Research Article
BibTex RIS Cite

BATIK ANAEROBİK MEMBRAN BİYOREAKTÖRDE TUZLULUK DEĞİŞİMİNİN MEMBRAN KİRLENMESİ ÜZERİNDEKİ ETKİSİNİN İNCELENMESİ

Year 2020, , 781 - 795, 07.08.2020
https://doi.org/10.28948/ngumuh.712463

Abstract

Anaerobik membran biyoreaktörler (AnMBR), kirletici konsantrasyonu yüksek olan atık suların arıtılması için etkili bir teknolojidir ancak membran kirlenmesi uygulamanın gelişmesini kısıtlayan temel faktördür. Bu çalışmada, sentetik olarak hazırlanan hafif tuzlu ve hafif alkali atıksuyun arıtılması sırasında meydana gelen membran kirlenmesinin incelenmesi amacıyla batık bir anaerobik membran biyoreaktör 59 gün boyunca işletilmiştir. Biyoreaktör, 3000 mg/L KOİ, 3000 mg/L SO42- ve 10000 ile 20000 mg/L tuz konsantrasyonlarına sahip olan sentetik atıksu ile beslenmiştir. Tuz konsantrasyonun arttırılması kirlenmenin daha hızlı gerçekleşmesine sebep olmuş ve kek tabakası oluşumu, temel kirlenme mekanizması olarak belirlenmiştir. SMP ve EPS fraksiyonları içerisinde SMPp, en büyük kısmı oluşturmuştur. Membran gözenekleri, daha çok organik kirlenmeye bağlı olarak tıkanmıştır. FTIR spektrumları, membran yüzeylerinde hidroksil fonksiyonel gruplarının, amid I grubunun ve EPS’nin selülozik lipit yapısıyla ilişkili grupların varlığını göstermiştir. Ayrıca g-proteobacteria grubuna ait bakterilerin, biyoreaktördeki baskın mikrobiyal türlerin önemli bir yüzdesini (%50) oluşturduğu tespit edilmiştir.

Supporting Institution

TÜBİTAK

Project Number

116Y133-110Y093

Thanks

Bu çalışma, Burçin Yıldız’ın Doktora Tezi verilerini içermektedir. Bu araştırma, 116Y133 ve 110Y093 numaralı projeler ile TÜBİTAK tarafından finansal olarak desteklenmiştir.

References

  • J. C. Young, and P. L. McCarty, “The anaerobic filter for waste treatment,” J. Water Poll. Contr. Fed., vol. 41, pp. 160-170, 1969.
  • G. Lettinga, A. F. M. Van Velsen, S. W. Hobma, W. J. de Zeeuw, and B. Klapwijk, “Use of the Upflow Sludge Blanket (USB) reactor,” Biotechnol. Bioeng., vol. 22, pp. 699-734, 1980.
  • M. V. G. Vallero, G. Lettinga, and P.N.L. Lens, “High rate sulfate reduction in a submerged anaerobic membrane bioreactor (SAMBaR) at high salinity,” Journal of Membrane Science, vol. 253, pp. 217–232, 2005.
  • S. F. Aquino, A. Y. Hu, A. Akram, and D. C. Stuckey, “Characterization of dissolved compounds in submerged anaerobic membrane bioreactors (SAMBRs),” J. Chem. Technol. Biotechnol., vol. 81, pp. 1894–1904, 2006.
  • D. Jeison, I. Diaz, and J. B. Van Lier, “Anaerobic membrane bioreactors: are membranes really necessary?,” Electron J. Biotechnol., Vol 11, no. 4., 2008.
  • R. K. Dereli, M. E. Erşahin, H. Özgün, I. Öztürk, D. Jeison, F. van der Zee, and J. B. van Lier, “Potentials of anaerobic membrane bioreactors to overcome treatment limitations induced by industrial wastewaters,” Bioresour. Technol., vol. 122, pp. 160–170, 2012.
  • Y. Chen, J. J. Cheng, and K. S. Creamer, “Inhibition of anaerobic digestion process: a review,” Bioresour. Technol., vol. 99, no. 10, pp. 4044–4064, 2008.
  • W. C. L. Lay, Y. Liu, and A. G. Fane, “Impacts of salinity on the performance of high retention membrane bioreactors for water reclamation: A review,” Water Research, vol. 44, pp. 21–40, 2010.
  • A. Cheville, K. Arnold, C. Buchrieser, C. Cheng, and C. Kaspar, “rpoS regulation of acid, heat, and salt tolerance in Escherichia coli O157:H7,” Appl. Environ. Microbiol., vol. 62, pp. 1822-1824, 1996.
  • A. Metris, S. George, F. Mulholland, A. Carter, and J. Baranyi, “Metabolic shift of Escherichia coli under salt stress in the presence of Glycine betaine,” Appl. Environ. Microbiol., vol. 80, pp. 4745-4756, 2014.
  • W. Lee, S. Kang, and H. Shin, “Sludge characteristics and their contribution to microfiltration in submerged membrane bioreactors,” Journal of Membrane Science, vol. 216, pp. 217-227, 2003.
  • Available: www.ncbi.nlm.nih.gov/genbank/. [Accessed Jun 1, 2019].
  • O. H. Lowry, N. J. Rosebourgh, A. R. Farr, and R. J. Randall, “Protein measurement with the folin phenol reagent,” J. Biol. Chem., vol. 193, pp. 265–275, 1951.
  • M. Dubois, K. A. Gilles, J. K. Hamilton, P. A. Rebers, and F. Smith, “Colorimetric Method for Determination of Sugars and Related Substances,” Analytical Chemistry, vol. 28, no. 3, 350-356, 1956.
  • A. Lim, R. Bai, “Membrane fouling and cleaning in microfiltration of activated sludge wastewater,” Journal of Membrane Science, 216, 279–290, 2003.
  • L. H. Andrade, F. D. S. Mendes, J. C. Espindola, M. C. S. Amaral, “Nanofiltration as tertiary treatment for the reuse of dairy wastewater treated by membrane bioreactor,” Separation and Purification Technology, 126, 21–29, 2014.
  • K. K. Ng, X. Q. Shi, and H. Y. Ng, “Evaluation of system performance and microbial communities of a bioaugmented anaerobic membrane bioreactor treating pharmaceutical wastewater,” Water Res., vol. 81, pp. 311–324 2015.
  • D. Cheng, H. H. Ngo, W. Guo, Y. Liu, S. W. Chang, D. D. Nguyen, L. D. Nghiem, J. Zhou, and B. Ni, “Anaerobic membrane bioreactors for antibiotic wastewater treatment: Performance and membrane fouling issues,” Bioresource Technology, vol. 267, pp. 714–724, 2018.
  • X. Song, W. Luo, J. McDonald, S. J. Khan, F. I. Hai, W. Guo, H. H. Ngo, and L. D. Nghiem, “Effects of sulphur on the performance of an anaerobic membrane bioreactor: Biological stability, trace organic contaminant removal and membrane fouling,” Bioresource Technology, vol. 250, pp. 171-177, 2018.
  • I. S. Kim, N. Jang, “The effect of calcium on the membrane biofouling in the membrane bioreactor (MBR),” Water Research, 40, 2756–2764, 2006.
  • L. D. Temmerman, T. Maere, H. Temmink, A. Zwijnenburg, and I. Nopens, “Salt stress in a membrane bioreactor: Dynamics of sludge properties, membrane fouling and remediation through powdered activated carbon dosing,” Water Research, vol. 63, pp. 112-124, 2014.
  • A. R. Pendashteh, L. C. Abdullah, A. Fakhru’l-Razi, S. S. Madaeni, Z. Z. Abidin, and D. R. A. Biak, “Evaluation of membrane bioreactor for hypersaline oily wastewater treatment,” Process Safety and Environmental Protection, vol. 90, pp. 45-55, 2012.
  • I. D. S. Henriques, R. D. Holbrook, R. T. Kelly, and N. G. Love, “The impact of floc size on respiration inhibition by soluble toxicants—a comparative investigation,” Water Research, vol. 39, pp. 2559-2568, 2005.
  • K. N. Yogalakshmi, and K. Joseph, “Effect of transient sodium chloride shock loads on the performance of submerged membrane bioreactor,” Bioresource Technology, vol. 101, pp. 7054–7061, 2010.
  • F. Meng, S.-R. Chae, A. Drews, M. Kraume, H.-S. Shin, and F. Yang, “Recent advances in membrane bioreactors (MBRs): membrane fouling and membrane material,” Water Res., vol. 43, pp. 1489–1512, 2009.
  • Z. Huang, S. L. Ong, and H. Y. Ng, “Submerged anaerobic membrane bioreactor for low- strength wastewater treatment: effect of HRT and SRT on treatment performance and membrane fouling,” Water Res., vol. 45, no. 2, pp. 705–713, 2011.
  • K. K. Ng, X. Shi, M. K. Y. Tang, and H. Y. Ng, “A novel application of anaerobic bio-entrapped membrane reactor for the treatment of chemical synthesis-based pharmaceutical wastewater,” Separation and Purification Technology, vol. 132, pp. 634-643, 2014.
  • A. Hafuka, R. Mashiko, R. Odashima, H. Yamamura, H. Satoh, and Y. Watanabe, “Digestion performance and contributions of organic and inorganic fouling in T an anaerobic membrane bioreactor treating waste activated sludge,” Bioresource Technology, vol. 272, pp. 63–69, 2019.
  • C. S. Laspidou, and B. E. Rittmann, “Non-steady state modeling of extracellular polymeric substances, soluble microbial products, and active and inert biomass,” Water Research, vol. 36, no. 8, pp. 1983-1992, 2002.
  • J. Hu, H. Ren, K. Xu, J. Geng, L. Ding, X. Yan, and K. Li, “Effect of carriers on sludge characteristics and mitigation of membrane fouling in attached-growth membrane bioreactor,” Bioresource Technology, vol. 122, pp. 35-41, 2012.
  • F. Meng, and F. Yang, “Fouling mechanisms of deflocculated sludge, normal sludge, and bulking sludge in membrane bioreactor,” J. Membr. Sci., vol. 305, pp. 48–56, 2007.
  • J. A. B. Sousa, D. Sorokin, M. F. M. Bjmans, C. M. Plugge, and A. J. M. Stams, “Ecology and application of haloalkaliphilic anaerobic microbial communities,” Applied Microbiol Biotechnology, vol. 99, pp. 9331-9336, 2015.
  • Y. He, X. Xiao, and F. Wang, “Metagenome reveals potential microbial degradation of hydrocarbon coupled with sulfate reduction in an oil-immersed chimney from Guaymas Basin,” Frontiers in Microbiology, vol. 4, pp. 148, 2013.
  • R. Kondo, Y. Mori, and T. Sakami, “Comparison of Sulphate-reducing Bacterial Communities in Japanese Fish Farm Sediments with Different Levels of Organic Enrichment,” Microbes and Environments, vol. 27, no. 2, pp. 193-199, 2012.
  • A. Sherry, N. D. Gray, A. K. Ditchfield, C. M. Aitken, D. M. Jones, W. F. M. Röling, C. Hallmann, S. R. Larter, B. F. J. Bowler, and I. M. Head, “Anaerobic biodegradation of crude oil under sulphate-reducing conditions leads to only modest enrichment of recognized sulphate-reducing taxa,” International Biodeterioration & Biodegradation, vol. 81, pp. 105-113, 2013.
  • W. Y. Liu, J. Wang, and M. Yuan, “Halomonas aidingensis sp. nov., a moderately halophilic bacterium isolated from Aiding salt lake in Xinjiang, China,” Antonie van Leeuwenhoek, vol. 99 no. 3, pp. 663–670, 2011.
  • M. R. Mormile, M. F. Romine, M. T. Garcia, A. Ventosa, T. J. BailEy, and B. M. Peyton, “Halomonas campisalis sp.nov., a Denitrifying, Moderately Haloalkaliphilic Bacterium,” Systematic and Applied Microbiology, vol. 22, no. 4, pp. 551-558, 1999.
  • N. Dafale, L. Agrawal, A. Kapley, S. Meshram, H. Purohit, and S. Wate, “Selection of indicator bacteria based on screening of 16S rDNA metagenomic library from a two-stage anoxic–oxic bioreactor system degrading azo dyes,” Bioresource Technology, vol. 101, no.2, pp. 476-484, 2010.
  • A. M. Clarke, R. Kirby, and P. D. Rose, “Molecular microbial ecology of lignocellulose mobilisation as a carbon source in mine drainage wastewater treatment,” Water Sa, vol. 30, no. 5, pp. 558-661, 2004.
  • A. Kılıç, E. Şahinkaya, and Ö. Çınar, “Kinetics of autotrophic denitrification process and the impact of sulphur/limestone ratio on the process performance,” Environmental technology, vol. 35, no. 22, pp. 2796-2804, 2014.
  • K. K. Krishnani, G. Gopikrishna, S. M. Pillai, and B. P. Gupta, “Abundance of sulphur-oxidizing bacteria in coastal aquaculture using soxB gene analyses,” Aquaculture research, vol. 41, no. 9, pp. 1290-1301, 2010.
  • M. A. Abdel-Rahman, S. E. S. Desouky, M. S. Azab, and M. E. Esmael, “Fermentative Production of Polyhydroxyalkanoates (PHAs) from Glycerol by Zobellella taiwanensis Azu-IN1,” Journal of Applied Biology & Biotechnology, vol. 5, no. 5, pp. 16-25, 2017.
  • M. İbrahim, and A. Steinbüchel, “Zobellella denitrificans strain MW1, a newly isolated bacterium suitable for poly (3-hydroxybutyrate) production from glycerol,” Journal of Applied Microbiology, vol. 108, no. 1, pp. 214-225, 2010.
  • T. I. Zemskaya, T. V. Pogodaeva, O. V. Shubenkova, S. M. Сhernitsina, and O. P. Dagurova, “Geochemical and microbiological characteristics of sediments near the Malenky mud volcano (Lake Baikal, Russia), with evidence of Archaea intermediate between the marine anaerobic methanotrophs ANME-2 and ANME-3,” Geo-Marine Letters, vol. 30, no. 3–4, pp. 411–425, 2010.
  • B. Palaniappan, and S. R. Toleti, “Characterization of microfouling and corrosive bacterial community of a firewater distribution system,” Journal of Bioscience and Bioengineering, vol. 121, no. 4, pp. 435-441, 2016.
  • N. M. Shestakova, V. S. Ivoilov, T. P. Tourova, S. S. Belyaev, A. B. Poltaraus, and T. N. Nazina “Which Microbial Communities Are Present? Application of Clone Libraries: Syntrophic Acetate Degradation to Methane in a High-Temperature Petroleum Reservoir – Culture-Based and 16S rRNA Genes Characterisation,” Applied Microbiology and Molecular Biology in Oilfield Systems, 2010, pp. 45-53.
  • T. Lienen, K. Lüders, H. Halm, A. Westphal, R. Köber, and H. Würdemann, “Effects of thermal energy storage on shallow aerobic aquifer systems: temporary increase in abundance and activity of sulfate-reducing and sulfur-oxidizing bacteria,” Environmental Earth Sciences, vol. 76, no. 261, 2017.
Year 2020, , 781 - 795, 07.08.2020
https://doi.org/10.28948/ngumuh.712463

Abstract

Project Number

116Y133-110Y093

References

  • J. C. Young, and P. L. McCarty, “The anaerobic filter for waste treatment,” J. Water Poll. Contr. Fed., vol. 41, pp. 160-170, 1969.
  • G. Lettinga, A. F. M. Van Velsen, S. W. Hobma, W. J. de Zeeuw, and B. Klapwijk, “Use of the Upflow Sludge Blanket (USB) reactor,” Biotechnol. Bioeng., vol. 22, pp. 699-734, 1980.
  • M. V. G. Vallero, G. Lettinga, and P.N.L. Lens, “High rate sulfate reduction in a submerged anaerobic membrane bioreactor (SAMBaR) at high salinity,” Journal of Membrane Science, vol. 253, pp. 217–232, 2005.
  • S. F. Aquino, A. Y. Hu, A. Akram, and D. C. Stuckey, “Characterization of dissolved compounds in submerged anaerobic membrane bioreactors (SAMBRs),” J. Chem. Technol. Biotechnol., vol. 81, pp. 1894–1904, 2006.
  • D. Jeison, I. Diaz, and J. B. Van Lier, “Anaerobic membrane bioreactors: are membranes really necessary?,” Electron J. Biotechnol., Vol 11, no. 4., 2008.
  • R. K. Dereli, M. E. Erşahin, H. Özgün, I. Öztürk, D. Jeison, F. van der Zee, and J. B. van Lier, “Potentials of anaerobic membrane bioreactors to overcome treatment limitations induced by industrial wastewaters,” Bioresour. Technol., vol. 122, pp. 160–170, 2012.
  • Y. Chen, J. J. Cheng, and K. S. Creamer, “Inhibition of anaerobic digestion process: a review,” Bioresour. Technol., vol. 99, no. 10, pp. 4044–4064, 2008.
  • W. C. L. Lay, Y. Liu, and A. G. Fane, “Impacts of salinity on the performance of high retention membrane bioreactors for water reclamation: A review,” Water Research, vol. 44, pp. 21–40, 2010.
  • A. Cheville, K. Arnold, C. Buchrieser, C. Cheng, and C. Kaspar, “rpoS regulation of acid, heat, and salt tolerance in Escherichia coli O157:H7,” Appl. Environ. Microbiol., vol. 62, pp. 1822-1824, 1996.
  • A. Metris, S. George, F. Mulholland, A. Carter, and J. Baranyi, “Metabolic shift of Escherichia coli under salt stress in the presence of Glycine betaine,” Appl. Environ. Microbiol., vol. 80, pp. 4745-4756, 2014.
  • W. Lee, S. Kang, and H. Shin, “Sludge characteristics and their contribution to microfiltration in submerged membrane bioreactors,” Journal of Membrane Science, vol. 216, pp. 217-227, 2003.
  • Available: www.ncbi.nlm.nih.gov/genbank/. [Accessed Jun 1, 2019].
  • O. H. Lowry, N. J. Rosebourgh, A. R. Farr, and R. J. Randall, “Protein measurement with the folin phenol reagent,” J. Biol. Chem., vol. 193, pp. 265–275, 1951.
  • M. Dubois, K. A. Gilles, J. K. Hamilton, P. A. Rebers, and F. Smith, “Colorimetric Method for Determination of Sugars and Related Substances,” Analytical Chemistry, vol. 28, no. 3, 350-356, 1956.
  • A. Lim, R. Bai, “Membrane fouling and cleaning in microfiltration of activated sludge wastewater,” Journal of Membrane Science, 216, 279–290, 2003.
  • L. H. Andrade, F. D. S. Mendes, J. C. Espindola, M. C. S. Amaral, “Nanofiltration as tertiary treatment for the reuse of dairy wastewater treated by membrane bioreactor,” Separation and Purification Technology, 126, 21–29, 2014.
  • K. K. Ng, X. Q. Shi, and H. Y. Ng, “Evaluation of system performance and microbial communities of a bioaugmented anaerobic membrane bioreactor treating pharmaceutical wastewater,” Water Res., vol. 81, pp. 311–324 2015.
  • D. Cheng, H. H. Ngo, W. Guo, Y. Liu, S. W. Chang, D. D. Nguyen, L. D. Nghiem, J. Zhou, and B. Ni, “Anaerobic membrane bioreactors for antibiotic wastewater treatment: Performance and membrane fouling issues,” Bioresource Technology, vol. 267, pp. 714–724, 2018.
  • X. Song, W. Luo, J. McDonald, S. J. Khan, F. I. Hai, W. Guo, H. H. Ngo, and L. D. Nghiem, “Effects of sulphur on the performance of an anaerobic membrane bioreactor: Biological stability, trace organic contaminant removal and membrane fouling,” Bioresource Technology, vol. 250, pp. 171-177, 2018.
  • I. S. Kim, N. Jang, “The effect of calcium on the membrane biofouling in the membrane bioreactor (MBR),” Water Research, 40, 2756–2764, 2006.
  • L. D. Temmerman, T. Maere, H. Temmink, A. Zwijnenburg, and I. Nopens, “Salt stress in a membrane bioreactor: Dynamics of sludge properties, membrane fouling and remediation through powdered activated carbon dosing,” Water Research, vol. 63, pp. 112-124, 2014.
  • A. R. Pendashteh, L. C. Abdullah, A. Fakhru’l-Razi, S. S. Madaeni, Z. Z. Abidin, and D. R. A. Biak, “Evaluation of membrane bioreactor for hypersaline oily wastewater treatment,” Process Safety and Environmental Protection, vol. 90, pp. 45-55, 2012.
  • I. D. S. Henriques, R. D. Holbrook, R. T. Kelly, and N. G. Love, “The impact of floc size on respiration inhibition by soluble toxicants—a comparative investigation,” Water Research, vol. 39, pp. 2559-2568, 2005.
  • K. N. Yogalakshmi, and K. Joseph, “Effect of transient sodium chloride shock loads on the performance of submerged membrane bioreactor,” Bioresource Technology, vol. 101, pp. 7054–7061, 2010.
  • F. Meng, S.-R. Chae, A. Drews, M. Kraume, H.-S. Shin, and F. Yang, “Recent advances in membrane bioreactors (MBRs): membrane fouling and membrane material,” Water Res., vol. 43, pp. 1489–1512, 2009.
  • Z. Huang, S. L. Ong, and H. Y. Ng, “Submerged anaerobic membrane bioreactor for low- strength wastewater treatment: effect of HRT and SRT on treatment performance and membrane fouling,” Water Res., vol. 45, no. 2, pp. 705–713, 2011.
  • K. K. Ng, X. Shi, M. K. Y. Tang, and H. Y. Ng, “A novel application of anaerobic bio-entrapped membrane reactor for the treatment of chemical synthesis-based pharmaceutical wastewater,” Separation and Purification Technology, vol. 132, pp. 634-643, 2014.
  • A. Hafuka, R. Mashiko, R. Odashima, H. Yamamura, H. Satoh, and Y. Watanabe, “Digestion performance and contributions of organic and inorganic fouling in T an anaerobic membrane bioreactor treating waste activated sludge,” Bioresource Technology, vol. 272, pp. 63–69, 2019.
  • C. S. Laspidou, and B. E. Rittmann, “Non-steady state modeling of extracellular polymeric substances, soluble microbial products, and active and inert biomass,” Water Research, vol. 36, no. 8, pp. 1983-1992, 2002.
  • J. Hu, H. Ren, K. Xu, J. Geng, L. Ding, X. Yan, and K. Li, “Effect of carriers on sludge characteristics and mitigation of membrane fouling in attached-growth membrane bioreactor,” Bioresource Technology, vol. 122, pp. 35-41, 2012.
  • F. Meng, and F. Yang, “Fouling mechanisms of deflocculated sludge, normal sludge, and bulking sludge in membrane bioreactor,” J. Membr. Sci., vol. 305, pp. 48–56, 2007.
  • J. A. B. Sousa, D. Sorokin, M. F. M. Bjmans, C. M. Plugge, and A. J. M. Stams, “Ecology and application of haloalkaliphilic anaerobic microbial communities,” Applied Microbiol Biotechnology, vol. 99, pp. 9331-9336, 2015.
  • Y. He, X. Xiao, and F. Wang, “Metagenome reveals potential microbial degradation of hydrocarbon coupled with sulfate reduction in an oil-immersed chimney from Guaymas Basin,” Frontiers in Microbiology, vol. 4, pp. 148, 2013.
  • R. Kondo, Y. Mori, and T. Sakami, “Comparison of Sulphate-reducing Bacterial Communities in Japanese Fish Farm Sediments with Different Levels of Organic Enrichment,” Microbes and Environments, vol. 27, no. 2, pp. 193-199, 2012.
  • A. Sherry, N. D. Gray, A. K. Ditchfield, C. M. Aitken, D. M. Jones, W. F. M. Röling, C. Hallmann, S. R. Larter, B. F. J. Bowler, and I. M. Head, “Anaerobic biodegradation of crude oil under sulphate-reducing conditions leads to only modest enrichment of recognized sulphate-reducing taxa,” International Biodeterioration & Biodegradation, vol. 81, pp. 105-113, 2013.
  • W. Y. Liu, J. Wang, and M. Yuan, “Halomonas aidingensis sp. nov., a moderately halophilic bacterium isolated from Aiding salt lake in Xinjiang, China,” Antonie van Leeuwenhoek, vol. 99 no. 3, pp. 663–670, 2011.
  • M. R. Mormile, M. F. Romine, M. T. Garcia, A. Ventosa, T. J. BailEy, and B. M. Peyton, “Halomonas campisalis sp.nov., a Denitrifying, Moderately Haloalkaliphilic Bacterium,” Systematic and Applied Microbiology, vol. 22, no. 4, pp. 551-558, 1999.
  • N. Dafale, L. Agrawal, A. Kapley, S. Meshram, H. Purohit, and S. Wate, “Selection of indicator bacteria based on screening of 16S rDNA metagenomic library from a two-stage anoxic–oxic bioreactor system degrading azo dyes,” Bioresource Technology, vol. 101, no.2, pp. 476-484, 2010.
  • A. M. Clarke, R. Kirby, and P. D. Rose, “Molecular microbial ecology of lignocellulose mobilisation as a carbon source in mine drainage wastewater treatment,” Water Sa, vol. 30, no. 5, pp. 558-661, 2004.
  • A. Kılıç, E. Şahinkaya, and Ö. Çınar, “Kinetics of autotrophic denitrification process and the impact of sulphur/limestone ratio on the process performance,” Environmental technology, vol. 35, no. 22, pp. 2796-2804, 2014.
  • K. K. Krishnani, G. Gopikrishna, S. M. Pillai, and B. P. Gupta, “Abundance of sulphur-oxidizing bacteria in coastal aquaculture using soxB gene analyses,” Aquaculture research, vol. 41, no. 9, pp. 1290-1301, 2010.
  • M. A. Abdel-Rahman, S. E. S. Desouky, M. S. Azab, and M. E. Esmael, “Fermentative Production of Polyhydroxyalkanoates (PHAs) from Glycerol by Zobellella taiwanensis Azu-IN1,” Journal of Applied Biology & Biotechnology, vol. 5, no. 5, pp. 16-25, 2017.
  • M. İbrahim, and A. Steinbüchel, “Zobellella denitrificans strain MW1, a newly isolated bacterium suitable for poly (3-hydroxybutyrate) production from glycerol,” Journal of Applied Microbiology, vol. 108, no. 1, pp. 214-225, 2010.
  • T. I. Zemskaya, T. V. Pogodaeva, O. V. Shubenkova, S. M. Сhernitsina, and O. P. Dagurova, “Geochemical and microbiological characteristics of sediments near the Malenky mud volcano (Lake Baikal, Russia), with evidence of Archaea intermediate between the marine anaerobic methanotrophs ANME-2 and ANME-3,” Geo-Marine Letters, vol. 30, no. 3–4, pp. 411–425, 2010.
  • B. Palaniappan, and S. R. Toleti, “Characterization of microfouling and corrosive bacterial community of a firewater distribution system,” Journal of Bioscience and Bioengineering, vol. 121, no. 4, pp. 435-441, 2016.
  • N. M. Shestakova, V. S. Ivoilov, T. P. Tourova, S. S. Belyaev, A. B. Poltaraus, and T. N. Nazina “Which Microbial Communities Are Present? Application of Clone Libraries: Syntrophic Acetate Degradation to Methane in a High-Temperature Petroleum Reservoir – Culture-Based and 16S rRNA Genes Characterisation,” Applied Microbiology and Molecular Biology in Oilfield Systems, 2010, pp. 45-53.
  • T. Lienen, K. Lüders, H. Halm, A. Westphal, R. Köber, and H. Würdemann, “Effects of thermal energy storage on shallow aerobic aquifer systems: temporary increase in abundance and activity of sulfate-reducing and sulfur-oxidizing bacteria,” Environmental Earth Sciences, vol. 76, no. 261, 2017.
There are 47 citations in total.

Details

Primary Language Turkish
Subjects Environmental Engineering
Journal Section Environmental Engineering
Authors

Burçin Yıldız 0000-0001-9750-7278

Özge Hanay 0000-0003-1202-3544

Project Number 116Y133-110Y093
Publication Date August 7, 2020
Submission Date April 1, 2020
Acceptance Date July 8, 2020
Published in Issue Year 2020

Cite

APA Yıldız, B., & Hanay, Ö. (2020). BATIK ANAEROBİK MEMBRAN BİYOREAKTÖRDE TUZLULUK DEĞİŞİMİNİN MEMBRAN KİRLENMESİ ÜZERİNDEKİ ETKİSİNİN İNCELENMESİ. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 9(2), 781-795. https://doi.org/10.28948/ngumuh.712463
AMA Yıldız B, Hanay Ö. BATIK ANAEROBİK MEMBRAN BİYOREAKTÖRDE TUZLULUK DEĞİŞİMİNİN MEMBRAN KİRLENMESİ ÜZERİNDEKİ ETKİSİNİN İNCELENMESİ. NÖHÜ Müh. Bilim. Derg. August 2020;9(2):781-795. doi:10.28948/ngumuh.712463
Chicago Yıldız, Burçin, and Özge Hanay. “BATIK ANAEROBİK MEMBRAN BİYOREAKTÖRDE TUZLULUK DEĞİŞİMİNİN MEMBRAN KİRLENMESİ ÜZERİNDEKİ ETKİSİNİN İNCELENMESİ”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 9, no. 2 (August 2020): 781-95. https://doi.org/10.28948/ngumuh.712463.
EndNote Yıldız B, Hanay Ö (August 1, 2020) BATIK ANAEROBİK MEMBRAN BİYOREAKTÖRDE TUZLULUK DEĞİŞİMİNİN MEMBRAN KİRLENMESİ ÜZERİNDEKİ ETKİSİNİN İNCELENMESİ. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 9 2 781–795.
IEEE B. Yıldız and Ö. Hanay, “BATIK ANAEROBİK MEMBRAN BİYOREAKTÖRDE TUZLULUK DEĞİŞİMİNİN MEMBRAN KİRLENMESİ ÜZERİNDEKİ ETKİSİNİN İNCELENMESİ”, NÖHÜ Müh. Bilim. Derg., vol. 9, no. 2, pp. 781–795, 2020, doi: 10.28948/ngumuh.712463.
ISNAD Yıldız, Burçin - Hanay, Özge. “BATIK ANAEROBİK MEMBRAN BİYOREAKTÖRDE TUZLULUK DEĞİŞİMİNİN MEMBRAN KİRLENMESİ ÜZERİNDEKİ ETKİSİNİN İNCELENMESİ”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 9/2 (August 2020), 781-795. https://doi.org/10.28948/ngumuh.712463.
JAMA Yıldız B, Hanay Ö. BATIK ANAEROBİK MEMBRAN BİYOREAKTÖRDE TUZLULUK DEĞİŞİMİNİN MEMBRAN KİRLENMESİ ÜZERİNDEKİ ETKİSİNİN İNCELENMESİ. NÖHÜ Müh. Bilim. Derg. 2020;9:781–795.
MLA Yıldız, Burçin and Özge Hanay. “BATIK ANAEROBİK MEMBRAN BİYOREAKTÖRDE TUZLULUK DEĞİŞİMİNİN MEMBRAN KİRLENMESİ ÜZERİNDEKİ ETKİSİNİN İNCELENMESİ”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, vol. 9, no. 2, 2020, pp. 781-95, doi:10.28948/ngumuh.712463.
Vancouver Yıldız B, Hanay Ö. BATIK ANAEROBİK MEMBRAN BİYOREAKTÖRDE TUZLULUK DEĞİŞİMİNİN MEMBRAN KİRLENMESİ ÜZERİNDEKİ ETKİSİNİN İNCELENMESİ. NÖHÜ Müh. Bilim. Derg. 2020;9(2):781-95.

download