.I., DENG, L.J., WANG, J., WU, Y., “Optimization of process parameters for production of volatile fatty acid, biohydrogen and methane from anaerobic digestion”, Bioresour. Technol., 219, 738–748, 2016.
  • STAMS, A. J. M. and PLUGGE, C. M., “Electron transfer in syntrophic communities of anaerobic bacteria and archaea”, Nat. Rev. Microbiol., 7:8, 568–577, 2009.
  • BAEK, G., KIM, J., KIM, J. and LEE, C., “Role and potential of direct interspecies electron transfer in anaerobic digestion”, Energies, 11:1, 1-20, 2018.
  • WANG, Y., REN, G., ZHANG, T., ZOU, S., MAO, C. and WANG, X., “Effect of magnetite powder on anaerobic co-digestion of pig manure and wheat straw”, Waste Manag., 66, 46–52, 2017.
  • LEE, S. H., KANG, H-J., LEE, Y. H., LEE, T. J., HAN, K., CHOI, Y. and PARK, H-D., “Monitoring bacterial community structure and variability in time scale in full-scale anaerobic digesters”, J. Environ. Monit., 14, 7, 1893–1905, 2012.
  • TIAN, T., QIAO, S., LI, X., ZHANG, M. and ZHOU, J., “Nano-graphene induced positive effects on methanogenesis in anaerobic digestion”, Bioresour. Technol., 224, 41–47, 2017.
  • TROSCHINETZ, A. M. and MIHELCIC, J. R., “Sustainable recycling of municipal solid waste in developing countries”, Waste Manag., 29, 2, 915–923, 2009.
  • ÖZTÜRK, İ., “Anaerobik Arıtma ve Uygulamaları”, Su Vakfı Yayınları, İstanbul, 2007.
  • YAO, Z., LI, W., KAN, X., DAI, Y. TONG, Y. W. and WANG, C.-H. “Anaerobic digestion and gasification hybrid system for potential energy recovery from yard waste and woody biomass”, Energy, 124, 133–145, 2017.
  • LI, L.-L., TONG, Z.-H., FANG, C.-Y., CHU, J. and YU, H.-Q., “Response of anaerobic granular sludge to single-wall carbon nanotube exposure”, Water Res., 70, 1–8, 2015.
  • ZHANG, Y., FENG, Y. and QUAN, X., “Zero-valent iron enhanced methanogenic activity in anaerobic digestion of waste activated sludge after heat and alkali pretreatment”, Waste Manag., 38, 297–302, 2015.
  • LI, Y., LI, Y., ZHANG, D., LI, G., LU, J. and LI, S., “Solid state anaerobic co-digestion of tomato residues with dairy manure and corn stover for biogas production”, Bioresour. Technol., 217, 50–55, 2016.
  • LEE, C., KIM, J. HWANG, K., O’FLAHERTY, V. and HWANG, S. “Quantitative analysis of methanogenic community dynamics in three anaerobic batch digesters treating different wastewaters”, Water Res., 43:1, 157–165, 2009.
  • JINGURA, R. M. and MATENGAIFA, R., “Optimization of biogas production by anaerobic digestion for sustainable energy development in Zimbabwe”, Renew. Sustain. Energy Rev., 13:5, 1116–1120, 2009.
  • FERNÁNDEZ, J., PÉREZ, M. and ROMERO, L. I. “Kinetics of mesophilic anaerobic digestion of the organic fraction of municipal solid waste: Influence of initial total solid concentration”, Bioresour. Technol., 101:16, 6322–6328, 2010.
  • KHALID, A., ARSHAD, M., ANJUM, M., MAHMOOD, T. and DAWSON, L., “The anaerobic digestion of solid organic waste”, Waste Manag., 31:8, 1737–1744, 2011.
  • CHEN, S., SUN, D. and CHUNG, J.-S., “Simultaneous removal of COD and ammonium from landfill leachate using an anaerobic–aerobic moving-bed biofilm reactor system”, Waste Manag., 28:2, 339–346, 2008.
  • BEHERA, S. K., PARK, J. M., KIM, K. H. and PARK, H.-S. “Methane production from food waste leachate in laboratory-scale simulated landfill”, Waste Manag., 30:8–9, 1502–1508, 2010.
  • JEONG, J., KANG, H. and SCHUCHARDT, F., “Maximum Methane Production from Energy Crop (Sorghum ) using Thermophilic Anaerobic Plug Flow Reactor”, Proceedings of the Annual Conference of Japan Society of Material Cycles and Waste Management, 3-4, 2010.
  • ANGENENT, L. T., KARIM, K., AL-DAHHAN, M. H., WRENN, B. A. and DOMIGUEZ-ESPINOSA, R., “Production of bioenergy and biochemicals from industrial and agricultural wastewater”, Trends Biotechnol., 22:9, 477–485, 2004.
  • KIM, J. K., OH, B. R., CHUN, Y. N. and KIM, S. W., “Effects of temperature and hydraulic retention time on anaerobic digestion of food waste”, J. Biosci. Bioeng., 102:4, 328–332, 2006.
  • DANG, Y., SUN, D., WOODARD, T. L., WANG, L. Y., NEVIN, K. P. and HOLMES, D. E., “Stimulation of the anaerobic digestion of the dry organic fraction of municipal solid waste (OFMSW) with carbon-based conductive materials”, Bioresour. Technol., 238, 30–38, 2017.
  • CRUZ VIGGI, C., ROSSETTI, S., FAZI, S., PAIANO, P., MAJONE, M. and AULENTA, F. “Magnetite particles triggering a faster and more robust syntrophic pathway of methanogenic propionate degradation”, Environ. Sci. Technol., 48:13, 7536–7543, 2014.
  • LIU, F., ROTARU, A. E., SHRESTHA, P. M., MALVANKAR, N. S., NEVIN, K. P. and LOVLEY, D. R. “Promoting direct interspecies electron transfer with activated carbon”, Energy Environ. Sci., 5:10, 8982–8989, 2012.
  • ZHANG, J., ZHAO, W., ZHANG, H., WANG, Z., FAN, C. and ZANG, L., “Recent achievements in enhancing anaerobic digestion with carbon- based functional materials”, Bioresour. Technol., 266, 555–567, 2018.
  • QIN, Y., WANG, H., LI, X., CHENG, J. J. and WU, W., “Improving methane yield from organic fraction of municipal solid waste (OFMSW) with magnetic rice-straw biochar”, Bioresour. Technol., 245, 1058–1066, 2017.
  • LEI, Y., SUN, D., DANG, Y., CHEN, H., ZHAO, Z., ZHANG, Y. AND HOLMES, D. E. “Stimulation of methanogenesis in anaerobic digesters treating leachate from a municipal solid waste incineration plant with carbon cloth”, Bioresour. Technol., 222, 270–276, 2016.
  • LU, F., LUO, C., SHAO, L. AND HE, P., “Biochar alleviates combined stress of ammonium and acids by firstly enriching Methanosaeta and then Methanosarcina”, Water Res., 90, 34–43, 2016.
  • ZHAO, Z., ZHANG, Y., YU, Q., DANG, Y., LI, Y. and QUAN, X. “Communities stimulated with ethanol to perform direct interspecies electron transfer for syntrophic metabolism of propionate and butyrate”, Water Res., 102, 475–484, 2016.
  • SHRESTHA, P. M. and ROTARU, A. E., “Plugging in or going wireless: Strategies for interspecies electron transfer”, Front. Microbiol., 5, 1–8, 2014.
  • LI, J., XIAO, L., ZHENG, S., ZHANG, Y., LUO, M., TONG, C., XU, H., TAN, Y., LIU, J., WANG, O. AND LIU, F. “A new insight into the strategy for methane production affected by conductive carbon cloth in wetland soil: Beneficial to acetoclastic methanogenesis instead of CO2 reduction”, Sci. Total Environ., 643, 1024–1030, 2018.
  • LUO, C., LU, F., SHAO, L. and HE, P., “Application of eco-compatible biochar in anaerobic digestion to relieve acid stress and promote the selective colonization of functional microbes”, Water Res., 68, 710–718, 2015.
  • ZHAO, Z., ZHANG, Y., WOODARD, T. L., NEVIN, K. P. and LOVLEY, D. R., “Enhancing syntrophic metabolism in up-flow anaerobic sludge blanket reactors with conductive carbon materials”, Bioresour. Technol., 191, 140–145, 2015.
  • ZHAO, Z. ZHANG, Y., LI, Y., DANG, Y., ZHU, T. and QUAN, X., “Potentially shifting from interspecies hydrogen transfer to direct interspecies electron transfer for syntrophic metabolism to resist acidic impact with conductive carbon cloth”, Chem. Eng. J., 313, 10–18, 2017.
  • YANG, Y., ZHANG, Y., LI, Z., ZHAO, Z., QUAN, X. and ZHAO, Z., “Adding granular activated carbon into anaerobic sludge digestion to promote methane production and sludge decomposition”, J. Clean. Prod., 149, 1101–1108, 2017.
  • ZHANG, J. and LU, Y., “Conductive Fe3O4nanoparticles accelerate syntrophic methane production from butyrate oxidation in two different lake sediments”, Front. Microbiol., 7, 1–9, 2016.
  • YIN, Q., MIAO, J., LI, B. and WU, G., “Enhancing electron transfer by ferroferric oxide during the anaerobic treatment of synthetic wastewater with mixed organic carbon”, Int. Biodeterior. Biodegradation, 119, 104–110, 2017.
  • JING, Y., WAN, J., ANGELIDAKI, I., ZHANG, S. and LUO, G., “iTRAQ quantitative proteomic analysis reveals the pathways for methanation of propionate facilitated by magnetite”, Water Res., 108, 212–221, 2017.
  • KATO, S., HASHIMOTO, K. and WATANABE, K., “Methanogenesis facilitated by electric syntrophy via (semi)conductive iron-oxide minerals”, Environ. Microbiol., 14:7, 1646–1654, 2012.
  • LI, Y., ZHANG, Y., YANG, Y., QUAN, X. and ZHAO, Z., “Potentially direct interspecies electron transfer of methanogenesis for syntrophic metabolism under sulfate reducing conditions with stainless steel”, Bioresour. Technol., 234, 303–309, 2017.
  • BARREDO, M. S. and EVISON, L. M., “Effect of propionate toxicity on methanogen-enriched sludge, Methanobrevibacter smithii, and Methanospirillum hungatii at different pH values”, Appl. Environ. Microbiol., 57:6, 1764–1769, 1991.
  • BARUA, S. and DHAR, B. R., “Advances towards understanding and engineering direct interspecies electron transfer in anaerobic digestion”, Bioresour. Technol., 244, 698–707, 2017.
  • XU, S., HE, C., LUO, L., LU, F., HE, P. and CUI, L., “Comparing activated carbon of different particle sizes on enhancing methane generation in upflow anaerobic digester”, Bioresour. Technol., 196, 606–612, 2015.
  • LI, Q., XU, M., WANG, G., CHEN, R., QIAO, W. and WANG, X., “Biochar assisted thermophilic co-digestion of food waste and waste activated sludge under high feedstock to seed sludge ratio in batch experiment”, Bioresour. Technol., 249, 1009–1016, 2018.
There are 51 citations in total.

Details

Primary Language Turkish
Subjects Environmental Engineering
Journal Section Environmental Engineering
Authors

Hamdi Muratçobanoğlu 0000-0002-4720-8090

Öznur Begüm Gökçek 0000-0003-1730-2905

Sevgi Demirel 0000-0002-5329-591X

Publication Date July 31, 2019
Submission Date December 13, 2018
Acceptance Date May 17, 2019
Published in Issue Year 2019

Cite

APA Muratçobanoğlu, H., Gökçek, Ö. B., & Demirel, S. (2019). İLETKEN MALZEMELERİN KATI ORGANİK ATIKLARDAN BİYOGAZ ÜRETİMİNE ETKİSİ. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 8(2), 712-720. https://doi.org/10.28948/ngumuh.496486
AMA Muratçobanoğlu H, Gökçek ÖB, Demirel S. İLETKEN MALZEMELERİN KATI ORGANİK ATIKLARDAN BİYOGAZ ÜRETİMİNE ETKİSİ. NÖHÜ Müh. Bilim. Derg. July 2019;8(2):712-720. doi:10.28948/ngumuh.496486
Chicago Muratçobanoğlu, Hamdi, Öznur Begüm Gökçek, and Sevgi Demirel. “İLETKEN MALZEMELERİN KATI ORGANİK ATIKLARDAN BİYOGAZ ÜRETİMİNE ETKİSİ”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 8, no. 2 (July 2019): 712-20. https://doi.org/10.28948/ngumuh.496486.
EndNote Muratçobanoğlu H, Gökçek ÖB, Demirel S (July 1, 2019) İLETKEN MALZEMELERİN KATI ORGANİK ATIKLARDAN BİYOGAZ ÜRETİMİNE ETKİSİ. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 8 2 712–720.
IEEE H. Muratçobanoğlu, Ö. B. Gökçek, and S. Demirel, “İLETKEN MALZEMELERİN KATI ORGANİK ATIKLARDAN BİYOGAZ ÜRETİMİNE ETKİSİ”, NÖHÜ Müh. Bilim. Derg., vol. 8, no. 2, pp. 712–720, 2019, doi: 10.28948/ngumuh.496486.
ISNAD Muratçobanoğlu, Hamdi et al. “İLETKEN MALZEMELERİN KATI ORGANİK ATIKLARDAN BİYOGAZ ÜRETİMİNE ETKİSİ”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 8/2 (July 2019), 712-720. https://doi.org/10.28948/ngumuh.496486.
JAMA Muratçobanoğlu H, Gökçek ÖB, Demirel S. İLETKEN MALZEMELERİN KATI ORGANİK ATIKLARDAN BİYOGAZ ÜRETİMİNE ETKİSİ. NÖHÜ Müh. Bilim. Derg. 2019;8:712–720.
MLA Muratçobanoğlu, Hamdi et al. “İLETKEN MALZEMELERİN KATI ORGANİK ATIKLARDAN BİYOGAZ ÜRETİMİNE ETKİSİ”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, vol. 8, no. 2, 2019, pp. 712-20, doi:10.28948/ngumuh.496486.
Vancouver Muratçobanoğlu H, Gökçek ÖB, Demirel S. İLETKEN MALZEMELERİN KATI ORGANİK ATIKLARDAN BİYOGAZ ÜRETİMİNE ETKİSİ. NÖHÜ Müh. Bilim. Derg. 2019;8(2):712-20.

download