Research Article
BibTex RIS Cite
Year 2020, , 576 - 588, 30.01.2020
https://doi.org/10.28948/ngumuh.539958

Abstract

References

  • [1] SOLTANI, S., KHOSROSHAHI, R.A., MOUSAVIAN, R.T., JIANG, Z.Y., BOOSTANI, A.F., BRABAZON, D., “Stir Casting Process for Manufacture of Al–SiC Composites”, Rare Metals, 36(7), 581-590, 2017.
  • [2] RAMNATH, B.V., ELANCHEZHIAN, C., ANNAMALAI, R.M., ARAVIND, S., ATREYA, T.S.A., VIGNESH, V., SUBRAMANIAN, C., “Aluminium Metal Matrix Composites - A Review”, Reviews on Advanced Materials Science, 38, 55-60, 2014.
  • [3] IZADI, H., NOLTING, A., MUNRO, C., BISHOP, D.P., PLUCKNETT, K.P., GERLICH, A.P., “Friction Stir Processing of Al/SiC Composites Fabricated by Powder Metallurgy”, 213, 1900-1907, 2013.
  • [4] TENG, F., YU, K., LUO, J., FANG, H., SHI, C., DAI, Y., XIONG, H., “Microstructures and Properties of Al−50%Sic Composites for Electronic Packaging Applications”, Transactions of Nonferrous Metals Society of China, 26, 2647-2652, 2016.
  • [5] ZHANG, L., XU, H., WANG, Z., LI, Q., WU, J., “Mechanical Properties and Corrosion Behavior of Al/SiC Composites”, Journal of Alloys and Compounds, 678, 23-30, 2016.
  • [6] ZEBARJAD, S.M., SAJJADI, S.A., “Microstructure Evaluation of Al–Al2O3 Composite Produced by Mechanical Alloying Method”, Materials and Design, 27, 684–688, 2006.
  • [7] RAHIMIAN, M., EHSANI, N., PARVIN, N., BAHARVANDI, H., “The Effect of Particle Size, Sintering Temperature and Sintering Time on The Properties of Al–Al2O3 Composites, Made by Powder Metallurgy”, Journal of Materials Processing Technology, 209, 5387–5393, 2009.
  • [8] ZEBARJAD S.M., SAJJADI S.A., “Dependency of Physical and Mechanical Properties of Mechanical Alloyed Al–Al2O3 Composite on Milling Time”, Materials and Design, 28, 2113–2120, 2007.
  • [9] AL-QUTUB, A.M., ALLAM, I.M., ABDUL SAMAD M.A., “Wear and Friction of Al–Al2O3 Composites at Various Sliding Speeds”, Journal of Materials Science, 43, 5797-5803, 2008.
  • [10] GHASALI, E., ALIZADEH, M., EBADZADEH. T., “Mechanical and Microstructure Comparison Between Microwave and Spark Plasma Sintering of Al-B4C Composite”, Journal of Alloys and Compounds, 655, 93-98, 2016.
  • [11] NIETO, A., YANG, H., JIANG, L., SCHOENUNG, J.M., “Reinforcement Size Effects on The Abrasive Wear of Boron Carbide Reinforced Aluminum Composites”, Wear, 390–391, 228–235, 2017.
  • [12] SHIRVANIMOGHADDAM, K., KHAYYAM, H., ABDIZADEH, H., KARBALAEI AKBARI M., PAKSERESHT, A.H., GHASALI, E., NAEBE, M., “Boron Carbide Reinforced Aluminium Matrix Composite: Physical, Mechanical Characterization and Mathematical Modelling”, Materials Science & Engineering A, 658, 135-149, 2016.
  • [13] GUO, H., ZHANG, Z., “Processing and Strengthening Mechanisms of Boron Carbide-Reinforced Aluminum Matrix Composites”, Materials Today, 73:2, 62-67, 2018.
  • [14] LI, P., KANDALOVA, E.G., NIKITIN, V.I., MAKARENKO, A.G., LUTS, A.R., YANFEI, Z., “Preparation of Al–TiC Composites by Self-Propagating High-Temperature Synthesis, Scripta Materialia” 49, 699–703, 2003.
  • [15] KENNEDY, A.R., WESTON, D.P., JONES M.I., “Reaction in Al–TiC Metal Matrix Composites” Materials Science and Engineering A, 316, 32–38, 2001.
  • [16] KARANTZALIS, A.E., WYATT, S., KENNEDY, AR., “The Mechanical Properties of Al-TiC Metal Matrix Composites Fabricated by A Flux-Casting Technique”, Materials Science and Engineering A, 237, 200-206, 1997.
  • [17] MOHAPATRA, S., CHAUBEY, A.K., MISHRA, D.K., SINGH, S.K., “Fabrication of Al–TiC Composites by Hot Consolidation Technique: Its Microstructure and Mechanical Properties,” Journal of Materials Research and Technology, 5(2):117–122, 2016.
  • [18] RAMACHANDRA, M., ABHISHEK, A., SIDDESHWAR, P., BHARATHI, V., “Hardness and Wear Resistance of ZrO2 Nano Particle Reinforced Al Nanocomposites Produced by Powder Metallurgy”, Procedia Materials Science, 10, 212-219, 2015.
  • [19] ABOU EL-KHAIR, M.T., ABDEL AAL A., “Erosion–Corrosion and Surface Protection of A356 Al/ZrO2 Composites Produced by Vortex And Squeeze Casting”, Materials Science and Engineering A, 454–455, 156–163, 2007.
  • [20] ZHOU, W., YAMAGUCHI, T., KIKUCHI, K., NOMURA, N., KAWASAKI, A., “Effectively Enhanced Load Transfer by Interfacial Reactions in Multi-Walled Carbon Nanotube Reinforced Al Matrix Composites”, Acta Materialia, 125, 369-376, 2017.
  • [21] ZAKARIA, H.M. “Microstructural and Corrosion Behavior of Al/SiC Metal Matrix Composites”, Ain Shams Engineering Journal, 5, 831–838, 2014.
  • [22] HAN, Y.M., CHEN, X.G., “Electrochemical Behavior of Al-B4C Metal Matrix Composites in NaCl Solution”, Materials, 2015, 8, 6455-6470.
  • [23] HASSAN, S.F., “Effect of Primary Processing Techniques on the Microstructure and Mechanical Properties of Nano-Y2O3 Reinforced Magnesium Nanocomposites”, Materials Science and Engineering A, 528, 5484–5490, 2011.
  • [24] PEREZ, O.R., VALDEZ, S., MOLINA, A., MEJIA-SINTILLO, S., GARCIA-PEREZ, C., SALINAS-BRAVO, V. M., GONZALEZ-RODRIGUEZ, J.G., “Corrosion Behavior of Al–Mg–Zn-Si Alloy Matrix Composites Reinforced with Y₂O₃ in 3.5% NaCl Solution”, International Journal of Electrochemical Science, 12, 7300-7311, 2017.
  • [25] AYDIN, F., SUN, Y., “Investigation of Wear Behaviour and Microstructure of Hot-Pressed TiB2 Particulate Reinforced Magnesium Matrix Composites”, Canadian Metallurgical Quarterly, 57:4, 455-469, 2018.
  • [26] AYDIN, F., SUN, Y., TURAN, M.E., “The Effect of TiB2 Content on Wear and Mechanical Behavior of AZ91 Magnesium Matrix Composites Produced By Powder Metallurgy”, Powder Metallurgy and Metal Ceramics, 564-572, 2019.
  • [27] A. Standard, Standard practice for calculation of corrosion rates and related information from electrochemical measurements, Annu. Book ASTM Stand. ASTM Int.West Conshohocken PA 3 (2006) G102–G189.
  • [28] SHARMA, S.C., “A Study on Stress Corrosion Behavior of Al6061/Albite Composite in Higher Temperature Acidic Medium Using Autoclave”, Corrosion Science, 43, 1877-1889, 2001.

TOZ METALURJİSİ İLE ÜRETİLMİŞ Al / Y2O3 NANOKOMPOZİTLERİNİN ODA VE YÜKSEK SICAKLIKTAKİ KOROZYON DAVRANIŞININ İNCELENMESİ

Year 2020, , 576 - 588, 30.01.2020
https://doi.org/10.28948/ngumuh.539958

Abstract

Bu çalışmada, Al / Y2O3 metal matrisli
nanokompozitleri ( %2 ve %4 ağ.) toz metalurjisi ile üretilmiştir. Üretilen
numunelerin mikroyapı ve yoğunlukları incelenmiştir. Mikroyapı karakterizasyonu
partiküllerin homojen dağıldığını göstermiştir. Ayrıca, numunelerin korozyon
davranışları, 20ºC ve 50ºC’de 1 M HCl çözeltisinde potansiyodinamik ve daldırma
testleriyle sistematik olarak incelenmiştir. Korozyon mekanizmalarını anlamak
için, SEM çalışması gerçekleştirilmiştir. Potansiyodinamik korozyon test
sonuçları,  Al / 4Y2O3 kompozitinin
oda sıcaklığında en iyi korozyon performansına sahip olduğunu göstermiştir. Daldırma
testi sonunda, yüksek sıcaklıkta (
50 ºC), kompozitlerin ağırlık kayıplarının saf Al’a
göre fazla olduğu gözlenmiştir. Oyuklanma ve tane sınırı korozyonu
gözlenmiştir.

References

  • [1] SOLTANI, S., KHOSROSHAHI, R.A., MOUSAVIAN, R.T., JIANG, Z.Y., BOOSTANI, A.F., BRABAZON, D., “Stir Casting Process for Manufacture of Al–SiC Composites”, Rare Metals, 36(7), 581-590, 2017.
  • [2] RAMNATH, B.V., ELANCHEZHIAN, C., ANNAMALAI, R.M., ARAVIND, S., ATREYA, T.S.A., VIGNESH, V., SUBRAMANIAN, C., “Aluminium Metal Matrix Composites - A Review”, Reviews on Advanced Materials Science, 38, 55-60, 2014.
  • [3] IZADI, H., NOLTING, A., MUNRO, C., BISHOP, D.P., PLUCKNETT, K.P., GERLICH, A.P., “Friction Stir Processing of Al/SiC Composites Fabricated by Powder Metallurgy”, 213, 1900-1907, 2013.
  • [4] TENG, F., YU, K., LUO, J., FANG, H., SHI, C., DAI, Y., XIONG, H., “Microstructures and Properties of Al−50%Sic Composites for Electronic Packaging Applications”, Transactions of Nonferrous Metals Society of China, 26, 2647-2652, 2016.
  • [5] ZHANG, L., XU, H., WANG, Z., LI, Q., WU, J., “Mechanical Properties and Corrosion Behavior of Al/SiC Composites”, Journal of Alloys and Compounds, 678, 23-30, 2016.
  • [6] ZEBARJAD, S.M., SAJJADI, S.A., “Microstructure Evaluation of Al–Al2O3 Composite Produced by Mechanical Alloying Method”, Materials and Design, 27, 684–688, 2006.
  • [7] RAHIMIAN, M., EHSANI, N., PARVIN, N., BAHARVANDI, H., “The Effect of Particle Size, Sintering Temperature and Sintering Time on The Properties of Al–Al2O3 Composites, Made by Powder Metallurgy”, Journal of Materials Processing Technology, 209, 5387–5393, 2009.
  • [8] ZEBARJAD S.M., SAJJADI S.A., “Dependency of Physical and Mechanical Properties of Mechanical Alloyed Al–Al2O3 Composite on Milling Time”, Materials and Design, 28, 2113–2120, 2007.
  • [9] AL-QUTUB, A.M., ALLAM, I.M., ABDUL SAMAD M.A., “Wear and Friction of Al–Al2O3 Composites at Various Sliding Speeds”, Journal of Materials Science, 43, 5797-5803, 2008.
  • [10] GHASALI, E., ALIZADEH, M., EBADZADEH. T., “Mechanical and Microstructure Comparison Between Microwave and Spark Plasma Sintering of Al-B4C Composite”, Journal of Alloys and Compounds, 655, 93-98, 2016.
  • [11] NIETO, A., YANG, H., JIANG, L., SCHOENUNG, J.M., “Reinforcement Size Effects on The Abrasive Wear of Boron Carbide Reinforced Aluminum Composites”, Wear, 390–391, 228–235, 2017.
  • [12] SHIRVANIMOGHADDAM, K., KHAYYAM, H., ABDIZADEH, H., KARBALAEI AKBARI M., PAKSERESHT, A.H., GHASALI, E., NAEBE, M., “Boron Carbide Reinforced Aluminium Matrix Composite: Physical, Mechanical Characterization and Mathematical Modelling”, Materials Science & Engineering A, 658, 135-149, 2016.
  • [13] GUO, H., ZHANG, Z., “Processing and Strengthening Mechanisms of Boron Carbide-Reinforced Aluminum Matrix Composites”, Materials Today, 73:2, 62-67, 2018.
  • [14] LI, P., KANDALOVA, E.G., NIKITIN, V.I., MAKARENKO, A.G., LUTS, A.R., YANFEI, Z., “Preparation of Al–TiC Composites by Self-Propagating High-Temperature Synthesis, Scripta Materialia” 49, 699–703, 2003.
  • [15] KENNEDY, A.R., WESTON, D.P., JONES M.I., “Reaction in Al–TiC Metal Matrix Composites” Materials Science and Engineering A, 316, 32–38, 2001.
  • [16] KARANTZALIS, A.E., WYATT, S., KENNEDY, AR., “The Mechanical Properties of Al-TiC Metal Matrix Composites Fabricated by A Flux-Casting Technique”, Materials Science and Engineering A, 237, 200-206, 1997.
  • [17] MOHAPATRA, S., CHAUBEY, A.K., MISHRA, D.K., SINGH, S.K., “Fabrication of Al–TiC Composites by Hot Consolidation Technique: Its Microstructure and Mechanical Properties,” Journal of Materials Research and Technology, 5(2):117–122, 2016.
  • [18] RAMACHANDRA, M., ABHISHEK, A., SIDDESHWAR, P., BHARATHI, V., “Hardness and Wear Resistance of ZrO2 Nano Particle Reinforced Al Nanocomposites Produced by Powder Metallurgy”, Procedia Materials Science, 10, 212-219, 2015.
  • [19] ABOU EL-KHAIR, M.T., ABDEL AAL A., “Erosion–Corrosion and Surface Protection of A356 Al/ZrO2 Composites Produced by Vortex And Squeeze Casting”, Materials Science and Engineering A, 454–455, 156–163, 2007.
  • [20] ZHOU, W., YAMAGUCHI, T., KIKUCHI, K., NOMURA, N., KAWASAKI, A., “Effectively Enhanced Load Transfer by Interfacial Reactions in Multi-Walled Carbon Nanotube Reinforced Al Matrix Composites”, Acta Materialia, 125, 369-376, 2017.
  • [21] ZAKARIA, H.M. “Microstructural and Corrosion Behavior of Al/SiC Metal Matrix Composites”, Ain Shams Engineering Journal, 5, 831–838, 2014.
  • [22] HAN, Y.M., CHEN, X.G., “Electrochemical Behavior of Al-B4C Metal Matrix Composites in NaCl Solution”, Materials, 2015, 8, 6455-6470.
  • [23] HASSAN, S.F., “Effect of Primary Processing Techniques on the Microstructure and Mechanical Properties of Nano-Y2O3 Reinforced Magnesium Nanocomposites”, Materials Science and Engineering A, 528, 5484–5490, 2011.
  • [24] PEREZ, O.R., VALDEZ, S., MOLINA, A., MEJIA-SINTILLO, S., GARCIA-PEREZ, C., SALINAS-BRAVO, V. M., GONZALEZ-RODRIGUEZ, J.G., “Corrosion Behavior of Al–Mg–Zn-Si Alloy Matrix Composites Reinforced with Y₂O₃ in 3.5% NaCl Solution”, International Journal of Electrochemical Science, 12, 7300-7311, 2017.
  • [25] AYDIN, F., SUN, Y., “Investigation of Wear Behaviour and Microstructure of Hot-Pressed TiB2 Particulate Reinforced Magnesium Matrix Composites”, Canadian Metallurgical Quarterly, 57:4, 455-469, 2018.
  • [26] AYDIN, F., SUN, Y., TURAN, M.E., “The Effect of TiB2 Content on Wear and Mechanical Behavior of AZ91 Magnesium Matrix Composites Produced By Powder Metallurgy”, Powder Metallurgy and Metal Ceramics, 564-572, 2019.
  • [27] A. Standard, Standard practice for calculation of corrosion rates and related information from electrochemical measurements, Annu. Book ASTM Stand. ASTM Int.West Conshohocken PA 3 (2006) G102–G189.
  • [28] SHARMA, S.C., “A Study on Stress Corrosion Behavior of Al6061/Albite Composite in Higher Temperature Acidic Medium Using Autoclave”, Corrosion Science, 43, 1877-1889, 2001.
There are 28 citations in total.

Details

Primary Language English
Subjects Material Production Technologies
Journal Section Materials and Metallurgical Engineering
Authors

Fatih Aydın 0000-0002-0768-7162

Publication Date January 30, 2020
Submission Date March 14, 2019
Acceptance Date November 21, 2019
Published in Issue Year 2020

Cite

APA Aydın, F. (2020). TOZ METALURJİSİ İLE ÜRETİLMİŞ Al / Y2O3 NANOKOMPOZİTLERİNİN ODA VE YÜKSEK SICAKLIKTAKİ KOROZYON DAVRANIŞININ İNCELENMESİ. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 9(1), 576-588. https://doi.org/10.28948/ngumuh.539958
AMA Aydın F. TOZ METALURJİSİ İLE ÜRETİLMİŞ Al / Y2O3 NANOKOMPOZİTLERİNİN ODA VE YÜKSEK SICAKLIKTAKİ KOROZYON DAVRANIŞININ İNCELENMESİ. NÖHÜ Müh. Bilim. Derg. January 2020;9(1):576-588. doi:10.28948/ngumuh.539958
Chicago Aydın, Fatih. “TOZ METALURJİSİ İLE ÜRETİLMİŞ Al / Y2O3 NANOKOMPOZİTLERİNİN ODA VE YÜKSEK SICAKLIKTAKİ KOROZYON DAVRANIŞININ İNCELENMESİ”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 9, no. 1 (January 2020): 576-88. https://doi.org/10.28948/ngumuh.539958.
EndNote Aydın F (January 1, 2020) TOZ METALURJİSİ İLE ÜRETİLMİŞ Al / Y2O3 NANOKOMPOZİTLERİNİN ODA VE YÜKSEK SICAKLIKTAKİ KOROZYON DAVRANIŞININ İNCELENMESİ. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 9 1 576–588.
IEEE F. Aydın, “TOZ METALURJİSİ İLE ÜRETİLMİŞ Al / Y2O3 NANOKOMPOZİTLERİNİN ODA VE YÜKSEK SICAKLIKTAKİ KOROZYON DAVRANIŞININ İNCELENMESİ”, NÖHÜ Müh. Bilim. Derg., vol. 9, no. 1, pp. 576–588, 2020, doi: 10.28948/ngumuh.539958.
ISNAD Aydın, Fatih. “TOZ METALURJİSİ İLE ÜRETİLMİŞ Al / Y2O3 NANOKOMPOZİTLERİNİN ODA VE YÜKSEK SICAKLIKTAKİ KOROZYON DAVRANIŞININ İNCELENMESİ”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 9/1 (January 2020), 576-588. https://doi.org/10.28948/ngumuh.539958.
JAMA Aydın F. TOZ METALURJİSİ İLE ÜRETİLMİŞ Al / Y2O3 NANOKOMPOZİTLERİNİN ODA VE YÜKSEK SICAKLIKTAKİ KOROZYON DAVRANIŞININ İNCELENMESİ. NÖHÜ Müh. Bilim. Derg. 2020;9:576–588.
MLA Aydın, Fatih. “TOZ METALURJİSİ İLE ÜRETİLMİŞ Al / Y2O3 NANOKOMPOZİTLERİNİN ODA VE YÜKSEK SICAKLIKTAKİ KOROZYON DAVRANIŞININ İNCELENMESİ”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, vol. 9, no. 1, 2020, pp. 576-88, doi:10.28948/ngumuh.539958.
Vancouver Aydın F. TOZ METALURJİSİ İLE ÜRETİLMİŞ Al / Y2O3 NANOKOMPOZİTLERİNİN ODA VE YÜKSEK SICAKLIKTAKİ KOROZYON DAVRANIŞININ İNCELENMESİ. NÖHÜ Müh. Bilim. Derg. 2020;9(1):576-88.

download