Conference Paper
BibTex RIS Cite

ÇELİK KİRİŞLİ KÖPRÜLERDE YÜKE BAĞLI YORULMA ETKİSİNİN İNCELENMESİ

Year 2019, , 173 - 182, 20.12.2019
https://doi.org/10.28948/ngumuh.633567

Abstract

Yorulma,
yapının güvenliğine etki eden önemli bir tasarım durumudur. Araç yükünün
döngüsel etkisinden dolayı çelik kirişlerin bağlantı detaylarında yorulma
kaynaklı yapısal çatlaklar oluşmakta, bu çatlaklara karşı gerekli tedbirler
alınmazsa çatlaklar büyümekte ve sonuçta yapısal elemanlar iç kuvvetleri
taşıyamayan kararsız bir duruma gelip fonksiyonunu yitirmektedir.  AASHTO Köprü Tasarım Şartnamesi çelik kirişli
köprülerde yorulmayı yüke bağlı ve distorsiyona bağlı olarak sınıflandırmış,
yorulma güvenliğini sağlamak için yapısal elemanlarda çatlak oluşumunu önlemeyi
ya da en aza indirmeyi hedeflemiştir. Yüke bağlı yorulma incelemesinde; yorulma
çatlaklarının oluşmasını önlemek için yapısal elemanlarda yük ve gerilme
sınırları dikkate alınmakta, uygun bağlantı detay kategorisi için yorulma
güvenliği kontrol edilmektedir. Bu çalışmada üç açıklıklı çelik kirişli bir
köprü CSiBridge paket programıyla yorulma yükleri altında analiz edilmiştir,
analizde AASHTO Şartnamesinde yorulma tasarım özellikleri kullanılmıştır.
Analiz sonuçlarına göre yapıda uygun yorulma kategorisi dikkate alınarak
yapının yorulma yönünden güvenli olduğu ispat edilmiştir.

References

  • [1] AASHTO LRFD Bridge Design Specifications, 6th ed., American Association of State Highway and Transportation Officials, Washington,DC, 2012
  • [2] https://www.structuremag.org/wp-content/uploads/2016/11/D-StrucAnalysis-Khatri-Dec16-1.pdf (Last Access 10.07.2019)
  • [3] MORI, T., LEE, H. H., KYUNG, K. S., “Fatigue Life Estimation Parameter for Short and Medium Span Steel Highway Girder Bridges”, Engineering Structures, 29(10), 2762-2774, 2007.
  • [4] https://www.fhwa.dot.gov/bridge/steel/pubs/if12052/volume12.pdf (Last Access 10.07.2019)
  • [5] http://saveourbridges.com/basics.html (Last Access Date 10.07.2019)
  • [6] http://digitalcommons.unl.edu/cgi/viewcontent.cgi?article=1146&context=ndor (Last Access 10.07.2019)
  • [7] https://www.dot.state.mn.us/bridge/pdf/lrfdmanual/lrfdbridgedesignmanual.pdf (Last Access 10.07.2019)
  • [8] HAGHANI, R., AL-EMRANI, M., HESHMATI, M., “Fatigue-Prone Details in Steel Bridges”, Buildings, 2(4), 456-476, 2012.
  • [9] https://www.researchgate.net/publication/305950405_Need_for_Fatigue_Assessment_of_Steel_Bridges (Last Access 10.07.2019)
  • [10] http://www.dot.ca.gov/des/techpubs/manuals/bridge-design-practice/page/bdp-6.pdf (Last Access 10.07.2019)
  • [11] http://www.dot.ca.gov/des/techpubs/manuals/bridge-design-practice/page/bdp-9.pdf (Last Access 18.04.2019)
  • [12] ABDI, F., QIAN, Z., MOSALLAM, A., IYER, R., WANG, J. J., LOGAN, T., “Composite Army Bridges under Fatigue Cyclic Loading”, Structure and Infrastructure Engineering, 2(1), 63-73, 2006.
  • [13] MORI, T., LEE, H. H., KYUNG, K. S., “Fatigue Life Estimation Parameter for Short and Medium Span Steel Highway Girder Bridges”, Engineering Structures, 29(10), 2762-2774, 2007.
  • [14] KAWAKAM, Y., KANAJI, H. AND OKU, K., “Study on Application of Field Signature Method (FSM) to Fatigue Crack Monitoring on Steel Bridges”, Procedia Engineering, 14, 1059-1064, 2011.
  • [15] FASL, J., HELWIG, T AND WOOD, S. L., “Probabilistic Method for Estimating Remaining Fatigue Life in Steel Bridges using Measured Strain Data”, Journal of Civil Structural Health Monitoring, 3(4), 317-324, 2013.
  • [16] YE, X. W., SU, Y. H. AND HAN, J. P., “A State-Of-The-Art Review on Fatigue Life Assessment of Steel Bridges”, Mathematical Problems in Engineering, 2014.
  • [17] SAKAGAMI, T., “Remote Nondestructive Evaluation Technique using İnfrared Thermography for Fatigue Cracks in Steel Bridges”, Fatigue & Fracture of Engineering Materials & Structures, 38(7), 755-779, 2015.
  • [18] ZHANG, J., AU, F. T. K., “Fatigue Reliability Assessment Considering Traffic Flow Variation Based On Weigh-İn-Motion Data”, Advances in Structural Engineering, 20(1), 125-138, 2017.
  • [19] KONG, X., LI, J., COLLINS, W., BENNETT, C., LAFLAMME, S., JO, H., “A Large-Area Strain Sensing Technology for Monitoring Fatigue Cracks in Steel Bridges”, Smart Materials and Structures, 26(8), 085024, 2017.
  • [20] KWAD, J., ALENCAR, G., CORREIA, J., JESUS, A., CALCADA, R., KRIPAKARAN, P., “Fatigue Assessment of an Existing Steel Bridge by Finite Element Modelling and Field Measurements. in Journal of Physics: Conference Series”, 843(1), p 012038, IOP Publishing, 2017.
  • [21] SEKIYA, H., MARUYAMA, O., MIKI, C., “Visualization System for Bridge Deformations under Live Load Based on Multipoint Simultaneous Measurements of Displacement and Rotational Response using MEMS Sensors”, Engineering Structures, 146, 43-53, 2017.
  • [22] HASNI, H., ALAVI, A. H., JIAO, P.AND LAJNEF, N., “Detection of Fatigue Cracking in Steel Bridge Girders: A Support Vector Machine Approach”, Archives of Civil and Mechanical Engineering, 17(3), 609-622, 2017.
  • [23] DJOKOVIĆ, J. M., NIKOLIĆ, R. R., BUJNÁK, J., HADZIMA, B., “Estimate of The Steel Bridges Fatigue Life by Application of The Fracture Mechanics. In IOP Conference Series: Materials Science and Engineering” 419(1), p. 012010, IOP Publishing, 2018.
  • [24] KARUNANANDA, K., OHGA, M., DISSANAYAKE, P. B. R., SIRIWARDANE, S., “Effect of High Amplitude Loading on Fatigue Life Prediction of Steel Bridges”, Procedia Engineering, 14, 521-528, 2011.
  • [25] PIPINATO, A., PELLEGRINO, C., MODENA, C., “Fatigue Assessment of Highway Steel Bridges in Presence of Seismic Loading”, Engineering Structures, 33(1), 202-209, 2011.
  • [26] MACHO, M., RYJÁČEK, P., MATOS, J. C., “Static and Fatigue Test on Real Steel Bridge Components Deteriorated by Corrosion”, International Journal of Steel Structures, 19(1), 110-130, 2019.
  • [27] CSiBridge V15-V20, Integrated 3-D Bridge Analysis, Design and Rating, Computers and Structures Inc.
  • [28] BARKER, R. M., PUCKETT, J. A., Design of Highway Bridges: An LRFD Approach, John Wiley and Sons (3rd ed.), Canada, USA,2013.

THE INVESTIGATION OF FATIGUE EFFECT OF LOAD-INDUCED IN STEEL GIRDER BRIDGES

Year 2019, , 173 - 182, 20.12.2019
https://doi.org/10.28948/ngumuh.633567

Abstract

Fatigue is an important design state
affecting the safety of the structure. Due to the cyclical effect of vehicle
load, fatigue-induced structural cracks occur in the connection details of
steel girders. If the necessary measures are not taken against these cracks;
the cracks grow and as a result the structural elements become unstable, it can
not carry the internal forces and lose their function. The AASHTO Bridge Design
Specification classifies fatigue as load- dependent and distortion-dependent in
steel girder bridges and in order to ensure fatigue safety, it is aimed to
prevent or minimize the formation of cracks in structural elements. In
load-induced fatigue investigation; load and stress limits are taken into
account in structural elements to prevent fatigue cracks and fatigue safety is
checked for the appropriate connection detail category. In this study, a
three-span steel girder bridge was analyzed under fatigue loads with CSiBridge
package program. In the analysis, fatigue design properties of AASHTO
Specification were used. According to the results of the analysis, it has been
proved that the structure is safe from fatigue considering the appropriate
fatigue category.

References

  • [1] AASHTO LRFD Bridge Design Specifications, 6th ed., American Association of State Highway and Transportation Officials, Washington,DC, 2012
  • [2] https://www.structuremag.org/wp-content/uploads/2016/11/D-StrucAnalysis-Khatri-Dec16-1.pdf (Last Access 10.07.2019)
  • [3] MORI, T., LEE, H. H., KYUNG, K. S., “Fatigue Life Estimation Parameter for Short and Medium Span Steel Highway Girder Bridges”, Engineering Structures, 29(10), 2762-2774, 2007.
  • [4] https://www.fhwa.dot.gov/bridge/steel/pubs/if12052/volume12.pdf (Last Access 10.07.2019)
  • [5] http://saveourbridges.com/basics.html (Last Access Date 10.07.2019)
  • [6] http://digitalcommons.unl.edu/cgi/viewcontent.cgi?article=1146&context=ndor (Last Access 10.07.2019)
  • [7] https://www.dot.state.mn.us/bridge/pdf/lrfdmanual/lrfdbridgedesignmanual.pdf (Last Access 10.07.2019)
  • [8] HAGHANI, R., AL-EMRANI, M., HESHMATI, M., “Fatigue-Prone Details in Steel Bridges”, Buildings, 2(4), 456-476, 2012.
  • [9] https://www.researchgate.net/publication/305950405_Need_for_Fatigue_Assessment_of_Steel_Bridges (Last Access 10.07.2019)
  • [10] http://www.dot.ca.gov/des/techpubs/manuals/bridge-design-practice/page/bdp-6.pdf (Last Access 10.07.2019)
  • [11] http://www.dot.ca.gov/des/techpubs/manuals/bridge-design-practice/page/bdp-9.pdf (Last Access 18.04.2019)
  • [12] ABDI, F., QIAN, Z., MOSALLAM, A., IYER, R., WANG, J. J., LOGAN, T., “Composite Army Bridges under Fatigue Cyclic Loading”, Structure and Infrastructure Engineering, 2(1), 63-73, 2006.
  • [13] MORI, T., LEE, H. H., KYUNG, K. S., “Fatigue Life Estimation Parameter for Short and Medium Span Steel Highway Girder Bridges”, Engineering Structures, 29(10), 2762-2774, 2007.
  • [14] KAWAKAM, Y., KANAJI, H. AND OKU, K., “Study on Application of Field Signature Method (FSM) to Fatigue Crack Monitoring on Steel Bridges”, Procedia Engineering, 14, 1059-1064, 2011.
  • [15] FASL, J., HELWIG, T AND WOOD, S. L., “Probabilistic Method for Estimating Remaining Fatigue Life in Steel Bridges using Measured Strain Data”, Journal of Civil Structural Health Monitoring, 3(4), 317-324, 2013.
  • [16] YE, X. W., SU, Y. H. AND HAN, J. P., “A State-Of-The-Art Review on Fatigue Life Assessment of Steel Bridges”, Mathematical Problems in Engineering, 2014.
  • [17] SAKAGAMI, T., “Remote Nondestructive Evaluation Technique using İnfrared Thermography for Fatigue Cracks in Steel Bridges”, Fatigue & Fracture of Engineering Materials & Structures, 38(7), 755-779, 2015.
  • [18] ZHANG, J., AU, F. T. K., “Fatigue Reliability Assessment Considering Traffic Flow Variation Based On Weigh-İn-Motion Data”, Advances in Structural Engineering, 20(1), 125-138, 2017.
  • [19] KONG, X., LI, J., COLLINS, W., BENNETT, C., LAFLAMME, S., JO, H., “A Large-Area Strain Sensing Technology for Monitoring Fatigue Cracks in Steel Bridges”, Smart Materials and Structures, 26(8), 085024, 2017.
  • [20] KWAD, J., ALENCAR, G., CORREIA, J., JESUS, A., CALCADA, R., KRIPAKARAN, P., “Fatigue Assessment of an Existing Steel Bridge by Finite Element Modelling and Field Measurements. in Journal of Physics: Conference Series”, 843(1), p 012038, IOP Publishing, 2017.
  • [21] SEKIYA, H., MARUYAMA, O., MIKI, C., “Visualization System for Bridge Deformations under Live Load Based on Multipoint Simultaneous Measurements of Displacement and Rotational Response using MEMS Sensors”, Engineering Structures, 146, 43-53, 2017.
  • [22] HASNI, H., ALAVI, A. H., JIAO, P.AND LAJNEF, N., “Detection of Fatigue Cracking in Steel Bridge Girders: A Support Vector Machine Approach”, Archives of Civil and Mechanical Engineering, 17(3), 609-622, 2017.
  • [23] DJOKOVIĆ, J. M., NIKOLIĆ, R. R., BUJNÁK, J., HADZIMA, B., “Estimate of The Steel Bridges Fatigue Life by Application of The Fracture Mechanics. In IOP Conference Series: Materials Science and Engineering” 419(1), p. 012010, IOP Publishing, 2018.
  • [24] KARUNANANDA, K., OHGA, M., DISSANAYAKE, P. B. R., SIRIWARDANE, S., “Effect of High Amplitude Loading on Fatigue Life Prediction of Steel Bridges”, Procedia Engineering, 14, 521-528, 2011.
  • [25] PIPINATO, A., PELLEGRINO, C., MODENA, C., “Fatigue Assessment of Highway Steel Bridges in Presence of Seismic Loading”, Engineering Structures, 33(1), 202-209, 2011.
  • [26] MACHO, M., RYJÁČEK, P., MATOS, J. C., “Static and Fatigue Test on Real Steel Bridge Components Deteriorated by Corrosion”, International Journal of Steel Structures, 19(1), 110-130, 2019.
  • [27] CSiBridge V15-V20, Integrated 3-D Bridge Analysis, Design and Rating, Computers and Structures Inc.
  • [28] BARKER, R. M., PUCKETT, J. A., Design of Highway Bridges: An LRFD Approach, John Wiley and Sons (3rd ed.), Canada, USA,2013.
There are 28 citations in total.

Details

Primary Language English
Subjects Civil Engineering
Journal Section Others
Authors

Fatma Ülker Peker 0000-0002-0805-4367

Ragıp İnce 0000-0002-9837-8284

Publication Date December 20, 2019
Submission Date October 15, 2019
Acceptance Date November 28, 2019
Published in Issue Year 2019

Cite

APA Ülker Peker, F., & İnce, R. (2019). THE INVESTIGATION OF FATIGUE EFFECT OF LOAD-INDUCED IN STEEL GIRDER BRIDGES. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 8(3), 173-182. https://doi.org/10.28948/ngumuh.633567
AMA Ülker Peker F, İnce R. THE INVESTIGATION OF FATIGUE EFFECT OF LOAD-INDUCED IN STEEL GIRDER BRIDGES. NÖHÜ Müh. Bilim. Derg. December 2019;8(3):173-182. doi:10.28948/ngumuh.633567
Chicago Ülker Peker, Fatma, and Ragıp İnce. “THE INVESTIGATION OF FATIGUE EFFECT OF LOAD-INDUCED IN STEEL GIRDER BRIDGES”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 8, no. 3 (December 2019): 173-82. https://doi.org/10.28948/ngumuh.633567.
EndNote Ülker Peker F, İnce R (December 1, 2019) THE INVESTIGATION OF FATIGUE EFFECT OF LOAD-INDUCED IN STEEL GIRDER BRIDGES. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 8 3 173–182.
IEEE F. Ülker Peker and R. İnce, “THE INVESTIGATION OF FATIGUE EFFECT OF LOAD-INDUCED IN STEEL GIRDER BRIDGES”, NÖHÜ Müh. Bilim. Derg., vol. 8, no. 3, pp. 173–182, 2019, doi: 10.28948/ngumuh.633567.
ISNAD Ülker Peker, Fatma - İnce, Ragıp. “THE INVESTIGATION OF FATIGUE EFFECT OF LOAD-INDUCED IN STEEL GIRDER BRIDGES”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 8/3 (December 2019), 173-182. https://doi.org/10.28948/ngumuh.633567.
JAMA Ülker Peker F, İnce R. THE INVESTIGATION OF FATIGUE EFFECT OF LOAD-INDUCED IN STEEL GIRDER BRIDGES. NÖHÜ Müh. Bilim. Derg. 2019;8:173–182.
MLA Ülker Peker, Fatma and Ragıp İnce. “THE INVESTIGATION OF FATIGUE EFFECT OF LOAD-INDUCED IN STEEL GIRDER BRIDGES”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, vol. 8, no. 3, 2019, pp. 173-82, doi:10.28948/ngumuh.633567.
Vancouver Ülker Peker F, İnce R. THE INVESTIGATION OF FATIGUE EFFECT OF LOAD-INDUCED IN STEEL GIRDER BRIDGES. NÖHÜ Müh. Bilim. Derg. 2019;8(3):173-82.

download