Research Article
BibTex RIS Cite

Error analyse of generalized Gaussian noise for alternate Rician fading

Year 2021, , 84 - 90, 15.01.2021
https://doi.org/10.28948/ngumuh.765657

Abstract

In this study, error probability analysis of a single-input single-output system with generalized Gaussian noise over alternative Rician fading channels is presented. The proposed analytical study is based on the probability density function approach. In addition to the proposed analytical expressions, asymptotic analysis is also presented, as in mathematical studies in the literature. In this way, the behavior of the considered system model in medium and high average signal to noise ratio conditions is shown. In the error performance studies, the effects of different modulation types, shadowing parameter values, Rician factor values, and noise types are observed. Finally, the accuracy of the analytical studies performed was confirmed by comparing it with the exact numerical simulation results.

References

  • M. K. Simon and M-S. Alouini, Digital Communication Over Fading Channels, 2nd ed. Hoboken, New Jersey, USA: IEEE: John Wiley &Sons, Inc., 2005.
  • J. F. Paris, Closed-form expressions for Rician shadowed cumulative distribution function. IET Electronics Letters, 46 (13), 952-3, 2010.
  • M. R. Bhatnagar and A. M.K., On the closed-form performance analysis of maximal ratio combining in shadowed-Rician fading LMS channels, IEEE Communications Letters, 18 (1), 54-7, 2014. https://doi.org/10.1109/lcomm.2013.111313.13196 3
  • M. C. Clemente and J. F. Paris, Closed-form statistics for sum of squared Rician shadowed variates and its application, IET Electronics Letters, 50 (2), 120-1, 2014.
  • N. I. Miridakis, D. D. Vergados and A. Michalas, Dual-hop communication over a satellite relay and shadowed Rician channels, IEEE Transactions on Vehicular Technology, 64 (9), 4031-40, 2015. https://doi.org/ 10.1109/TVT.2014.2361832
  • L. Moreno-Pozas and E. Martos-Naya, On some unifications arising from the MIMO Rician shadowed model, IEEE 83rd Vehicular Technology Conference (VTC Spring), Nanjing, pp. 1-5, 2016. https://doi.org/10.1109/VTCSpring.2016.7504374
  • J. Lopez-Fernandez, J. F. Paris and E. Martos-Naya, Bivariate Rician shadowed fading model, IEEE Transactions on Vehicular Technology, 67 (1), 378-84, 2018. https://doi.org/10.1109/ TVT.2017.2744800
  • N. Simmons, C. R. N. da Silva, S. L. Cotton, P. C. Sofotasios and M. D. Yacoub, Double shadowing the Rician fading model, IEEE Wireless Communications Letters, 8 (2), 344-7, 2019. https://doi.org/10.1109/ LWC.2018.2871677
  • F. J. Lopez-Martinez, L. Moreno-Pozas, U. Fernandez-Plazaola, J. F. Paris, E. Martos-Naya and J. M. Romero-Jerez, A tractable line-of-sight product channel model: application to wireless powered communications, 15th International Symposium on Wireless Communication Systems (ISWCS), Lisbon, pp. 1-5, 2018. https://doi.org/10.1109/ISWCS. 2018.8491254
  • S. L. Cotton, A statistical model for shadowed body-centric communications channels: theory and validation, IEEE Transactions on Antennas and Propagation, 62 (3), 1416-24, 2014. https://doi.org/ 10.1109/TAP.2013.2295211
  • T. Mavridis, L. Petrillo, J. Sarrazin, A. Benlarbi-Delaï and P. De Doncker, Near-body shadowing analysis at 60 GHz, IEEE Transactions on Antennas and Propagation, 63 (10), 4505-11, 2015. https://doi.org/10. 1109/TAP.2015.2456984
  • S. K. Yoo, S. L. Cotton, P. C. Sofotasios and S. Freear, Shadowed Fading in indoor off-body communication channels: a statistical characterization using the κ–μ/Gamma composite fading model, IEEE Transactions on Wireless Communications, 15 (8), 5231-44, 2016. https://doi.org/10.1109/TWC.2016. 2555795
  • U. F. Plazaola, J. L. Fernandez, J. F. Paris and E. M. Naya, A tractable fading channel model with two-sided bimodality, IEEE Access, 7, 99928-36, 2019. https://doi.org/10.1109/ ACCESS.2019.2930811
  • M. Bilim, Effective throughput of alternate rician shadowed fading links, IEEJ Transactions on Electrical and Electronic Engineering, 15 (6), 928-30, 2020. https://doi.org/10.1002/tee.23135
  • M. Bilim, Different QAM schemes analyses for ARS fading channels, Transactions on Emerging Telecommunications Technologies, e4119, 2020. (Accepted for publication) https://doi.org/10.1002/ ett.4119
  • H. Soury, F. Yilmaz and M. Alouini, Average bit error probability of binary coherent signaling over generalized fading channels subject to additive generalized Gaussian noise, IEEE Communications Letters, 16 (6), 785-8, 2012. https://doi.org/10.1109/ lcomm.2012.040912.112612
  • O. S. Badarneh, Error rate analysis of M-ary phase shift keying in α-η-μ fading channels subject to additive Laplacian noise, IEEE Communications Letters, 19 (7), 1253-56, 2015. https://doi.org/10.1109/lcomm.2015. 2423277
  • M. Bilim, Uplink communications with AWGGN over non-homogeneous fading channels, Physical Communication, 39, 101047, 2020. https://doi.org/ 10.1016/j.phycom.2020.101047
  • E. Salahat and A. Hakam, Novel unified expressions for error rates and ergodic channel capacity analysis over generalized fading subject to AWGGN, 2014 IEEE Global Communications Conference, Austin, TX, pp. 3976-3982, 2014. https://doi.org/10.1109/glocom. 2014.7037429
  • I. Gradshteyn and I. Ryzhik, Table of Integrals, Series and Products. 6th ed. New York, NY, USA: Academic, 2000.

Alternatif Rician sönümlenmesi için genelleştirilmiş Gauss gürültüsünün hata analizi

Year 2021, , 84 - 90, 15.01.2021
https://doi.org/10.28948/ngumuh.765657

Abstract

Bu çalışmada bir tek-giriş tek-çıkışlı sistemin alternatif Rician sönümlenmesi durumunda genelleştirilmiş Gauss gürültüsü ile birlikte hata olasılığı analizi sunulmaktadır. Yapılan analizlerde olasılık yoğunluk fonksiyonu temelli yaklaşım kullanılmıştır. Önerilen analitik ifadelere ek olarak, literatürdeki matematiksel çalışmalardaki gibi asimptotik analiz de sunulmuştur. Bu sayede ele alınan sistem modelinin orta ve yüksek ortalama işaret gürültü oranı şartlarındaki davranışları gösterilmiştir. Yapılan performans çalışmalarında farklı modülasyon türlerinin, gölgeleme parametre değerlerinin, Rician faktörü değerlerinin ve gürültü tiplerinin etkileri gözlemlenmiştir. Son olarak, yapılan analitik çalışmaların doğruluğu tam nümerik simülasyon sonuçları ile kıyaslanarak onaylanmıştır.

References

  • M. K. Simon and M-S. Alouini, Digital Communication Over Fading Channels, 2nd ed. Hoboken, New Jersey, USA: IEEE: John Wiley &Sons, Inc., 2005.
  • J. F. Paris, Closed-form expressions for Rician shadowed cumulative distribution function. IET Electronics Letters, 46 (13), 952-3, 2010.
  • M. R. Bhatnagar and A. M.K., On the closed-form performance analysis of maximal ratio combining in shadowed-Rician fading LMS channels, IEEE Communications Letters, 18 (1), 54-7, 2014. https://doi.org/10.1109/lcomm.2013.111313.13196 3
  • M. C. Clemente and J. F. Paris, Closed-form statistics for sum of squared Rician shadowed variates and its application, IET Electronics Letters, 50 (2), 120-1, 2014.
  • N. I. Miridakis, D. D. Vergados and A. Michalas, Dual-hop communication over a satellite relay and shadowed Rician channels, IEEE Transactions on Vehicular Technology, 64 (9), 4031-40, 2015. https://doi.org/ 10.1109/TVT.2014.2361832
  • L. Moreno-Pozas and E. Martos-Naya, On some unifications arising from the MIMO Rician shadowed model, IEEE 83rd Vehicular Technology Conference (VTC Spring), Nanjing, pp. 1-5, 2016. https://doi.org/10.1109/VTCSpring.2016.7504374
  • J. Lopez-Fernandez, J. F. Paris and E. Martos-Naya, Bivariate Rician shadowed fading model, IEEE Transactions on Vehicular Technology, 67 (1), 378-84, 2018. https://doi.org/10.1109/ TVT.2017.2744800
  • N. Simmons, C. R. N. da Silva, S. L. Cotton, P. C. Sofotasios and M. D. Yacoub, Double shadowing the Rician fading model, IEEE Wireless Communications Letters, 8 (2), 344-7, 2019. https://doi.org/10.1109/ LWC.2018.2871677
  • F. J. Lopez-Martinez, L. Moreno-Pozas, U. Fernandez-Plazaola, J. F. Paris, E. Martos-Naya and J. M. Romero-Jerez, A tractable line-of-sight product channel model: application to wireless powered communications, 15th International Symposium on Wireless Communication Systems (ISWCS), Lisbon, pp. 1-5, 2018. https://doi.org/10.1109/ISWCS. 2018.8491254
  • S. L. Cotton, A statistical model for shadowed body-centric communications channels: theory and validation, IEEE Transactions on Antennas and Propagation, 62 (3), 1416-24, 2014. https://doi.org/ 10.1109/TAP.2013.2295211
  • T. Mavridis, L. Petrillo, J. Sarrazin, A. Benlarbi-Delaï and P. De Doncker, Near-body shadowing analysis at 60 GHz, IEEE Transactions on Antennas and Propagation, 63 (10), 4505-11, 2015. https://doi.org/10. 1109/TAP.2015.2456984
  • S. K. Yoo, S. L. Cotton, P. C. Sofotasios and S. Freear, Shadowed Fading in indoor off-body communication channels: a statistical characterization using the κ–μ/Gamma composite fading model, IEEE Transactions on Wireless Communications, 15 (8), 5231-44, 2016. https://doi.org/10.1109/TWC.2016. 2555795
  • U. F. Plazaola, J. L. Fernandez, J. F. Paris and E. M. Naya, A tractable fading channel model with two-sided bimodality, IEEE Access, 7, 99928-36, 2019. https://doi.org/10.1109/ ACCESS.2019.2930811
  • M. Bilim, Effective throughput of alternate rician shadowed fading links, IEEJ Transactions on Electrical and Electronic Engineering, 15 (6), 928-30, 2020. https://doi.org/10.1002/tee.23135
  • M. Bilim, Different QAM schemes analyses for ARS fading channels, Transactions on Emerging Telecommunications Technologies, e4119, 2020. (Accepted for publication) https://doi.org/10.1002/ ett.4119
  • H. Soury, F. Yilmaz and M. Alouini, Average bit error probability of binary coherent signaling over generalized fading channels subject to additive generalized Gaussian noise, IEEE Communications Letters, 16 (6), 785-8, 2012. https://doi.org/10.1109/ lcomm.2012.040912.112612
  • O. S. Badarneh, Error rate analysis of M-ary phase shift keying in α-η-μ fading channels subject to additive Laplacian noise, IEEE Communications Letters, 19 (7), 1253-56, 2015. https://doi.org/10.1109/lcomm.2015. 2423277
  • M. Bilim, Uplink communications with AWGGN over non-homogeneous fading channels, Physical Communication, 39, 101047, 2020. https://doi.org/ 10.1016/j.phycom.2020.101047
  • E. Salahat and A. Hakam, Novel unified expressions for error rates and ergodic channel capacity analysis over generalized fading subject to AWGGN, 2014 IEEE Global Communications Conference, Austin, TX, pp. 3976-3982, 2014. https://doi.org/10.1109/glocom. 2014.7037429
  • I. Gradshteyn and I. Ryzhik, Table of Integrals, Series and Products. 6th ed. New York, NY, USA: Academic, 2000.
There are 20 citations in total.

Details

Primary Language Turkish
Subjects Electrical Engineering
Journal Section Electrical and Electronics Engineering
Authors

Mehmet Bilim 0000-0003-2518-3125

Publication Date January 15, 2021
Submission Date July 7, 2020
Acceptance Date December 1, 2020
Published in Issue Year 2021

Cite

APA Bilim, M. (2021). Alternatif Rician sönümlenmesi için genelleştirilmiş Gauss gürültüsünün hata analizi. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 10(1), 84-90. https://doi.org/10.28948/ngumuh.765657
AMA Bilim M. Alternatif Rician sönümlenmesi için genelleştirilmiş Gauss gürültüsünün hata analizi. NÖHÜ Müh. Bilim. Derg. January 2021;10(1):84-90. doi:10.28948/ngumuh.765657
Chicago Bilim, Mehmet. “Alternatif Rician sönümlenmesi için genelleştirilmiş Gauss gürültüsünün Hata Analizi”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 10, no. 1 (January 2021): 84-90. https://doi.org/10.28948/ngumuh.765657.
EndNote Bilim M (January 1, 2021) Alternatif Rician sönümlenmesi için genelleştirilmiş Gauss gürültüsünün hata analizi. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 10 1 84–90.
IEEE M. Bilim, “Alternatif Rician sönümlenmesi için genelleştirilmiş Gauss gürültüsünün hata analizi”, NÖHÜ Müh. Bilim. Derg., vol. 10, no. 1, pp. 84–90, 2021, doi: 10.28948/ngumuh.765657.
ISNAD Bilim, Mehmet. “Alternatif Rician sönümlenmesi için genelleştirilmiş Gauss gürültüsünün Hata Analizi”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 10/1 (January 2021), 84-90. https://doi.org/10.28948/ngumuh.765657.
JAMA Bilim M. Alternatif Rician sönümlenmesi için genelleştirilmiş Gauss gürültüsünün hata analizi. NÖHÜ Müh. Bilim. Derg. 2021;10:84–90.
MLA Bilim, Mehmet. “Alternatif Rician sönümlenmesi için genelleştirilmiş Gauss gürültüsünün Hata Analizi”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, vol. 10, no. 1, 2021, pp. 84-90, doi:10.28948/ngumuh.765657.
Vancouver Bilim M. Alternatif Rician sönümlenmesi için genelleştirilmiş Gauss gürültüsünün hata analizi. NÖHÜ Müh. Bilim. Derg. 2021;10(1):84-90.

download