Research Article
BibTex RIS Cite

THE EFFECT OF MACRO SYNTHETIC FIBER ON OPTIMUM WATER CONTENT AND STRENGTH PROPERTIES OF ROLLER COMPACTED CONCRETE

Year 2019, , 992 - 1004, 31.07.2019
https://doi.org/10.28948/ngumuh.534055

Abstract

   In this
study, the effect of macro synthetic fibre on the optimum water content and the
mechanical properties of roller compacted concrete (RCC) was investigated. A total
number of sixteen RCC mixtures were produced with four different water content
variation and four volumetric fibre levels of 0%, 0.2%, 0.4%, 0.6%. Soil
compaction method was utilised to quantify the optimum water content against
the maximum dry unit weight value for each RCC mixtures. Four different RCC
mixes of which consistency was evaluated through the modified Vebe test were
also produced according to the optimum water content identified. The
compressive and splitting tensile strength tests of RCC were conducted in order
to examine the effectiveness of fibre amount on the mechanical properties of
RCC. The test results reveal that the required water for the adequate compactibility
of fibre reinforced RCC increases with the incorporated amount of fibre. This paper
underlines that the amount of fibre is not significantly effective on the
compressive strength values whereas the maximum tensile strength is observed
for 0.4% fibre reinforced RCC. 

References

  • HARRINGTON, D., ABDO, F., ADASKA, W., HAZAREE, C.V., CEYLAN, H., BEKTAS, F., Guide for Roller-Compacted Concrete Pavements, National Concrete Pavement Technology Center, Technical Report, 2010.
  • DELATTE, N., AMER, N., STOREY, C., Improved Management of RCC Pavement Technology, University Transportation Center for Alabama (UTCA), UTCA Report 01231, 2003.
  • MODARRES, A., HOSSEINI, Z., “Mechanical Properties of Roller Compacted Concrete Containing Rice Husk Ash with Original and Recycled Asphalt Pavement Material”, Materials and Design, 64, 227–236, 2014.
  • ACI 325.10R, State-of-the-Art report on Roller Compacted Concrete Pavements, Technical Report, American Concrete Institute, 1995.
  • CHOI, Y.K., GROOM, J.L., “RCC mix design-soils approach”, J. Master Civil Eng, 13, 71-76, 2001.
  • NAIK, T.R., CHUN, Y.M., KRAUS, R.N., SINGH, S.S., PENNOCK, L.C., RAMME, B.W., “Strength and Durability Roller Compacted HVFA Concrete Pavement”, Practice Periodical on Structural Design and Construction, 6, 154-165, 2001.
  • GAGNE, R., “Proportioning for Non-air Entrained RCCP”, American Concrete Institute; 21, 37-41, 1999.
  • FUHRMAN, R.L., Engineering and Design Roller Compacted Concrete, Department of the U.S. Army Corps of Engineers, EM 1110-2-2006, 2000.
  • ADASKA, W.S., Roller-Compacted Concrete (RCC). In: Significance of Tests and Properties of Concrete and Concrete-making Materials (pp. 595-605). ASTM International, West Conshohocken, PA, 2006.
  • DELATTE, N. J., Concrete Pavement Design, Construction, and Performance (2nd ed.),CRC Press, Boca Raton, FL, 2014.
  • KARADELIS, J.N., LIN, Y., “Flexural Strengths and Fibre Efficiency of Steel Fibre-reinforced, Roller-compacted, Polymer Modified Concrete”, Construction and Building Materials, 93, 498–505, 2015.
  • LIN, Y., KARADELIS, J.N., YI, X., “A New Mix Design Method for Steel Fibre Reinforced, Roller Compacted and Polymer Modified Bonded Concrete Overlays”, Construction and Building Materials, 48, 333–341, 2013.
  • NEOCLEOUS, K., ANGELAKOPOULOS, H., PILAKOUTAS, K., GUADAGNINI, M., “Fibre-reinforced Roller-Compacted Concrete Transport Pavements”, Proceedings of the ICE - Transport, 164, 97–109, 2011.
  • FAKHRI, M., AMOOSOLTANI, E., ALIHA, M.R.M., “Crack Behavior Analysis of Roller Compacted Concrete Mixtures Containing Reclaimed Asphalt Pavement and Crumb Rubber”, Engineering Fracture Mechanics, 180, 43–59, 2017.
  • YIN, S., TULADHAR, R., SHI, F., COMBE, M., COLLISTER, T., SIVAKUGAN, N., “Use of Macro Plastic Fibres in Concrete: A Review”, Construction and Building Materials, 93, 180–188, 2015.
  • HEIDARI-RARANI, M., ALIHA, M.R.M., SHOKRIEH, M.M., AYATOLLAHI, M.R., “Mechanical Durability of an Optimized Polymer Concrete Under Various Thermal Cyclic Loadings–an Experimental Study”, Construction and Building Materials, 64, 308–315, 2014.
  • RAZMI, A., MIRSAYAR, M.M., “On the Mixed Mode I/II Fracture Properties of Jüte Fiber-Reinforced Concrete”, Construction and Building Materials, 148, 512–520, 2017.
  • KAUSHIK, P., JAIVIR, J., MITTAL, K., “Analysis of Mechanical Properties of Jute Fiber Strengthened Epoxy/Polyester Composites”, Engineering Solid Mechanics, 5, 103–112, 2017.
  • ALIHA, M.R.M., HEIDARI-RARANI, M., SHOKRIEH, M.M., AYATOLLAHI, M.R., “Experimental Determination of Tensile Strength and KIC of Polymer Concretes Using Semi-Circular Bend (SCB) Specimens”, Structural Engineering Mechanics, 43, 823–833, 2012.
  • MADHKHAN, M., AZIZKHANI, R., TORKI HARCHEGANI, M.E., “Effects of Pozzolans Together with Steel and Polypropylene Fibers on Mechanical Properties of RCC Pavements”, Construction and Building Materials, 26, 102–112, 2012.
  • ROOHOLAMINI, H., HASSANI, A., ALIHA, M.R.M., “Evaluating the Effect of Macro-Synthetic Fibre on the Mechanical Properties of Roller-Compacted Concrete Pavement Using Response Surface Methodology”, Construction and Building Materials, 159, 517–529, 2018.
  • LIBRE, N.A., SHEKARCHI, M., MAHOUTIAN, M., SOROUSHIAN, P., “Mechanical Properties of Hybrid Fiber Reinforced Lightweight Aggregate Concrete Made with Natural Pumice, Construction and Building Materials, 25, 2458–2464, 2011.
  • QASRAWI, H.Y., ASI, I.M., WAHHAB, H.A.-A., “Proportioning RCCP Mixes Under Hot Weather Conditions for a Specified Tensile Strength”, Cement and Concrete Research, 35, 267–276, 2005.
  • WILLIAMS, S.G., “Comparison of the Superpave Gyratory and Proctor Compaction Methods for the Design of Roller-Compacted Concrete Pavements”, Transportation Research Record: Journal of the Transportation Research Board, 2342, 106–112, 2013.
  • LaHucik, J., Roesler, J., “Low Fines Content Roller-Compacted Concrete”, Airfield and Highway Pavements, 441–452, 2015.
  • ACI 211.3R-02, Guide for Selecting Proportions for No Slump Concrete, Technical Report, American Concrete Institute, 2009.
  • ASTM C39, Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens, ASTM International, 2012.
  • ŞENGÜN, E., ALAM, B., SEVİN, H.L., AYTAÇ, A.H., YAMAN, İ.Ö., “Silindirle Sıkıştırılmış Beton (SSB) Yolların Saha ve Laboratuvar Mekanik Performansının Karşılaştırılması”, Hazır Beton Kongresi, İstanbul, Türkiye, 2017.
  • ASTM C1435, Standard Practice for Molding Roller-Compacted Concrete in Cylinder Molds Using a Vibrating Hammer, ASTM International, 2008.
  • ASTM C496, Standard Test Method for Splitting Tensile Strength of Cylindrical Concrete Specimens, ASTM International, 2017.
  • ASTM C1170, Standard Test Method for Determining Consistency and Density of Roller-Compacted Concrete Using a Vibrating Table, ASTM International, 2014.
  • MARCHAND, J., GAGNE, R., OUELLET, E., LEPAGE, S., “Mixture Proportioning of Roller-Compacted Concrete: A Review”, ACI Special Publication, 171, 457-486, 1997.
  • Part 645, Construction Inspection National Engineering Handbook, Chapter 13: Roller Compacted Concrete. United States Department of Agriculture Natural Resources Conservation Service, 2011.
  • CHHORN, C., LEE, S.W., “Consistency Control of Roller-Compacted Concrete for Pavement”, KSCE Journal of Civil Engineering, 21, 1757-1763, 2017.
  • JOFRE, C., The use of Roller Compacted Concrete for Roads. Spain: Permanent International Association of Road Congresses, 1993.
  • BARADAN, B., YAZICI, H., ÜN, H., Beton ve Betonarme Yapılarda Kalıcılık, THBB, ISBN: 975-92122-2-6, İstanbul, Türkiye, 2010.

SİLİNDİRLE SIKIŞTIRILMIŞ BETONDA MAKRO SENTETİK ELYAF KULLANIMININ OPTİMUM SU İÇERİĞİNE VE BETONUN DAYANIM ÖZELLİKLERİNE ETKİSİ

Year 2019, , 992 - 1004, 31.07.2019
https://doi.org/10.28948/ngumuh.534055

Abstract

   Bu çalışmada,
makro sentetik elyaf miktarının silindirle sıkıştırılmış betonun (SSB) optimum
su içeriğine ve mekanik özelliklerine etkisi araştırılmıştır. Makro sentetik
elyaf beton hacminin %0, %0.2, %0.4 ve %0.6 oranlarında kullanılmış olup her
bir karışım dört farklı su içeriğine sahip olacak şekilde toplam on altı SSB
karışımı üretilmiştir. Zemin sıkıştırma yöntemi kullanılarak her bir elyaf
oranı için SSB’nin maksimum kuru birim ağırlığına karşılık gelen optimum su
içeriği belirlenmiştir. Ayrıca, belirlenen optimum su içeriği kullanılarak 4
farklı SSB karışımı daha üretilmiş olup bu karışımların kıvamını belirlemek
için modifiye Vebe deneyi yapılmıştır. Elyaf miktarının SSB’nin mekanik
özellikleri üzerindeki etkisini incelemek için basınç dayanımı ve yarmada çekme
dayanımı deneyi yapılmıştır. Deneysel çalışmanın sonunda, SSB’de makro sentetik
elyaf kullanımının karışımın su ihtiyacını arttırdığı görülmüştür. Ayrıca makro
sentetik elyaf miktarındaki artışın SSB karışımların basınç dayanımını önemli
ölçüde etkilemediği ve %0.4 makro sentetik elyaf kullanımının SSB’nin yarmada
çekme dayanımında önemli ölçüde artış sağladığı sonucuna varılmıştır.

References

  • HARRINGTON, D., ABDO, F., ADASKA, W., HAZAREE, C.V., CEYLAN, H., BEKTAS, F., Guide for Roller-Compacted Concrete Pavements, National Concrete Pavement Technology Center, Technical Report, 2010.
  • DELATTE, N., AMER, N., STOREY, C., Improved Management of RCC Pavement Technology, University Transportation Center for Alabama (UTCA), UTCA Report 01231, 2003.
  • MODARRES, A., HOSSEINI, Z., “Mechanical Properties of Roller Compacted Concrete Containing Rice Husk Ash with Original and Recycled Asphalt Pavement Material”, Materials and Design, 64, 227–236, 2014.
  • ACI 325.10R, State-of-the-Art report on Roller Compacted Concrete Pavements, Technical Report, American Concrete Institute, 1995.
  • CHOI, Y.K., GROOM, J.L., “RCC mix design-soils approach”, J. Master Civil Eng, 13, 71-76, 2001.
  • NAIK, T.R., CHUN, Y.M., KRAUS, R.N., SINGH, S.S., PENNOCK, L.C., RAMME, B.W., “Strength and Durability Roller Compacted HVFA Concrete Pavement”, Practice Periodical on Structural Design and Construction, 6, 154-165, 2001.
  • GAGNE, R., “Proportioning for Non-air Entrained RCCP”, American Concrete Institute; 21, 37-41, 1999.
  • FUHRMAN, R.L., Engineering and Design Roller Compacted Concrete, Department of the U.S. Army Corps of Engineers, EM 1110-2-2006, 2000.
  • ADASKA, W.S., Roller-Compacted Concrete (RCC). In: Significance of Tests and Properties of Concrete and Concrete-making Materials (pp. 595-605). ASTM International, West Conshohocken, PA, 2006.
  • DELATTE, N. J., Concrete Pavement Design, Construction, and Performance (2nd ed.),CRC Press, Boca Raton, FL, 2014.
  • KARADELIS, J.N., LIN, Y., “Flexural Strengths and Fibre Efficiency of Steel Fibre-reinforced, Roller-compacted, Polymer Modified Concrete”, Construction and Building Materials, 93, 498–505, 2015.
  • LIN, Y., KARADELIS, J.N., YI, X., “A New Mix Design Method for Steel Fibre Reinforced, Roller Compacted and Polymer Modified Bonded Concrete Overlays”, Construction and Building Materials, 48, 333–341, 2013.
  • NEOCLEOUS, K., ANGELAKOPOULOS, H., PILAKOUTAS, K., GUADAGNINI, M., “Fibre-reinforced Roller-Compacted Concrete Transport Pavements”, Proceedings of the ICE - Transport, 164, 97–109, 2011.
  • FAKHRI, M., AMOOSOLTANI, E., ALIHA, M.R.M., “Crack Behavior Analysis of Roller Compacted Concrete Mixtures Containing Reclaimed Asphalt Pavement and Crumb Rubber”, Engineering Fracture Mechanics, 180, 43–59, 2017.
  • YIN, S., TULADHAR, R., SHI, F., COMBE, M., COLLISTER, T., SIVAKUGAN, N., “Use of Macro Plastic Fibres in Concrete: A Review”, Construction and Building Materials, 93, 180–188, 2015.
  • HEIDARI-RARANI, M., ALIHA, M.R.M., SHOKRIEH, M.M., AYATOLLAHI, M.R., “Mechanical Durability of an Optimized Polymer Concrete Under Various Thermal Cyclic Loadings–an Experimental Study”, Construction and Building Materials, 64, 308–315, 2014.
  • RAZMI, A., MIRSAYAR, M.M., “On the Mixed Mode I/II Fracture Properties of Jüte Fiber-Reinforced Concrete”, Construction and Building Materials, 148, 512–520, 2017.
  • KAUSHIK, P., JAIVIR, J., MITTAL, K., “Analysis of Mechanical Properties of Jute Fiber Strengthened Epoxy/Polyester Composites”, Engineering Solid Mechanics, 5, 103–112, 2017.
  • ALIHA, M.R.M., HEIDARI-RARANI, M., SHOKRIEH, M.M., AYATOLLAHI, M.R., “Experimental Determination of Tensile Strength and KIC of Polymer Concretes Using Semi-Circular Bend (SCB) Specimens”, Structural Engineering Mechanics, 43, 823–833, 2012.
  • MADHKHAN, M., AZIZKHANI, R., TORKI HARCHEGANI, M.E., “Effects of Pozzolans Together with Steel and Polypropylene Fibers on Mechanical Properties of RCC Pavements”, Construction and Building Materials, 26, 102–112, 2012.
  • ROOHOLAMINI, H., HASSANI, A., ALIHA, M.R.M., “Evaluating the Effect of Macro-Synthetic Fibre on the Mechanical Properties of Roller-Compacted Concrete Pavement Using Response Surface Methodology”, Construction and Building Materials, 159, 517–529, 2018.
  • LIBRE, N.A., SHEKARCHI, M., MAHOUTIAN, M., SOROUSHIAN, P., “Mechanical Properties of Hybrid Fiber Reinforced Lightweight Aggregate Concrete Made with Natural Pumice, Construction and Building Materials, 25, 2458–2464, 2011.
  • QASRAWI, H.Y., ASI, I.M., WAHHAB, H.A.-A., “Proportioning RCCP Mixes Under Hot Weather Conditions for a Specified Tensile Strength”, Cement and Concrete Research, 35, 267–276, 2005.
  • WILLIAMS, S.G., “Comparison of the Superpave Gyratory and Proctor Compaction Methods for the Design of Roller-Compacted Concrete Pavements”, Transportation Research Record: Journal of the Transportation Research Board, 2342, 106–112, 2013.
  • LaHucik, J., Roesler, J., “Low Fines Content Roller-Compacted Concrete”, Airfield and Highway Pavements, 441–452, 2015.
  • ACI 211.3R-02, Guide for Selecting Proportions for No Slump Concrete, Technical Report, American Concrete Institute, 2009.
  • ASTM C39, Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens, ASTM International, 2012.
  • ŞENGÜN, E., ALAM, B., SEVİN, H.L., AYTAÇ, A.H., YAMAN, İ.Ö., “Silindirle Sıkıştırılmış Beton (SSB) Yolların Saha ve Laboratuvar Mekanik Performansının Karşılaştırılması”, Hazır Beton Kongresi, İstanbul, Türkiye, 2017.
  • ASTM C1435, Standard Practice for Molding Roller-Compacted Concrete in Cylinder Molds Using a Vibrating Hammer, ASTM International, 2008.
  • ASTM C496, Standard Test Method for Splitting Tensile Strength of Cylindrical Concrete Specimens, ASTM International, 2017.
  • ASTM C1170, Standard Test Method for Determining Consistency and Density of Roller-Compacted Concrete Using a Vibrating Table, ASTM International, 2014.
  • MARCHAND, J., GAGNE, R., OUELLET, E., LEPAGE, S., “Mixture Proportioning of Roller-Compacted Concrete: A Review”, ACI Special Publication, 171, 457-486, 1997.
  • Part 645, Construction Inspection National Engineering Handbook, Chapter 13: Roller Compacted Concrete. United States Department of Agriculture Natural Resources Conservation Service, 2011.
  • CHHORN, C., LEE, S.W., “Consistency Control of Roller-Compacted Concrete for Pavement”, KSCE Journal of Civil Engineering, 21, 1757-1763, 2017.
  • JOFRE, C., The use of Roller Compacted Concrete for Roads. Spain: Permanent International Association of Road Congresses, 1993.
  • BARADAN, B., YAZICI, H., ÜN, H., Beton ve Betonarme Yapılarda Kalıcılık, THBB, ISBN: 975-92122-2-6, İstanbul, Türkiye, 2010.
There are 36 citations in total.

Details

Primary Language Turkish
Subjects Civil Engineering
Journal Section Civil Engineering
Authors

Zeynep Algın 0000-0001-7004-8403

Kasım Mermerdaş 0000-0002-1274-6016

M. Serhat Zeynepli 0000-0003-1891-6159

Publication Date July 31, 2019
Submission Date March 1, 2019
Acceptance Date June 27, 2019
Published in Issue Year 2019

Cite

APA Algın, Z., Mermerdaş, K., & Zeynepli, M. S. (2019). SİLİNDİRLE SIKIŞTIRILMIŞ BETONDA MAKRO SENTETİK ELYAF KULLANIMININ OPTİMUM SU İÇERİĞİNE VE BETONUN DAYANIM ÖZELLİKLERİNE ETKİSİ. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 8(2), 992-1004. https://doi.org/10.28948/ngumuh.534055
AMA Algın Z, Mermerdaş K, Zeynepli MS. SİLİNDİRLE SIKIŞTIRILMIŞ BETONDA MAKRO SENTETİK ELYAF KULLANIMININ OPTİMUM SU İÇERİĞİNE VE BETONUN DAYANIM ÖZELLİKLERİNE ETKİSİ. NÖHÜ Müh. Bilim. Derg. July 2019;8(2):992-1004. doi:10.28948/ngumuh.534055
Chicago Algın, Zeynep, Kasım Mermerdaş, and M. Serhat Zeynepli. “SİLİNDİRLE SIKIŞTIRILMIŞ BETONDA MAKRO SENTETİK ELYAF KULLANIMININ OPTİMUM SU İÇERİĞİNE VE BETONUN DAYANIM ÖZELLİKLERİNE ETKİSİ”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 8, no. 2 (July 2019): 992-1004. https://doi.org/10.28948/ngumuh.534055.
EndNote Algın Z, Mermerdaş K, Zeynepli MS (July 1, 2019) SİLİNDİRLE SIKIŞTIRILMIŞ BETONDA MAKRO SENTETİK ELYAF KULLANIMININ OPTİMUM SU İÇERİĞİNE VE BETONUN DAYANIM ÖZELLİKLERİNE ETKİSİ. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 8 2 992–1004.
IEEE Z. Algın, K. Mermerdaş, and M. S. Zeynepli, “SİLİNDİRLE SIKIŞTIRILMIŞ BETONDA MAKRO SENTETİK ELYAF KULLANIMININ OPTİMUM SU İÇERİĞİNE VE BETONUN DAYANIM ÖZELLİKLERİNE ETKİSİ”, NÖHÜ Müh. Bilim. Derg., vol. 8, no. 2, pp. 992–1004, 2019, doi: 10.28948/ngumuh.534055.
ISNAD Algın, Zeynep et al. “SİLİNDİRLE SIKIŞTIRILMIŞ BETONDA MAKRO SENTETİK ELYAF KULLANIMININ OPTİMUM SU İÇERİĞİNE VE BETONUN DAYANIM ÖZELLİKLERİNE ETKİSİ”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 8/2 (July 2019), 992-1004. https://doi.org/10.28948/ngumuh.534055.
JAMA Algın Z, Mermerdaş K, Zeynepli MS. SİLİNDİRLE SIKIŞTIRILMIŞ BETONDA MAKRO SENTETİK ELYAF KULLANIMININ OPTİMUM SU İÇERİĞİNE VE BETONUN DAYANIM ÖZELLİKLERİNE ETKİSİ. NÖHÜ Müh. Bilim. Derg. 2019;8:992–1004.
MLA Algın, Zeynep et al. “SİLİNDİRLE SIKIŞTIRILMIŞ BETONDA MAKRO SENTETİK ELYAF KULLANIMININ OPTİMUM SU İÇERİĞİNE VE BETONUN DAYANIM ÖZELLİKLERİNE ETKİSİ”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, vol. 8, no. 2, 2019, pp. 992-1004, doi:10.28948/ngumuh.534055.
Vancouver Algın Z, Mermerdaş K, Zeynepli MS. SİLİNDİRLE SIKIŞTIRILMIŞ BETONDA MAKRO SENTETİK ELYAF KULLANIMININ OPTİMUM SU İÇERİĞİNE VE BETONUN DAYANIM ÖZELLİKLERİNE ETKİSİ. NÖHÜ Müh. Bilim. Derg. 2019;8(2):992-1004.

download