Research Article
BibTex RIS Cite

Ağır metal iyonlarının tarımsal atıklar ile biyosorpsiyonunun araştırılması

Year 2021, , 712 - 722, 27.07.2021
https://doi.org/10.28948/ngumuh.780933

Abstract

Su, yaşamın sürdürülebilirliği için gerekli bir kaynaktır. Endüstriyel, tarımsal ve insan aktiviteleri, su kaynaklarının kirliliğine katkı sağlamaktadır. Ağır metaller, su kaynaklarındaki en önemli kirleticilerden biridir. Düşük konsantrasyonlarda bile ciddi hastalıklara sebep olur. Su kaynaklarından ağır metallerin giderilmesi için kimyasal, fiziksel ve biyolojik arıtma yöntemleri kullanılır. Düşük maliyetli tarımsal ürünler, ağır metal gideriminde çevre-dostu ve ekonomik çözüm sağlar. Bu çalışmanın amaçları, (1) biyokütlenin karakterizasyonu, (2) Cu(II) ve Zn(II) iyonlarının biyokütle üzerine adsorpsiyonun değerlendirilmesi, (3) biyokütlenin biyosorpsiyon analizidir.

Supporting Institution

ONDOKUZ MAYIS ÜNİVERSİTESİ

Project Number

PYO.MUH.1904.18.006

Thanks

Bu çalışma, PYO.MUH.1904.18.006 No’lu Yüksek Lisans projesi olarak Ondokuz Mayıs Üniversitesi Bilimsel Araştırma Proje Birimi tarafından desteklenmiştir.

References

  • Ş. Kaypak, Bilim ve teknolojinin gelişiminin çevreye yansıması. Uluslararası Sosyal Bilimler Kongresi, Adana, Türkiye, 8-10 Mart 2019.
  • Z. Öztemel, Ş. Tüfenkçi ve T. Çakmakcı, motorlu taşıtlardan kaynaklanan ağırmetal kirliliğinin belirlenmesi: Şanlıurfa-Viranşehir karayolu örneği, YYÜ Tar. Bil. Derg., 26(2), 282-287, 2016.
  • M. Ş. Dündar, H. Altundağ, S. Kaygaldurak, V. Şar ve A. Acar, Çeşitli endüstriyel atık sularda ağır metal düzeylerinin belirlenmesi. SAÜ Fen Bilimleri Dergisi, 16(1), 6-12, 2012.
  • A. Esmaeilli, and N. Khoshnevisan, Optimization of process parameters for removal of heavy metals by biomass of Cu and Co-doped alginate-coated chitosan nanoparticles. Bioresource technology, 218, 650-658. 2016. https://doi:10.1016/j.biortech.2016.07.005
  • F. Fu, and Q. Wang, Removal of heavy metal ions from wastewaters: A rewiev. J. Environmental Management, 92(3), 407-414, 2011. https://doi:10.1016/ j.jenvman.2010.11.011.
  • M. Fomina, and G. M. Gadd, Biosorption: current perspectives on concept, definition and alication, Bioresource Technology, 160, 3–14, 2014. https://doi:10.1016/j.biortech.2013.12.102.
  • M. Edelstein, and M. Ben-Hur, Heavy metals and metalloids: Sources, risks and strategies to reduce their accumulation in horticultural crops. Sci. Hortic. 234, 431-444, 2018. https://doi:10.1016/j.scienta. 2017.12.039.
  • K. H. Vardhan, P. S. Kumar, and R. C. Panda, A rewiev on heavy metal pollution, toxicity and remedial measures: Curret trends and future perspectives. Journal of Molecular Liquids, 290, 111-197, 2019. https://doi: 10.1016/j.molliq.2019.111197.
  • M. Xu, P. Hadi, G. Chen, and G. Mckay, Removal of cadmium ions from wastewater using innovative electronic waste-derived material. J. Hazard. Mater. 273, 118-123, 2014. https://doi:10.1016/j.molliq. 202019.111197
  • A. Maleki, B. Hayati, F. Najafi, F. Gharibi, and S. W. Joo, Heavy metal adsorption from industrial wastewater by PAMAM/TiO2 nanohybrid: Preparation, characterization and adsorption studies. J. Mol. Liq. 224, 95-104, 2016. https://doi:10.1016/ j.molliq.202016.09.060.
  • A. Kolbasov, S. Sinha-Ray, A. I. Yarin, and B. Pourdeyhimi, Heavy metal adsortion on solution-blown biopolymer nanofiber membranes. J. Membr. Sci. 530, 250-263, 2017. https://doi:10.1016/ j.memsci.2017.02.019.
  • J. Singh, M. Sharma, and S. Basu, Heavy metal ions adsorption and photodegradation of remazol black XP by iron oxide/silica monoliths: Kinetic and equilibrium modelling. Adv. Powder Technol., 29(9), 2268-2279, 2018. https://doi:10.1016/j.apt.2018.06.011.
  • V. Manirethan, K. Raval, R. Rajan, H. Tharia, and R. M. Balakrishnan, Kinetic and thermodynamic studies on the adsorption of heavy metals from aqueous solution by melanin nanopigment obtained from marine source: Pseudomonas stutzeri. J. Environmental Management, 214, 315-324, 2018. https://doi: 10.1016/j.jenvman.2018.02.084.
  • A. Rether, Entwicklungund charakterisierung wasserlöslicher benzoylthioharnst offfunktio nalisierter polymere zur selektiven abtrennung von schwermetallionen aus abwassern und prozesslösungen, Dokrora Tezi, Münih Teknik Üniversitesi, München, Almanya, 2002.
  • G. Özbolat and A. Tuli, Effects of heavy metal toxicity on human health, Archives Medical Review Journal, 25(4), 502-521, 2016.
  • A. Şama, Taşköprü (Kastamonu) Atıksu Arıtma Tesisi İçin Proje Aşamasında öngörülen ve mevcut durumda sağlanan verimin sürekliliğinin karşılaştırılması. Journal Of Personality And Social Psychology, 1(1), 118-1197, 2017.
  • F. Zhao, W. Yang, Z. Zeng, H. Li, X. Yang, Z. He, B. Gu, M. T. Rafig, and H. Peng, Nutrient removal efficiency and biomass production of different bioenergy plants in hypereutrophic water. Biomass Bioenergy, 42, .212-218, 2012. https://doi: 10.1016/j.biombioe.2012.04.003.
  • Y. Yao, B. Gao, J. Chen, and I. Yang, Engineered biochar reclaiming phosphate from aqueous solutions: mechanisms and potential alication as a slow-release fertilizer. Environ. Sci. Technol. 47(15), .8700-8708, 2013. https://doi:10.1021/es4012977.
  • E. H. Gürkan, and S. Çoruh, Equilibrium and kinetic adsorption study of aqueous basic dye solutions using waste foundry sand. International Journal of Global Warming, 11(1), .87-106, 2018. https://doi:10.1504 /IJGW.2017.080991.
  • S. Bayar, R. Boncukcuoglu, B. A. Fil ve A. E. Yılmaz, Elektrokoagülasyon yöntemi kullanılarak Direct Red 23 boyar maddesinin gideriminin incelenmesi. Iğdır Üni. Fen Bilimleri Enst. Der., 2(2), .21-28, 2012.
  • A. K. Verma, R. R. Dash, and P. Bhunia, A review on chemical coagulation/flocculation technologies for removal of colour from textile wastewaters. Journal of Environmental Management, 93, 154-168, 2012. https://doi:10.1016/j.jenvman.2011.09.012.
  • B. Lam, S. Deon, N. Morin-Crini, G. Crini, and P. Fievet, Polymer-enhanced ultrafiltration for heavy metal removal: Influence of chitosan and carboxymethyl cecculose on filtration performances. J. Clean Prod., 171, 927-933, 2018. https://doi: 10.1016/j.jclepro.2017.10.090.
  • P. R. Choudhury, S. Majumdar, G. C. Sahoo, S. Saha, and P. Mondal, High pressure ultrafiltration CuO/hydroxyethyl cellulose composite ceramic membrane for seperation of Cr(VI) and Pb(II) from contaminated water. Chem. Eng.. J,. 336, .570-578, 2018. https://doi:10.1016/j.cej.2017.12.062.
  • V. J. Inglezakis, M. M. Fyrillas, and M. A. Stylianou, Two-phase homogeneous diffusion model for the fixed bed sorption of heavy metals on natural zeolites. Microporous Mesoporous Mater. 266, 164-176, 2018. https://doi:10.1016/j.micromeso.2018.02.045.
  • S. S. Obaid, D. K. Gaikwad, M. I. Sayyed, K. AL-Rashdi, and P. P. Pawar, Heavy metal ions removal from waste water by the natural zeolites. Mater. Today Proc. 5(9), 17930-17934, 2018. https://doi:10.1016 /j.matpr.2018.06.122.
  • R. Gayathri, K. P. Gopinath, P. S. Kumar, and S. Suganya, Adsorption capabilityof surface modified jujube seeds for Cd(II), Cu(II) and Ni(II) ions removal:mechanism, equilibrium, kinetic and thermodynamic analysis. Desalination Water Treat., 140, 268-282, 2019. https://doi:10.5004/dwt. 2019.23405.
  • G. Z. Kyzas, G. Bomis, R. L. Kosheleva, E. K. Efthimiadou, E. P. Favvas, M. Kostoglou, and A. C. Mitropoulos, Nanobubbles effect on heavy metal ions adsorption by activated carbon. Chem. Eng. J., 356, 91-97, 2019. https://doi:10.1016/j.cej.2018.09.019.
  • S. D. Gisi, G. Lofrano, M. Grassi, and M. Notarnicola, Characteristics and adsorption capacities of low-cost sorbents for wastewater treatment: A review. Sustainable Materials and Technologies. 9, 10-40, 2016. https://doi:10.1016/j.susmat.2016.06.002
  • M. Sharma, J. Singh, S. Hazra, and S. Basu, Adsorption of heavy metal ions by mesoporous ZnO and TiO2/ZnO monoliths: Adsorption and kinetic studies. Microchem. J. 145, 105-112, 2019. https://doi:10.1016/j.microc. 2018.10.026.
  • S. Sun, J. Zhu, Z. Zheng, J. Li, and M. Gan, Biosynthesis of β-cyclodextrin modified SchWertmannite and the alication in heavy metals adsorption. Powder Technol., 342, 181-192, 2019. https://doi:10.1016/j.powtec.2018.09.072.
  • P. R. Yaashikaa, P. S. Kumar, V. P. M. Babu, R. K. Durga, V. Manivasagan, K. Saranya, and A. Saravanan, Modelling on the removal of Cr(VI) ions from aquatic system using mixed biosorbent. J. Mol. Liq., 276, 362-370, 2019. https://doi:10.1016/j.molliq.2018.12.004.
  • L. H. Velazquez-Jimenez, A. Pavlick, J. R. Rangel-Mendez, Chemical characterization of raw and treated agave bagasse and its potential as adsorbent of metal cations from water. Ind. Crop. Prod. 43, 200-206, 2013. https://doi:10.1016/j.indcrop.2012.06.049
  • W. Zou, I. Zhao, and I. Zhu, Efficient uranium (VI) biosorption on grapefruit peel: Kinetic study and thermodynamic parameters. J. Radioanal. Nuci. Chem., 292, 1303-1315, 2012. https://doi:10.1007/s10967-011-1602-0.
  • T. Aman, A. A. Kazi, M. U. Sabri, and Q. Bano, Potato peels as solid waste fort he removal of heavy metal coer(II) from waste water/industrial effluent. Colloids Surf. B: Biointerfaces, 63, 116-121, 2008. https://doi:10.1016/j.colsurfb.2007.11.013.
  • E. Malkoc and Y. Nuhoglu, Investigations of Nickel(II) removal from aqueous solutions using tea factory waste. Journal of Hazardous Material, 127(1), 120-128, 2005. https://doi:10.1016/j.jhazmat.2005.06.030.
  • K. Kadirvelu, K, Thamaraiselvi and C.Namasivayam, Adsorption of Nickel(II) from aqueous solution onto activated carbon prepared from coirpith. Separation and Purification Technology, 24(3), 497-505, 2001. https://doi:10.1016/S1383-5866(01)00149-6.
  • H. N. Köysüren, and Ş. Dursun, The removal of heavy metal ıons from the aquatic environment by modified apricot kernel shell. Journal of the Faculty of Engineering and Architecture of Gazi University, 28(2), 427-435, 2013.
  • O. Gök, and Ö. Çimen Mesutoğlu, Olive pomace as a low-cost adsorbent for the removal heavy metals. Journal of the Faculty of Engineering and Architecture of Gazi University, 32(2), 507-516, 2017.
  • A. Bhatnagar, and M. Sillanpaa, Utilization of agro-industrial and municipal waste materials as potential adsorbents for water treatment: A review. Chem. Eng. J., 157(2-3), 277-296, 2010. https://doi:10.1016/ j.cej.2010.01.007.
  • A. Bhatnagar, M. Sillanpaa, and A. Witek-Krowiak, Agricultural waste peels as versatile biomass for water purification: A review. Chem. Eng. J., 270, 244-271, 2015. https://doi:10.1016/j.cej.2015.01.135.
  • J. J. Liu, X. C. Wang, and B. Fan, Characteristics of PAHs adsorption on inorganic particles and activated sludge in domestic wastewater treatment. Bioresource Technol., 102(9), 5305-5311, 2011. https://doi: 10.1016/j.biortech.2010.12.063.
  • A. Gupta, and A. Garg, Utilisation of sewage sludge derived adsorbents for removal of recalcitrant compounds from wastewater: mechanistic aspects, isoterms, kinetics and thermodynamics. Bioresource Technol., 194, 214-224, 2015. https://doi:10.1016 /j.biortech.2015.07.005.
  • R. Malik, D. S. Ramteke, and S. R. Wate, Adsorption of malachite gren on groundnut shell waste based powdered activated carbon, Waste Management, 27, 1129-1138, 2007. https://doi:10.1016/j.wasman. 2006.06.009.
  • E. Pehlivan, T. Altun, and S. Parlayıcı, Modified barley straw as a potential biosorbent for removal of coer ions from aqueous solution. Food Chem., 135, 2229-2234, 2012. https://doi:10.1016/j.foodchem.2012.07.017.
  • P. Tasaso, Adsorption of coer using pomelo peel and depectinated pomelo peel, Journal of Clean Energy Technology, 2(2), 154-157, 2014. https://doi:10.7763 /jocet.2014.v2.112.
  • W. P. Putra, A. Kamari, S. N. M. Yusoff, C. F. Ishak, A. Mohammed, N. Hashim, and I. Md. Isa, Biosorption of Cu(II), Pb(II) and Zn(II) Ions from aqueous solutions using selected waste materials: Adsorption and characterisation studies. Journal of Encapsulation and Adsorption Sciences, 4, .25-35, 2014. https://doi: 10.4236/jeas.2014.41004.
  • H. Arslanoglu, H. S. Altundogan, and F. Tumen, Heavy metals binding properties of esterified lemon. Journal of Hazardous Materials, 164, 1406–1413, 2009. https://doi:10.1016/j.jhazmat.2008.09.054.
  • Q. Qian, K. Mochidzuki, T. Fujii, and A. Sakoda, Removal of coer from aqueous solution using ironcontaining adsorbents derived from methane fermentation sludge. Journal of Hazardous Materials, 172, 1137–1144, 2009. https://doi:10.1016/j.jhazmat. 2009.07.107.
  • M. Topal, E. I. Arslan Topal ve S. Aslan, Limon kabuğu kullanarak sulu çözeltilerden Cu(II) giderimi, Erciyes Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 27(3), 265-270, 2011.7
  • M. H. Morcali, B. Zeytuncu, and O. Yucel, Platinum uptake from chloride solutions using biosorbents, Materials Research, 16(2), 528-538, 2013, https://doi:10.1590/S1516-14392013005000006.
  • S. Boumchita, Y. Benjelloun, and S. Lairini, Alication of peanut shell as a low-cost adsorbent for the removal of anionic dye from aqueous solutions. Journal of Materials and Environmental Science, 8(7), 2353-2364, 2017.
  • B. Zhou, Z. Wang, D. Shen, F. Shen, C. Wu and R. Xiao, Low cost earthworm manure-derived carbon material for the adsorption of Cu2+ from aqueous solution: Impact of pyrolysis temperature. Ecol. Eng., 98, 189-195, 2017. https://doi:10.1016/j.ecoleng. 2016.10.061.
  • C. Yu, M. Wang, X. Dong, Z. Shi, X. Zhang and Q. Lin, Removal of Cu (II) from aqueous solution using Fe3O4-alginate modified biochar microspheres. RSC Adv., 7, 53135–53144, 2017. https://doi:10.1039/ c7ra10185f.
  • M. Okur ve D. D. Eslek Koyuncu, Atık yumurta kabuklarından sentezlenen hidroksiapatitin Remazol N.Blue RGB boyarmaddesinin adsorpsiyonunda değerlendirilmesi. Journal of the Faculty of Engineering and Architecture of Gazi University, 35(1), 419-430, 2020. https://doi:10.17341/gazimmfd.474350

Investigation of biosorption of heavy metal ions by the agricultural wastes

Year 2021, , 712 - 722, 27.07.2021
https://doi.org/10.28948/ngumuh.780933

Abstract

Water is an essential source for the sustainable of life. Industrial, agricultural and human activities contribute to pollution of water sources. Heavy metals are one of the most important contaminants in the water sources. They are toxic elements even at low concentration which can cause severe diseases. Chemical, physical and biological treatment methods are used to remove the heavy metals from the water sources with a different degree of success. Low-cost by-products from agricultural have been recognized as an eco friendly and economically solution for the removal of heavy metals. The objectives of this study were (1) characterization of the biomass, (2) assessment of the biosorption experiments of the biomass to compare Cu(II) and Zn(II), and (3)analysis of the biosorption ability of the biomass.

Project Number

PYO.MUH.1904.18.006

References

  • Ş. Kaypak, Bilim ve teknolojinin gelişiminin çevreye yansıması. Uluslararası Sosyal Bilimler Kongresi, Adana, Türkiye, 8-10 Mart 2019.
  • Z. Öztemel, Ş. Tüfenkçi ve T. Çakmakcı, motorlu taşıtlardan kaynaklanan ağırmetal kirliliğinin belirlenmesi: Şanlıurfa-Viranşehir karayolu örneği, YYÜ Tar. Bil. Derg., 26(2), 282-287, 2016.
  • M. Ş. Dündar, H. Altundağ, S. Kaygaldurak, V. Şar ve A. Acar, Çeşitli endüstriyel atık sularda ağır metal düzeylerinin belirlenmesi. SAÜ Fen Bilimleri Dergisi, 16(1), 6-12, 2012.
  • A. Esmaeilli, and N. Khoshnevisan, Optimization of process parameters for removal of heavy metals by biomass of Cu and Co-doped alginate-coated chitosan nanoparticles. Bioresource technology, 218, 650-658. 2016. https://doi:10.1016/j.biortech.2016.07.005
  • F. Fu, and Q. Wang, Removal of heavy metal ions from wastewaters: A rewiev. J. Environmental Management, 92(3), 407-414, 2011. https://doi:10.1016/ j.jenvman.2010.11.011.
  • M. Fomina, and G. M. Gadd, Biosorption: current perspectives on concept, definition and alication, Bioresource Technology, 160, 3–14, 2014. https://doi:10.1016/j.biortech.2013.12.102.
  • M. Edelstein, and M. Ben-Hur, Heavy metals and metalloids: Sources, risks and strategies to reduce their accumulation in horticultural crops. Sci. Hortic. 234, 431-444, 2018. https://doi:10.1016/j.scienta. 2017.12.039.
  • K. H. Vardhan, P. S. Kumar, and R. C. Panda, A rewiev on heavy metal pollution, toxicity and remedial measures: Curret trends and future perspectives. Journal of Molecular Liquids, 290, 111-197, 2019. https://doi: 10.1016/j.molliq.2019.111197.
  • M. Xu, P. Hadi, G. Chen, and G. Mckay, Removal of cadmium ions from wastewater using innovative electronic waste-derived material. J. Hazard. Mater. 273, 118-123, 2014. https://doi:10.1016/j.molliq. 202019.111197
  • A. Maleki, B. Hayati, F. Najafi, F. Gharibi, and S. W. Joo, Heavy metal adsorption from industrial wastewater by PAMAM/TiO2 nanohybrid: Preparation, characterization and adsorption studies. J. Mol. Liq. 224, 95-104, 2016. https://doi:10.1016/ j.molliq.202016.09.060.
  • A. Kolbasov, S. Sinha-Ray, A. I. Yarin, and B. Pourdeyhimi, Heavy metal adsortion on solution-blown biopolymer nanofiber membranes. J. Membr. Sci. 530, 250-263, 2017. https://doi:10.1016/ j.memsci.2017.02.019.
  • J. Singh, M. Sharma, and S. Basu, Heavy metal ions adsorption and photodegradation of remazol black XP by iron oxide/silica monoliths: Kinetic and equilibrium modelling. Adv. Powder Technol., 29(9), 2268-2279, 2018. https://doi:10.1016/j.apt.2018.06.011.
  • V. Manirethan, K. Raval, R. Rajan, H. Tharia, and R. M. Balakrishnan, Kinetic and thermodynamic studies on the adsorption of heavy metals from aqueous solution by melanin nanopigment obtained from marine source: Pseudomonas stutzeri. J. Environmental Management, 214, 315-324, 2018. https://doi: 10.1016/j.jenvman.2018.02.084.
  • A. Rether, Entwicklungund charakterisierung wasserlöslicher benzoylthioharnst offfunktio nalisierter polymere zur selektiven abtrennung von schwermetallionen aus abwassern und prozesslösungen, Dokrora Tezi, Münih Teknik Üniversitesi, München, Almanya, 2002.
  • G. Özbolat and A. Tuli, Effects of heavy metal toxicity on human health, Archives Medical Review Journal, 25(4), 502-521, 2016.
  • A. Şama, Taşköprü (Kastamonu) Atıksu Arıtma Tesisi İçin Proje Aşamasında öngörülen ve mevcut durumda sağlanan verimin sürekliliğinin karşılaştırılması. Journal Of Personality And Social Psychology, 1(1), 118-1197, 2017.
  • F. Zhao, W. Yang, Z. Zeng, H. Li, X. Yang, Z. He, B. Gu, M. T. Rafig, and H. Peng, Nutrient removal efficiency and biomass production of different bioenergy plants in hypereutrophic water. Biomass Bioenergy, 42, .212-218, 2012. https://doi: 10.1016/j.biombioe.2012.04.003.
  • Y. Yao, B. Gao, J. Chen, and I. Yang, Engineered biochar reclaiming phosphate from aqueous solutions: mechanisms and potential alication as a slow-release fertilizer. Environ. Sci. Technol. 47(15), .8700-8708, 2013. https://doi:10.1021/es4012977.
  • E. H. Gürkan, and S. Çoruh, Equilibrium and kinetic adsorption study of aqueous basic dye solutions using waste foundry sand. International Journal of Global Warming, 11(1), .87-106, 2018. https://doi:10.1504 /IJGW.2017.080991.
  • S. Bayar, R. Boncukcuoglu, B. A. Fil ve A. E. Yılmaz, Elektrokoagülasyon yöntemi kullanılarak Direct Red 23 boyar maddesinin gideriminin incelenmesi. Iğdır Üni. Fen Bilimleri Enst. Der., 2(2), .21-28, 2012.
  • A. K. Verma, R. R. Dash, and P. Bhunia, A review on chemical coagulation/flocculation technologies for removal of colour from textile wastewaters. Journal of Environmental Management, 93, 154-168, 2012. https://doi:10.1016/j.jenvman.2011.09.012.
  • B. Lam, S. Deon, N. Morin-Crini, G. Crini, and P. Fievet, Polymer-enhanced ultrafiltration for heavy metal removal: Influence of chitosan and carboxymethyl cecculose on filtration performances. J. Clean Prod., 171, 927-933, 2018. https://doi: 10.1016/j.jclepro.2017.10.090.
  • P. R. Choudhury, S. Majumdar, G. C. Sahoo, S. Saha, and P. Mondal, High pressure ultrafiltration CuO/hydroxyethyl cellulose composite ceramic membrane for seperation of Cr(VI) and Pb(II) from contaminated water. Chem. Eng.. J,. 336, .570-578, 2018. https://doi:10.1016/j.cej.2017.12.062.
  • V. J. Inglezakis, M. M. Fyrillas, and M. A. Stylianou, Two-phase homogeneous diffusion model for the fixed bed sorption of heavy metals on natural zeolites. Microporous Mesoporous Mater. 266, 164-176, 2018. https://doi:10.1016/j.micromeso.2018.02.045.
  • S. S. Obaid, D. K. Gaikwad, M. I. Sayyed, K. AL-Rashdi, and P. P. Pawar, Heavy metal ions removal from waste water by the natural zeolites. Mater. Today Proc. 5(9), 17930-17934, 2018. https://doi:10.1016 /j.matpr.2018.06.122.
  • R. Gayathri, K. P. Gopinath, P. S. Kumar, and S. Suganya, Adsorption capabilityof surface modified jujube seeds for Cd(II), Cu(II) and Ni(II) ions removal:mechanism, equilibrium, kinetic and thermodynamic analysis. Desalination Water Treat., 140, 268-282, 2019. https://doi:10.5004/dwt. 2019.23405.
  • G. Z. Kyzas, G. Bomis, R. L. Kosheleva, E. K. Efthimiadou, E. P. Favvas, M. Kostoglou, and A. C. Mitropoulos, Nanobubbles effect on heavy metal ions adsorption by activated carbon. Chem. Eng. J., 356, 91-97, 2019. https://doi:10.1016/j.cej.2018.09.019.
  • S. D. Gisi, G. Lofrano, M. Grassi, and M. Notarnicola, Characteristics and adsorption capacities of low-cost sorbents for wastewater treatment: A review. Sustainable Materials and Technologies. 9, 10-40, 2016. https://doi:10.1016/j.susmat.2016.06.002
  • M. Sharma, J. Singh, S. Hazra, and S. Basu, Adsorption of heavy metal ions by mesoporous ZnO and TiO2/ZnO monoliths: Adsorption and kinetic studies. Microchem. J. 145, 105-112, 2019. https://doi:10.1016/j.microc. 2018.10.026.
  • S. Sun, J. Zhu, Z. Zheng, J. Li, and M. Gan, Biosynthesis of β-cyclodextrin modified SchWertmannite and the alication in heavy metals adsorption. Powder Technol., 342, 181-192, 2019. https://doi:10.1016/j.powtec.2018.09.072.
  • P. R. Yaashikaa, P. S. Kumar, V. P. M. Babu, R. K. Durga, V. Manivasagan, K. Saranya, and A. Saravanan, Modelling on the removal of Cr(VI) ions from aquatic system using mixed biosorbent. J. Mol. Liq., 276, 362-370, 2019. https://doi:10.1016/j.molliq.2018.12.004.
  • L. H. Velazquez-Jimenez, A. Pavlick, J. R. Rangel-Mendez, Chemical characterization of raw and treated agave bagasse and its potential as adsorbent of metal cations from water. Ind. Crop. Prod. 43, 200-206, 2013. https://doi:10.1016/j.indcrop.2012.06.049
  • W. Zou, I. Zhao, and I. Zhu, Efficient uranium (VI) biosorption on grapefruit peel: Kinetic study and thermodynamic parameters. J. Radioanal. Nuci. Chem., 292, 1303-1315, 2012. https://doi:10.1007/s10967-011-1602-0.
  • T. Aman, A. A. Kazi, M. U. Sabri, and Q. Bano, Potato peels as solid waste fort he removal of heavy metal coer(II) from waste water/industrial effluent. Colloids Surf. B: Biointerfaces, 63, 116-121, 2008. https://doi:10.1016/j.colsurfb.2007.11.013.
  • E. Malkoc and Y. Nuhoglu, Investigations of Nickel(II) removal from aqueous solutions using tea factory waste. Journal of Hazardous Material, 127(1), 120-128, 2005. https://doi:10.1016/j.jhazmat.2005.06.030.
  • K. Kadirvelu, K, Thamaraiselvi and C.Namasivayam, Adsorption of Nickel(II) from aqueous solution onto activated carbon prepared from coirpith. Separation and Purification Technology, 24(3), 497-505, 2001. https://doi:10.1016/S1383-5866(01)00149-6.
  • H. N. Köysüren, and Ş. Dursun, The removal of heavy metal ıons from the aquatic environment by modified apricot kernel shell. Journal of the Faculty of Engineering and Architecture of Gazi University, 28(2), 427-435, 2013.
  • O. Gök, and Ö. Çimen Mesutoğlu, Olive pomace as a low-cost adsorbent for the removal heavy metals. Journal of the Faculty of Engineering and Architecture of Gazi University, 32(2), 507-516, 2017.
  • A. Bhatnagar, and M. Sillanpaa, Utilization of agro-industrial and municipal waste materials as potential adsorbents for water treatment: A review. Chem. Eng. J., 157(2-3), 277-296, 2010. https://doi:10.1016/ j.cej.2010.01.007.
  • A. Bhatnagar, M. Sillanpaa, and A. Witek-Krowiak, Agricultural waste peels as versatile biomass for water purification: A review. Chem. Eng. J., 270, 244-271, 2015. https://doi:10.1016/j.cej.2015.01.135.
  • J. J. Liu, X. C. Wang, and B. Fan, Characteristics of PAHs adsorption on inorganic particles and activated sludge in domestic wastewater treatment. Bioresource Technol., 102(9), 5305-5311, 2011. https://doi: 10.1016/j.biortech.2010.12.063.
  • A. Gupta, and A. Garg, Utilisation of sewage sludge derived adsorbents for removal of recalcitrant compounds from wastewater: mechanistic aspects, isoterms, kinetics and thermodynamics. Bioresource Technol., 194, 214-224, 2015. https://doi:10.1016 /j.biortech.2015.07.005.
  • R. Malik, D. S. Ramteke, and S. R. Wate, Adsorption of malachite gren on groundnut shell waste based powdered activated carbon, Waste Management, 27, 1129-1138, 2007. https://doi:10.1016/j.wasman. 2006.06.009.
  • E. Pehlivan, T. Altun, and S. Parlayıcı, Modified barley straw as a potential biosorbent for removal of coer ions from aqueous solution. Food Chem., 135, 2229-2234, 2012. https://doi:10.1016/j.foodchem.2012.07.017.
  • P. Tasaso, Adsorption of coer using pomelo peel and depectinated pomelo peel, Journal of Clean Energy Technology, 2(2), 154-157, 2014. https://doi:10.7763 /jocet.2014.v2.112.
  • W. P. Putra, A. Kamari, S. N. M. Yusoff, C. F. Ishak, A. Mohammed, N. Hashim, and I. Md. Isa, Biosorption of Cu(II), Pb(II) and Zn(II) Ions from aqueous solutions using selected waste materials: Adsorption and characterisation studies. Journal of Encapsulation and Adsorption Sciences, 4, .25-35, 2014. https://doi: 10.4236/jeas.2014.41004.
  • H. Arslanoglu, H. S. Altundogan, and F. Tumen, Heavy metals binding properties of esterified lemon. Journal of Hazardous Materials, 164, 1406–1413, 2009. https://doi:10.1016/j.jhazmat.2008.09.054.
  • Q. Qian, K. Mochidzuki, T. Fujii, and A. Sakoda, Removal of coer from aqueous solution using ironcontaining adsorbents derived from methane fermentation sludge. Journal of Hazardous Materials, 172, 1137–1144, 2009. https://doi:10.1016/j.jhazmat. 2009.07.107.
  • M. Topal, E. I. Arslan Topal ve S. Aslan, Limon kabuğu kullanarak sulu çözeltilerden Cu(II) giderimi, Erciyes Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 27(3), 265-270, 2011.7
  • M. H. Morcali, B. Zeytuncu, and O. Yucel, Platinum uptake from chloride solutions using biosorbents, Materials Research, 16(2), 528-538, 2013, https://doi:10.1590/S1516-14392013005000006.
  • S. Boumchita, Y. Benjelloun, and S. Lairini, Alication of peanut shell as a low-cost adsorbent for the removal of anionic dye from aqueous solutions. Journal of Materials and Environmental Science, 8(7), 2353-2364, 2017.
  • B. Zhou, Z. Wang, D. Shen, F. Shen, C. Wu and R. Xiao, Low cost earthworm manure-derived carbon material for the adsorption of Cu2+ from aqueous solution: Impact of pyrolysis temperature. Ecol. Eng., 98, 189-195, 2017. https://doi:10.1016/j.ecoleng. 2016.10.061.
  • C. Yu, M. Wang, X. Dong, Z. Shi, X. Zhang and Q. Lin, Removal of Cu (II) from aqueous solution using Fe3O4-alginate modified biochar microspheres. RSC Adv., 7, 53135–53144, 2017. https://doi:10.1039/ c7ra10185f.
  • M. Okur ve D. D. Eslek Koyuncu, Atık yumurta kabuklarından sentezlenen hidroksiapatitin Remazol N.Blue RGB boyarmaddesinin adsorpsiyonunda değerlendirilmesi. Journal of the Faculty of Engineering and Architecture of Gazi University, 35(1), 419-430, 2020. https://doi:10.17341/gazimmfd.474350
There are 54 citations in total.

Details

Primary Language Turkish
Subjects Environmental Engineering, Material Production Technologies
Journal Section Chemical Engineering
Authors

Elif Hatice Gürkan 0000-0003-3868-181X

Project Number PYO.MUH.1904.18.006
Publication Date July 27, 2021
Submission Date August 17, 2020
Acceptance Date March 22, 2021
Published in Issue Year 2021

Cite

APA Gürkan, E. H. (2021). Ağır metal iyonlarının tarımsal atıklar ile biyosorpsiyonunun araştırılması. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 10(2), 712-722. https://doi.org/10.28948/ngumuh.780933
AMA Gürkan EH. Ağır metal iyonlarının tarımsal atıklar ile biyosorpsiyonunun araştırılması. NÖHÜ Müh. Bilim. Derg. July 2021;10(2):712-722. doi:10.28948/ngumuh.780933
Chicago Gürkan, Elif Hatice. “Ağır Metal iyonlarının tarımsal atıklar Ile Biyosorpsiyonunun araştırılması”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 10, no. 2 (July 2021): 712-22. https://doi.org/10.28948/ngumuh.780933.
EndNote Gürkan EH (July 1, 2021) Ağır metal iyonlarının tarımsal atıklar ile biyosorpsiyonunun araştırılması. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 10 2 712–722.
IEEE E. H. Gürkan, “Ağır metal iyonlarının tarımsal atıklar ile biyosorpsiyonunun araştırılması”, NÖHÜ Müh. Bilim. Derg., vol. 10, no. 2, pp. 712–722, 2021, doi: 10.28948/ngumuh.780933.
ISNAD Gürkan, Elif Hatice. “Ağır Metal iyonlarının tarımsal atıklar Ile Biyosorpsiyonunun araştırılması”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 10/2 (July 2021), 712-722. https://doi.org/10.28948/ngumuh.780933.
JAMA Gürkan EH. Ağır metal iyonlarının tarımsal atıklar ile biyosorpsiyonunun araştırılması. NÖHÜ Müh. Bilim. Derg. 2021;10:712–722.
MLA Gürkan, Elif Hatice. “Ağır Metal iyonlarının tarımsal atıklar Ile Biyosorpsiyonunun araştırılması”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, vol. 10, no. 2, 2021, pp. 712-2, doi:10.28948/ngumuh.780933.
Vancouver Gürkan EH. Ağır metal iyonlarının tarımsal atıklar ile biyosorpsiyonunun araştırılması. NÖHÜ Müh. Bilim. Derg. 2021;10(2):712-2.

download