Research Article
BibTex RIS Cite

USABILITY OF ARTIFICIAL INTELLIGENCE METHODS FOR ESTIMATION OF MONTHLY EVAPORATION

Year 2019, , 244 - 254, 28.01.2019
https://doi.org/10.28948/ngumuh.516891

Abstract

   Evaporation, one of the most
important components of the hydrological cycle, is influenced by many factors.
Evaporation is a meteorological parameter that is difficult to predict due to
this complex structure. In this study, the amount of monthly evaporation was
estimated using different input combinations formed by meteorological
parameters belonging to Karaman station in Konya Closed Basin. For this
purpose, Artificial Neural Networks (ANN), Support Vector Regression (SVR),
Adaptive Network Based Fuzzy Inference System (ANFIS) methods are used. As a
result, SVR has been more successful than other methods in monthly evaporation
prediction.

References

  • [1] HUO, Z., FENG, S., KANG, S., DAI, X., “Artificial Neural Network Models for Reference Evapotranspiration in an Arid Area of Northwest China”, J. Arid Environ, 82, 81–90, 2012.
  • [2] SUDHEER, K.P., GOSAIN, A.K., RAMASASTRI, K.S., “Estimating Actual Evapotranspiration from Limited Climatic Data using Neural Computing Technique”, J. Irrig. Drain. Eng. 129 (3), 214–218, 2003.
  • [3] SHIRMOHAMMADI, B., VAFAKHAH, M., MOOSAVI, V., MOGHADDAMNIA, A., “Application of Several Data-Driven Techniques for Predicting Ground Water Level”, Water Resour Manag, 27(2), 419–432, 2013.
  • [4] KESKIN, M.E., TAYLAN, D., TERZI, O., “Adaptive Neural-Based Fuzzy Inference System (ANFIS) Approach for Modelling Hydrological Time Series”, Hydrol Sci. J., 51(4), 588–598, 2006.
  • [5] SHIRI, J., MARTI, P., SINGH, V.P., “Evaluation of Gene Expression Programming Approaches for Estimating Daily Evaporation through Spatial and Temporal Data Scanning”, Hydrol. Process, 28 (3), 1215–1225, 2014.
  • [6] TERZI, O., KESKIN, M.E., “Modelling of Daily Pan Evaporation”, J Appl Sci, 5(2), 368-372, 2005.
  • [7] KIM, S., SHIRI, J., KISI, O., SINGH, V.P., “Estimating Daily Pan Evaporation using Different Data Driven Methods and Lag-Time Patterns”, Water Resour. Manage., 27 (7), 2267–2286, 2013.
  • [8] BRUTON, J.M., MCCLENDON, R.W., HOOGENBOOM, G., “Estimating Daily Pan Evaporation with Artificial Neural Networks”, Transactions of the American Society of Agricultural Engineers, 43(2), 491-496, 2000.
  • [9] KUMAR, M., RAGHUWANSHI, N.S., SINGH, R., “Artificial Neural Networks Approach in Evapotranspiration Modeling: A Review”, Irrigation Science, doi:10.1007/s00271-010-0230-8, 2010.
  • [10] BEHMANESH, J., MEHDIZADEH, S., “Estimation of Soil Temperature using Gene Expression Programming and Artificial Neural Networks in a Semiarid Region”, Environ Earth Sci., 76 (2), 76, 2017.
  • [11] MEHDIZADEH, S., BEHMANESH, J., KHALILI, K., “Comparison of Artificial Intelligence Methods and Empirical Equations to Estimate Daily Solar Radiation”, J. Atmos Sol Terr Phys, 146, 215–227, 2016.
  • [12] BUYUKYILDIZ, M., TEZEL, G., YILMAZ, V., “Estimation of the Change in Lake Water Level by Artificial Intelligence Methods”, Water Resour Manag, 28, 4747–4763, 2014.
  • [13] SUDHEER, C., MAHESWARAN, R., PANIGRAHI, B.K., MATHUR S., “A Hybrid SVM-PSO Model for Forecasting Monthly Streamflow”, Neural. Comput. and Applic, 24, 1381–1389, 2014.
  • [14] MOHANDES, M.A., “Modeling Global Solar Radiation using Particle Swarm Optimization (PSO)”, Sol Energy, 86, 3137–3145, 2012.
  • [15] GOCIC, M., MOTAMEDI, S., SHAMSHIRBAND, S., PETKOVIC, D., CH, S., HASHIM, R., ARIF, M.,. “Soft Computing Approaches for Forecasting Reference Evapotranspiration”, Comput Electron Agric, 113, 164–173, 2015.
  • [16] TEZEL, G., BUYUKYILDIZ, M., “Monthly Evaporation Forecasting using Artificial Neural Networks and Support Vector Machines”, Theor Appl Climatol, 124,69–80, 2016.
  • [17] DESWAL, S., PAL, M., “Modeling of Pan Evaporation Using Support Vector Machines Algorithm”, Journal of Hydrologic Engineering, 14(1), 104-116, 2008.
  • [18] GOYAL, M.K., BHARTI, B., QUILTY, J., ADAMOWSKI, J., PANDEY, A., “Modeling of Daily Pan Evaporation in Sub-Tropical Climates using ANN, LS-SVR, Fuzzy Logic, and ANFIS”, Expert Syst. Appl, 41 (11), 5267–5276, 2014.
  • [19] MEHDIZADEH, S., BEHMANESH, J., KHALILI, K., “Using MARS, SVM, GEP and Empirical Equations for Estimation of Monthly Mean Reference Evapotranspiration”, Computers and Electronics in Agriculture, 139, 103–114, 2017.
  • [20] ÖZEL, A., Meteorolojik Verileri Kullanarak Aylık Tava Buharlaşmasını Tahmin Etmek için Yapay Zeka Metotlarının Uygulanması, Yüksek Lisans Tezi, Konya Teknik Üniversitesi, Lisansüstü Eğitim Enstitüsü, Konya, 2018.
  • [21] SPECHT, D. F., “A General Regression Neural Network”, IEEE Transactionson Neural Networks, 2, 568-576, 1991.
  • [22] ALP, M., CIĞIZOĞLU, H.K., “Farklı Yapay Sinir Ağı Metodları ile Yağış Akış İlişkisinin Modellenmesi”, ITU Dergisi, 3(1), 80–88, 2004.
  • [23] BROOMHEAD, D., LOWE D., “Multivariable Functional Interpolation and Adaptive Networks”, Complex Systems, 2(6), 568–576, 1988.
  • [24] OKKAN, U., DALLKILIÇ, H.Y.,. “Radyal Tabanlı Yapay Sinir Ağları ile Kemer Barajı Aylık Akımlarının Modellenmesi”, İMO Teknik Dergi, 5957-5966, 2012
  • [25] PRINCIPE, J.C., EULIANO, N.R., LEFEBVRE, W.C., Neural and Adaptive Systems: Fundamentals through Simulations, John Wiley& Sons Inc., New York, 2000.
  • [26] HAYKIN, S., Neural Networks: A Comprehensive Foundation, 2nd edn.Prentice Hall, Upper Saddle River, 1999.
  • [27] JANG, J.S.R., “ANFIS: Adaptive-Network-Based Fuzzy Inference System, Systems, Man and Cybernetics, IEEE Transactions on, 23(3), 665-685, 1993,
  • [28] VAPNIK, V. N., The Nature of Statistical Learning Theory, Springer and Verlag, NewYork, 1995.
  • [29] VAPNIK, V.N., Statistical Learning Theory, John Wiley and Sons, New York, 1998.
  • [30] EKİCİ, S., Elektrik Güç Sistemlerinde Akıllı Sistemler Yardımıyla Arıza Tipi ve Yerinin Belirlenmesi, Doktora Tezi, Fırat Üniversitesi Fen Bilimleri Enstitüsü, Şanlı Urfa, 2007.
  • [31] ANONİM, Konya Kapalı Havzası Sektörel Su Tahsis Planının Hazırlanmasına Yönelik Teknik Destek Hizmet Alımı İşi, Taslak Su Talepleri Analizi Raporu, T.C. Orman ve Su İşleri Bakanlığı, Su Yönetimi Genel Müdürlüğü, 2017.

AYLIK BUHARLAŞMA TAHMİNİNDE YAPAY ZEKA YÖNTEMLERİNİN KULLANILABİLİRLİĞİ

Year 2019, , 244 - 254, 28.01.2019
https://doi.org/10.28948/ngumuh.516891

Abstract

      Hidrolojik çevrimin en önemli
bileşenlerinden biri olan buharlaşma pek çok faktörün etkisindedir. Buharlaşma;
bu kompleks yapısından dolayı tahmin edilmesi zor bir meteorolojik
parametredir. Bu çalışmada, Konya Kapalı Havzası’nda yer alan Karaman istasyonuna
ait meteorolojik parametreler kullanılarak oluşturulan farklı giriş
kombinasyonları ile aylık buharlaşma miktarı tahmin edilmiştir. Bu amaçla Yapay
Sinir Ağları (YSA), Destek Vektör Regresyonu (DVR), Adaptif Ağ Tabanlı Bulanık
Çıkarım Sistemi (ANFIS) metotları kullanılmıştır. Sonuç olarak DVR, aylık
buharlaşma tahmininde diğer metotlardan daha başarılı olmuştur.

References

  • [1] HUO, Z., FENG, S., KANG, S., DAI, X., “Artificial Neural Network Models for Reference Evapotranspiration in an Arid Area of Northwest China”, J. Arid Environ, 82, 81–90, 2012.
  • [2] SUDHEER, K.P., GOSAIN, A.K., RAMASASTRI, K.S., “Estimating Actual Evapotranspiration from Limited Climatic Data using Neural Computing Technique”, J. Irrig. Drain. Eng. 129 (3), 214–218, 2003.
  • [3] SHIRMOHAMMADI, B., VAFAKHAH, M., MOOSAVI, V., MOGHADDAMNIA, A., “Application of Several Data-Driven Techniques for Predicting Ground Water Level”, Water Resour Manag, 27(2), 419–432, 2013.
  • [4] KESKIN, M.E., TAYLAN, D., TERZI, O., “Adaptive Neural-Based Fuzzy Inference System (ANFIS) Approach for Modelling Hydrological Time Series”, Hydrol Sci. J., 51(4), 588–598, 2006.
  • [5] SHIRI, J., MARTI, P., SINGH, V.P., “Evaluation of Gene Expression Programming Approaches for Estimating Daily Evaporation through Spatial and Temporal Data Scanning”, Hydrol. Process, 28 (3), 1215–1225, 2014.
  • [6] TERZI, O., KESKIN, M.E., “Modelling of Daily Pan Evaporation”, J Appl Sci, 5(2), 368-372, 2005.
  • [7] KIM, S., SHIRI, J., KISI, O., SINGH, V.P., “Estimating Daily Pan Evaporation using Different Data Driven Methods and Lag-Time Patterns”, Water Resour. Manage., 27 (7), 2267–2286, 2013.
  • [8] BRUTON, J.M., MCCLENDON, R.W., HOOGENBOOM, G., “Estimating Daily Pan Evaporation with Artificial Neural Networks”, Transactions of the American Society of Agricultural Engineers, 43(2), 491-496, 2000.
  • [9] KUMAR, M., RAGHUWANSHI, N.S., SINGH, R., “Artificial Neural Networks Approach in Evapotranspiration Modeling: A Review”, Irrigation Science, doi:10.1007/s00271-010-0230-8, 2010.
  • [10] BEHMANESH, J., MEHDIZADEH, S., “Estimation of Soil Temperature using Gene Expression Programming and Artificial Neural Networks in a Semiarid Region”, Environ Earth Sci., 76 (2), 76, 2017.
  • [11] MEHDIZADEH, S., BEHMANESH, J., KHALILI, K., “Comparison of Artificial Intelligence Methods and Empirical Equations to Estimate Daily Solar Radiation”, J. Atmos Sol Terr Phys, 146, 215–227, 2016.
  • [12] BUYUKYILDIZ, M., TEZEL, G., YILMAZ, V., “Estimation of the Change in Lake Water Level by Artificial Intelligence Methods”, Water Resour Manag, 28, 4747–4763, 2014.
  • [13] SUDHEER, C., MAHESWARAN, R., PANIGRAHI, B.K., MATHUR S., “A Hybrid SVM-PSO Model for Forecasting Monthly Streamflow”, Neural. Comput. and Applic, 24, 1381–1389, 2014.
  • [14] MOHANDES, M.A., “Modeling Global Solar Radiation using Particle Swarm Optimization (PSO)”, Sol Energy, 86, 3137–3145, 2012.
  • [15] GOCIC, M., MOTAMEDI, S., SHAMSHIRBAND, S., PETKOVIC, D., CH, S., HASHIM, R., ARIF, M.,. “Soft Computing Approaches for Forecasting Reference Evapotranspiration”, Comput Electron Agric, 113, 164–173, 2015.
  • [16] TEZEL, G., BUYUKYILDIZ, M., “Monthly Evaporation Forecasting using Artificial Neural Networks and Support Vector Machines”, Theor Appl Climatol, 124,69–80, 2016.
  • [17] DESWAL, S., PAL, M., “Modeling of Pan Evaporation Using Support Vector Machines Algorithm”, Journal of Hydrologic Engineering, 14(1), 104-116, 2008.
  • [18] GOYAL, M.K., BHARTI, B., QUILTY, J., ADAMOWSKI, J., PANDEY, A., “Modeling of Daily Pan Evaporation in Sub-Tropical Climates using ANN, LS-SVR, Fuzzy Logic, and ANFIS”, Expert Syst. Appl, 41 (11), 5267–5276, 2014.
  • [19] MEHDIZADEH, S., BEHMANESH, J., KHALILI, K., “Using MARS, SVM, GEP and Empirical Equations for Estimation of Monthly Mean Reference Evapotranspiration”, Computers and Electronics in Agriculture, 139, 103–114, 2017.
  • [20] ÖZEL, A., Meteorolojik Verileri Kullanarak Aylık Tava Buharlaşmasını Tahmin Etmek için Yapay Zeka Metotlarının Uygulanması, Yüksek Lisans Tezi, Konya Teknik Üniversitesi, Lisansüstü Eğitim Enstitüsü, Konya, 2018.
  • [21] SPECHT, D. F., “A General Regression Neural Network”, IEEE Transactionson Neural Networks, 2, 568-576, 1991.
  • [22] ALP, M., CIĞIZOĞLU, H.K., “Farklı Yapay Sinir Ağı Metodları ile Yağış Akış İlişkisinin Modellenmesi”, ITU Dergisi, 3(1), 80–88, 2004.
  • [23] BROOMHEAD, D., LOWE D., “Multivariable Functional Interpolation and Adaptive Networks”, Complex Systems, 2(6), 568–576, 1988.
  • [24] OKKAN, U., DALLKILIÇ, H.Y.,. “Radyal Tabanlı Yapay Sinir Ağları ile Kemer Barajı Aylık Akımlarının Modellenmesi”, İMO Teknik Dergi, 5957-5966, 2012
  • [25] PRINCIPE, J.C., EULIANO, N.R., LEFEBVRE, W.C., Neural and Adaptive Systems: Fundamentals through Simulations, John Wiley& Sons Inc., New York, 2000.
  • [26] HAYKIN, S., Neural Networks: A Comprehensive Foundation, 2nd edn.Prentice Hall, Upper Saddle River, 1999.
  • [27] JANG, J.S.R., “ANFIS: Adaptive-Network-Based Fuzzy Inference System, Systems, Man and Cybernetics, IEEE Transactions on, 23(3), 665-685, 1993,
  • [28] VAPNIK, V. N., The Nature of Statistical Learning Theory, Springer and Verlag, NewYork, 1995.
  • [29] VAPNIK, V.N., Statistical Learning Theory, John Wiley and Sons, New York, 1998.
  • [30] EKİCİ, S., Elektrik Güç Sistemlerinde Akıllı Sistemler Yardımıyla Arıza Tipi ve Yerinin Belirlenmesi, Doktora Tezi, Fırat Üniversitesi Fen Bilimleri Enstitüsü, Şanlı Urfa, 2007.
  • [31] ANONİM, Konya Kapalı Havzası Sektörel Su Tahsis Planının Hazırlanmasına Yönelik Teknik Destek Hizmet Alımı İşi, Taslak Su Talepleri Analizi Raporu, T.C. Orman ve Su İşleri Bakanlığı, Su Yönetimi Genel Müdürlüğü, 2017.
There are 31 citations in total.

Details

Primary Language Turkish
Subjects Civil Engineering
Journal Section Civil Engineering
Authors

Ayşe Özel This is me 0000-0002-0632-8563

Meral Büyükyıldız 0000-0003-1426-3314

Publication Date January 28, 2019
Submission Date October 30, 2018
Acceptance Date January 7, 2019
Published in Issue Year 2019

Cite

APA Özel, A., & Büyükyıldız, M. (2019). AYLIK BUHARLAŞMA TAHMİNİNDE YAPAY ZEKA YÖNTEMLERİNİN KULLANILABİLİRLİĞİ. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 8(1), 244-254. https://doi.org/10.28948/ngumuh.516891
AMA Özel A, Büyükyıldız M. AYLIK BUHARLAŞMA TAHMİNİNDE YAPAY ZEKA YÖNTEMLERİNİN KULLANILABİLİRLİĞİ. NÖHÜ Müh. Bilim. Derg. January 2019;8(1):244-254. doi:10.28948/ngumuh.516891
Chicago Özel, Ayşe, and Meral Büyükyıldız. “AYLIK BUHARLAŞMA TAHMİNİNDE YAPAY ZEKA YÖNTEMLERİNİN KULLANILABİLİRLİĞİ”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 8, no. 1 (January 2019): 244-54. https://doi.org/10.28948/ngumuh.516891.
EndNote Özel A, Büyükyıldız M (January 1, 2019) AYLIK BUHARLAŞMA TAHMİNİNDE YAPAY ZEKA YÖNTEMLERİNİN KULLANILABİLİRLİĞİ. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 8 1 244–254.
IEEE A. Özel and M. Büyükyıldız, “AYLIK BUHARLAŞMA TAHMİNİNDE YAPAY ZEKA YÖNTEMLERİNİN KULLANILABİLİRLİĞİ”, NÖHÜ Müh. Bilim. Derg., vol. 8, no. 1, pp. 244–254, 2019, doi: 10.28948/ngumuh.516891.
ISNAD Özel, Ayşe - Büyükyıldız, Meral. “AYLIK BUHARLAŞMA TAHMİNİNDE YAPAY ZEKA YÖNTEMLERİNİN KULLANILABİLİRLİĞİ”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 8/1 (January 2019), 244-254. https://doi.org/10.28948/ngumuh.516891.
JAMA Özel A, Büyükyıldız M. AYLIK BUHARLAŞMA TAHMİNİNDE YAPAY ZEKA YÖNTEMLERİNİN KULLANILABİLİRLİĞİ. NÖHÜ Müh. Bilim. Derg. 2019;8:244–254.
MLA Özel, Ayşe and Meral Büyükyıldız. “AYLIK BUHARLAŞMA TAHMİNİNDE YAPAY ZEKA YÖNTEMLERİNİN KULLANILABİLİRLİĞİ”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, vol. 8, no. 1, 2019, pp. 244-5, doi:10.28948/ngumuh.516891.
Vancouver Özel A, Büyükyıldız M. AYLIK BUHARLAŞMA TAHMİNİNDE YAPAY ZEKA YÖNTEMLERİNİN KULLANILABİLİRLİĞİ. NÖHÜ Müh. Bilim. Derg. 2019;8(1):244-5.

download