Research Article
BibTex RIS Cite

TAMAMEN OPTİK MİKROSİSTEMLER İÇİN 180NM CMOS TEKNOLOJİSİNDE TASARLANMIŞ DÜŞÜK GERİLİM BESLEMELİ SALINGAÇLARIN KARŞILAŞTIRILMASI

Year 2020, , 811 - 820, 07.08.2020
https://doi.org/10.28948/ngumuh.629606

Abstract

Bu çalışmada tamamen optik entegre bir biyomedikal sistem için düşük güç tüketimine ve düşük besleme gerilimine sahip salıngaç temelli sığal ve dirençsel algılama devreleri tasarlanmış ve bu tasarımlar güç tüketimi, çalışma besleme gerilimi ve çıkış frekansı değerleri göz önüne alınarak karşılaştırılmıştır. Salıngaç temelli algılama devreleri 180 nm UMC CMOS Teknolojisi kullanılarak tasarlanmış ve benzetimleri gerçekleştirilmiştir. Ayrıca çıkış frekansının algılayıcı direnç ve sığa değerine bağlı teorik eşitlikleri türetilmiştir. Tasarlanan halka salıngaç tasarımı ile 0,5 V geriliminde başarılı sonuç alınmış ve bu algılayıcının gerilim yükseltici devreler kullanımına ihtiyaç duymadan tek bir tümleşik CMOS fotodiyot ile çalışabilirliği gösterilmiştir.

 

Supporting Institution

Tübitak

Project Number

114E549

Thanks

Bu çalışma Tübitak Proje No:114E549 kapsamında gerçekleştirilmiştir.

References

  • [1] AGARWAL K, JEGADEESAN R, GUO YX, THAKOR N., “Wireless Power Transfer Strategies for Implantable Bioelectronics”, IEEE Reviews in Biomedical Engineering, 10, 136-161, 2017.
  • [2] BASHIRULLAH R., “Wireless Implants”, IEEE Microwave Magazine, 11 (7), 14-23, 2010.
  • [3] BOSE P, KHALEGHI A, ALBATAT M, BERGSLAND J, BALASINGHAM I., “RF Channel Modeling for Implant-to-Implant Communication and Implant to Subcutaneous Implant Communication for Future Leadless Cardiac Pacemakers”, IEEE Transactions on Biomedical Engineering, 65 (12), 2798-2807, 2018.
  • [4] GUTRUF P, ROGERS JA., “Implantable, Wireless Device Platforms for Neuroscience Research”, Current Opinion in Neurobiology, 50, 42-49, 2018.
  • [5] JIANG L., YANG Y., CHEN R., LU G., LI R., LI D., HUMAYUN M.S., SHUNG K.K., ZHU J., CHEN Y., ZHOU Q., “Flexible Piezoelectric Ultrasonic Energy Harvester Array for Bio-Implantable Wireless Generator”, Nano Energy, 56, 216-224, 2019.
  • [6] PAVELKOVÁ R., VALA D., GECOVÁ K., “Energy Harvesting Systems Using Human Body Motion”, IFAC-PapersOnLine, 51 (6), 36-41, 2018.
  • [7] ALI F., RAZA W., LI X., GUL H., KIM K.H., “Piezoelectric Energy Harvesters for Biomedical Applications”, Nano Energy, 57, 879-902, 2019.
  • [8] LEE H.Y., CHOI B., KIM S., KIM S.J., BAE W.J., KIM S.W., “Sensitivity-Enhanced LC Pressure Sensor for Wireless Bladder Pressure Monitoring”, IEEE Sensors Journal, 16 (12), 4715-4724, 2016.
  • [9] WANG S., KOICKAL T.J., HAMILTON A., MASTROPAOLO E., CHEUNG R., ABEL A., SMITH L.S., WANG L., “A Power-Efficient Capacitive Read-Out Circuit with Parasitic-Cancellation for MEMS Cochlea Sensors”, IEEE Transactions on Biomedical Circuits and Systems, 10 (1), 25-37, 2016.
  • [10] BRANDON C., ELLIOTT D., MOEZ K., “An Ultra Low-Voltage Low-Power Capacitance-to-Digital Converter for Wirelessly Powered Intraocular Pressure Sensor”, IEEE Journal of Radio Frequency Identification, 1 (3), 208-218, 2017.
  • [11] QUADIR N.A., ALBASHA L., TAGHADOSI M., QADDOUMI N., HATAHET B., “Low-Power Implanted Sensor for Orthodontic Bond Failure Diagnosis and Detection”, IEEE Sensors Journal, 18 (7), 3003-3009, 2018.
  • [12] WANG Y., GOH W.L., LEE J.H., CHAI K.T.C., JE M., “Resonant-Based Capacitive Pressure Sensor Read-Out Oscillating at 1.67 GHz in 0.18μm CMOS”, World Academy of Science, Engineering and Technology International Journal of Electrical, Computer, Energetic, Electronic and Communication Engineering, 7 (7), 375-378, 2013.
  • [13] SHIH Y.C., SHEN T., OTIS B.P., “A 2.3μW Wireless Intraocular Pressure/Temperature Monitor”, 2010 IEEE Journal of Solid-State Circuits Conference, 46 (11), 2592-2601, 2011.
  • [14] DRAZAN J.F., ABDOUN O.T., WASSICK M.T., DAHLE R., BEARDSLEE L., MARCUS G.A., CADY N.C., LEDET E.H., “Simple Implantable Wireless Sensor Platform to Measure Pressure and Force”, Medical Engineering & Physics, 59, 81-87, 2018.
  • [15] CHIANG C.C., LIN C.C.K., JU M.S., “An Implantable Capacitive Pressure Sensor for Biomedical Applications”, Sensors and Actuators A: Physical, 134 (2), 382-388, 2007.
  • [16] ARAGONÉS R., ÁLVAREZ P., OLIVER J., FERRER C., “Comparison of Readout Circuitry Techniques for Data Acquisition in Raw Sensor Systems”, IECON 2010-36th Annual Conference on IEEE Industrial Electronics Society, 1252-1257, 2010.
  • [17] KARIPOTT S.S., VEETIL P.M., NELSON B.D., GULDBERG R.E., ONG K.G., “An Embedded Wireless Temperature Sensor for Orthopedic Implants”, IEEE Sensors Journal, 18 (3), 1265-1272, 2018.
  • [18] CIRMIRAKIS D., DEMOSTHENOUS A., SAEIDI N., DONALDSON N., “Humidity-to-Frequency Sensor in CMOS Technology with Wireless Readout”, IEEE Sensors Journal, 13 (3), 900-908, 2013.
  • [19] YELKENCİ, A., SARIOGLU, B.,”CMOS optical receiver for low power biomedical microsystems,” 2017 25th Signal Processing and Communications Applications Conference (SIU), 1-4,Antalya, 2017.
  • [20] CAMLI B., SARIOGLU B., YALCINKAYA A.D., “Photodiodes for Monolithic CMOS Circuit Applications”, IEEE Journal of Selected Topics in Quantum Electronics, 20 (6), 336-343, 2014.
  • [21] SARIOGLU B., TUMER M., CINDEMIR U., CAMLI B., DUNDAR G., OZTURK C., YALCINKAYA A.D., “An Optically Powered CMOS Tracking System for 3 T Magnetic Resonance Environment”, IEEE Transactions on Biomedical Circuits and Systems, 9 (1), 12-20, 2015.
  • [22] ASHENAFI E., CHOWDHURY M.H., “Noise Voltage Analysis of Spiral Inductor for On-Chip Buck Converter Design”, 2017 IEEE International Symposium on Circuits and Systems (ISCAS), 1-4, 2017.
Year 2020, , 811 - 820, 07.08.2020
https://doi.org/10.28948/ngumuh.629606

Abstract

Project Number

114E549

References

  • [1] AGARWAL K, JEGADEESAN R, GUO YX, THAKOR N., “Wireless Power Transfer Strategies for Implantable Bioelectronics”, IEEE Reviews in Biomedical Engineering, 10, 136-161, 2017.
  • [2] BASHIRULLAH R., “Wireless Implants”, IEEE Microwave Magazine, 11 (7), 14-23, 2010.
  • [3] BOSE P, KHALEGHI A, ALBATAT M, BERGSLAND J, BALASINGHAM I., “RF Channel Modeling for Implant-to-Implant Communication and Implant to Subcutaneous Implant Communication for Future Leadless Cardiac Pacemakers”, IEEE Transactions on Biomedical Engineering, 65 (12), 2798-2807, 2018.
  • [4] GUTRUF P, ROGERS JA., “Implantable, Wireless Device Platforms for Neuroscience Research”, Current Opinion in Neurobiology, 50, 42-49, 2018.
  • [5] JIANG L., YANG Y., CHEN R., LU G., LI R., LI D., HUMAYUN M.S., SHUNG K.K., ZHU J., CHEN Y., ZHOU Q., “Flexible Piezoelectric Ultrasonic Energy Harvester Array for Bio-Implantable Wireless Generator”, Nano Energy, 56, 216-224, 2019.
  • [6] PAVELKOVÁ R., VALA D., GECOVÁ K., “Energy Harvesting Systems Using Human Body Motion”, IFAC-PapersOnLine, 51 (6), 36-41, 2018.
  • [7] ALI F., RAZA W., LI X., GUL H., KIM K.H., “Piezoelectric Energy Harvesters for Biomedical Applications”, Nano Energy, 57, 879-902, 2019.
  • [8] LEE H.Y., CHOI B., KIM S., KIM S.J., BAE W.J., KIM S.W., “Sensitivity-Enhanced LC Pressure Sensor for Wireless Bladder Pressure Monitoring”, IEEE Sensors Journal, 16 (12), 4715-4724, 2016.
  • [9] WANG S., KOICKAL T.J., HAMILTON A., MASTROPAOLO E., CHEUNG R., ABEL A., SMITH L.S., WANG L., “A Power-Efficient Capacitive Read-Out Circuit with Parasitic-Cancellation for MEMS Cochlea Sensors”, IEEE Transactions on Biomedical Circuits and Systems, 10 (1), 25-37, 2016.
  • [10] BRANDON C., ELLIOTT D., MOEZ K., “An Ultra Low-Voltage Low-Power Capacitance-to-Digital Converter for Wirelessly Powered Intraocular Pressure Sensor”, IEEE Journal of Radio Frequency Identification, 1 (3), 208-218, 2017.
  • [11] QUADIR N.A., ALBASHA L., TAGHADOSI M., QADDOUMI N., HATAHET B., “Low-Power Implanted Sensor for Orthodontic Bond Failure Diagnosis and Detection”, IEEE Sensors Journal, 18 (7), 3003-3009, 2018.
  • [12] WANG Y., GOH W.L., LEE J.H., CHAI K.T.C., JE M., “Resonant-Based Capacitive Pressure Sensor Read-Out Oscillating at 1.67 GHz in 0.18μm CMOS”, World Academy of Science, Engineering and Technology International Journal of Electrical, Computer, Energetic, Electronic and Communication Engineering, 7 (7), 375-378, 2013.
  • [13] SHIH Y.C., SHEN T., OTIS B.P., “A 2.3μW Wireless Intraocular Pressure/Temperature Monitor”, 2010 IEEE Journal of Solid-State Circuits Conference, 46 (11), 2592-2601, 2011.
  • [14] DRAZAN J.F., ABDOUN O.T., WASSICK M.T., DAHLE R., BEARDSLEE L., MARCUS G.A., CADY N.C., LEDET E.H., “Simple Implantable Wireless Sensor Platform to Measure Pressure and Force”, Medical Engineering & Physics, 59, 81-87, 2018.
  • [15] CHIANG C.C., LIN C.C.K., JU M.S., “An Implantable Capacitive Pressure Sensor for Biomedical Applications”, Sensors and Actuators A: Physical, 134 (2), 382-388, 2007.
  • [16] ARAGONÉS R., ÁLVAREZ P., OLIVER J., FERRER C., “Comparison of Readout Circuitry Techniques for Data Acquisition in Raw Sensor Systems”, IECON 2010-36th Annual Conference on IEEE Industrial Electronics Society, 1252-1257, 2010.
  • [17] KARIPOTT S.S., VEETIL P.M., NELSON B.D., GULDBERG R.E., ONG K.G., “An Embedded Wireless Temperature Sensor for Orthopedic Implants”, IEEE Sensors Journal, 18 (3), 1265-1272, 2018.
  • [18] CIRMIRAKIS D., DEMOSTHENOUS A., SAEIDI N., DONALDSON N., “Humidity-to-Frequency Sensor in CMOS Technology with Wireless Readout”, IEEE Sensors Journal, 13 (3), 900-908, 2013.
  • [19] YELKENCİ, A., SARIOGLU, B.,”CMOS optical receiver for low power biomedical microsystems,” 2017 25th Signal Processing and Communications Applications Conference (SIU), 1-4,Antalya, 2017.
  • [20] CAMLI B., SARIOGLU B., YALCINKAYA A.D., “Photodiodes for Monolithic CMOS Circuit Applications”, IEEE Journal of Selected Topics in Quantum Electronics, 20 (6), 336-343, 2014.
  • [21] SARIOGLU B., TUMER M., CINDEMIR U., CAMLI B., DUNDAR G., OZTURK C., YALCINKAYA A.D., “An Optically Powered CMOS Tracking System for 3 T Magnetic Resonance Environment”, IEEE Transactions on Biomedical Circuits and Systems, 9 (1), 12-20, 2015.
  • [22] ASHENAFI E., CHOWDHURY M.H., “Noise Voltage Analysis of Spiral Inductor for On-Chip Buck Converter Design”, 2017 IEEE International Symposium on Circuits and Systems (ISCAS), 1-4, 2017.
There are 22 citations in total.

Details

Primary Language Turkish
Subjects Electrical Engineering
Journal Section Electrical and Electronics Engineering
Authors

Baykal Sarıoğlu 0000-0002-7433-3823

Emin Cihan Anıl This is me 0000-0002-2591-2669

Project Number 114E549
Publication Date August 7, 2020
Submission Date October 4, 2019
Acceptance Date May 6, 2020
Published in Issue Year 2020

Cite

APA Sarıoğlu, B., & Anıl, E. C. (2020). TAMAMEN OPTİK MİKROSİSTEMLER İÇİN 180NM CMOS TEKNOLOJİSİNDE TASARLANMIŞ DÜŞÜK GERİLİM BESLEMELİ SALINGAÇLARIN KARŞILAŞTIRILMASI. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 9(2), 811-820. https://doi.org/10.28948/ngumuh.629606
AMA Sarıoğlu B, Anıl EC. TAMAMEN OPTİK MİKROSİSTEMLER İÇİN 180NM CMOS TEKNOLOJİSİNDE TASARLANMIŞ DÜŞÜK GERİLİM BESLEMELİ SALINGAÇLARIN KARŞILAŞTIRILMASI. NÖHÜ Müh. Bilim. Derg. August 2020;9(2):811-820. doi:10.28948/ngumuh.629606
Chicago Sarıoğlu, Baykal, and Emin Cihan Anıl. “TAMAMEN OPTİK MİKROSİSTEMLER İÇİN 180NM CMOS TEKNOLOJİSİNDE TASARLANMIŞ DÜŞÜK GERİLİM BESLEMELİ SALINGAÇLARIN KARŞILAŞTIRILMASI”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 9, no. 2 (August 2020): 811-20. https://doi.org/10.28948/ngumuh.629606.
EndNote Sarıoğlu B, Anıl EC (August 1, 2020) TAMAMEN OPTİK MİKROSİSTEMLER İÇİN 180NM CMOS TEKNOLOJİSİNDE TASARLANMIŞ DÜŞÜK GERİLİM BESLEMELİ SALINGAÇLARIN KARŞILAŞTIRILMASI. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 9 2 811–820.
IEEE B. Sarıoğlu and E. C. Anıl, “TAMAMEN OPTİK MİKROSİSTEMLER İÇİN 180NM CMOS TEKNOLOJİSİNDE TASARLANMIŞ DÜŞÜK GERİLİM BESLEMELİ SALINGAÇLARIN KARŞILAŞTIRILMASI”, NÖHÜ Müh. Bilim. Derg., vol. 9, no. 2, pp. 811–820, 2020, doi: 10.28948/ngumuh.629606.
ISNAD Sarıoğlu, Baykal - Anıl, Emin Cihan. “TAMAMEN OPTİK MİKROSİSTEMLER İÇİN 180NM CMOS TEKNOLOJİSİNDE TASARLANMIŞ DÜŞÜK GERİLİM BESLEMELİ SALINGAÇLARIN KARŞILAŞTIRILMASI”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 9/2 (August 2020), 811-820. https://doi.org/10.28948/ngumuh.629606.
JAMA Sarıoğlu B, Anıl EC. TAMAMEN OPTİK MİKROSİSTEMLER İÇİN 180NM CMOS TEKNOLOJİSİNDE TASARLANMIŞ DÜŞÜK GERİLİM BESLEMELİ SALINGAÇLARIN KARŞILAŞTIRILMASI. NÖHÜ Müh. Bilim. Derg. 2020;9:811–820.
MLA Sarıoğlu, Baykal and Emin Cihan Anıl. “TAMAMEN OPTİK MİKROSİSTEMLER İÇİN 180NM CMOS TEKNOLOJİSİNDE TASARLANMIŞ DÜŞÜK GERİLİM BESLEMELİ SALINGAÇLARIN KARŞILAŞTIRILMASI”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, vol. 9, no. 2, 2020, pp. 811-20, doi:10.28948/ngumuh.629606.
Vancouver Sarıoğlu B, Anıl EC. TAMAMEN OPTİK MİKROSİSTEMLER İÇİN 180NM CMOS TEKNOLOJİSİNDE TASARLANMIŞ DÜŞÜK GERİLİM BESLEMELİ SALINGAÇLARIN KARŞILAŞTIRILMASI. NÖHÜ Müh. Bilim. Derg. 2020;9(2):811-20.

download