Aircrafts have an important role in transportation because they are fast, safe and comfortable. Aircrafts are mostly exposed to weather conditions and external cases affecting flight comfort and safety during take-off and landing. To prevent shocks and oscillations caused by these cases and to maintain the balance and stability of an aircraft, horizontal stabilization is adjusted using trim value. Determination of suitable trim value is important for flight comfort. In this study, the prediction of the trim value of an Airbus A319 using the Adaptive Network-Based Fuzzy Inference System (ANFIS) is emphasized. Different ANFIS models are trained and tested using four different membership functions. Actual flight data taken from black box of an Airbus A319 are used in these training and test procedures. In this study, it is shown that the models designed using ANFIS have been successful to predict real trim values.
Uçaklar, hızlı, güvenli ve konforlu olmalarından dolayı ulaşım sektöründe önemli bir yere sahiptir. Uçaklar, en çok kalkış ve iniş esnasında, uçuş konfor ve güvenliğini etkileyen hava olaylarına ve dış etmenlere maruz kalmaktadır. Bu etmenlerin meydana getirdiği sarsıntı ve salınımları önlemek, uçağın denge ve kararlılığını korumak için yatay stabilize ile trim verilir. Bu trim değerinin belirlenmesi, uçuş konforu için önemlidir. Bu çalışmada uçağın trim değerinin uyarlamalı ağ tabanlı bulanık çıkarım sistemi (Adaptive Network Based Fuzzy Inference System, ANFIS) ile tahmini üzerinde durulmuştur. Oluşturulan ANFIS modellerinde 4 farklı üyelik fonksiyonu kullanılarak, eğitim ve test işlemleri yapılmıştır. Bu eğitim ve test işlemlerinde, Airbus A319 uçağının kara kutusundan alınan gerçek uçuş verileri kullanılmıştır. Bu çalışmada ANFIS kullanılarak yapılan modellemelerin, gerçek trim değerinin tahmininde başarılı olduğu görülmüştür.
Primary Language | Turkish |
---|---|
Subjects | Electrical Engineering |
Journal Section | Electrical and Electronics Engineering |
Authors | |
Publication Date | January 15, 2021 |
Submission Date | May 28, 2020 |
Acceptance Date | October 7, 2020 |
Published in Issue | Year 2021 |