Research Article
BibTex RIS Cite

The influence of perturbation motion over a slender delta wing under sideslip angle

Year 2021, , 393 - 403, 15.01.2021
https://doi.org/10.28948/ngumuh.780989

Abstract

In this study, the main objective is to reveal the change of the vortical flow characteristics on a slender delta wing with a sweep angle of Λ=70º under the alteration of three different sideslip angles of β=0º, 4º, and 8º at three different main angles of attack of αm=25º, 30º and 35º experimentally. Dye visualization experiments were conducted at a Reynolds number of Re=2x104 to analyze qualitatively. The perturbation motion which has amplitudes of α0=±0.5º and ±1º was applied continuously under the periods of time of Te=0.5s, 1s, and 2s. However, the effects of the low-frequency perturbations to which the aircraft is exposed during the maneuver were examined. It is observed that Kelvin-Helmholtz in the case of the perturbed motion vortices is more prominent than static case results of the slender delta wing. The vortex breakdown location on the perturbed delta wing has been changed in a wider range than the static case of the delta wing at zero sideslip angle, β.

Supporting Institution

1. (Scientific and Technological Research Council of Turkey) 2. (Scientific Research Project Office of Çukurova University)

Project Number

1. (114M497) 2. (FDK-2019-11368)

References

  • C. Munro, P. Krus, and C. Jouannet, Implications of scale effect for the prediction of high angle of attack aerodynamics. Progress in Aerospace Sciences, 41 (3-4), 301–22, 2005. https://doi.org/10.1016/ j.paerosci.2005.05.001
  • Y. D. Cui, T. T. Lim, and H. M. Tsai, Control of Vortex Breakdown over a Delta Wing Using Forebody Spanwise Slot Blowing. AIAA Journal, 45 (1), 110–117, 2007. https://doi.org/10.2514/1.22575
  • J. M. Delery, Aspects of vortex breakdown. Progress in Aerospace Sciences, 30 (1), 1–59, 1994. https://doi.org/10.1016/0376-0421(94)90002-7
  • F. M. Payne, and R.C. Nelson, An experimental investigation of vortex breakdown on a delta wing. NASA Technical Report, N86-27196, 1986.
  • I. Gursul, Z. Wang, and E. Vardaki, Review of flow control mechanisms of leading-edge vortices. Progress in Aerospace Sciences, 43 (7-8), 246–70, 2007. https://doi.org/10.1016 /j.paerosci.2007.08.001
  • Jaquin, J., Fabre, D., Geffroy, P., and Coustols, E., The Properties of a Transport Aircraft Wake in Extended Near Field: An Experimental Study. 39th Aerospace Sciences Meeting and Exhibit, AIAA Paper 2001-1038, USA 2001. https://doi.org/10.2514/6.2001-1038
  • S. J. Beresh, J. H. Henfling, and R. W. Spillersl, Meander of a fin trailing vortex and the origin of its turbulence. Experiments in Fluids, 49 (3), 599–611, 2010. https://doi.org/10.1007/s00348-010-0825-0
  • G. V. Iungo, Wandering of a wing-tip vortex: rapid scanning and correction of fixed-point measurements. Journal of Aircraft. 54, 1-12, 2017. https://doi.org/10.2514/1.C034120
  • I. Gursul, and W. S. Xie, Origin of vortex wandering over delta wings. Journal of Aircraft, 37 (2), 348–50, 2000. https://doi.org/10.2514/2.2603
  • A. L. Heyes, R. F. Jones, and D. A. Smith, Wandering of wing-tip vortices. Proceedings of the 12th International Symposium of Applied Laser Technologies for Fluid Mechanics, Lisbon, 2004.
  • I. Gursul, M. Allan, and K. Badcock, Opportunities for the integrated use of measurements and computations for the understanding of delta wing aerodynamics. Aerospace Science and Technology, 9 (3), 181–189, 2005. https://doi.org/10.1016/ j.ast.2004.08.007
  • I. Heron and R. Myose, On the impingement of von karman vortex street on a delta wing. 22nd Applied Aerodynamics Conference and Exhibit, Rhode Island USA, 16-19 August 2004. https://doi.org/10.2514/ 1.12808
  • B. Sahin, H. Akilli, J.-C. Lin, and D. Rockwell, Vortex Breakdown-Edge interaction: Consequence of edge oscillations. AIAA Journal, 39, 865–76, 2001. https://doi.org/10.2514/2.1390
  • R. C. Nelson and A. Pelletier, The unsteady aerodynamics of slender wings and aircraft undergoing large amplitude maneuvers. Progress in Aerospace Sciences, 39 (2-3), 185–248, 2003. https://doi.org/10.1016/S0376-0421(02)00088-X
  • O. Lucca-Negro and T. O'doherty, Vortex breakdown: a review. Progress in Energy and Combustion Science, 27 (4), 431–481, 2001. https://doi.org/10.1016/S0360-1285(00)00022-8
  • A. M. Mitchell and J. Délery, Research into vortex breakdown control. Progress in Aerospace Sciences, 37 (4), 385–418, 2001. https://doi.org/10.1016/S0376-0421(01)00010-0
  • Z.-Y. Lu and L.-G. Zhu, Study on forms of vortex breakdown over delta wing. Chinese Journal of Aeronautics, 17 (1), 13–16, 2004. https://doi.org/10.1016/S1000-9361(11)60196-9
  • G. E. Erickson, Water-tunnel studies of leading-edge vortices. J. Aircr. 19 (6): 442–448, 1982. https://doi.org/10.2514/3.57414
  • I. Gursul, Review of unsteady vortex flows over slender delta wings. J. Aircr. 42 (2): 299–319, 2005. https://doi.org/10.2514/1.5269
  • I. Gursul and Z. Wang, Flow control of tip/edge vortices. AIAA Journal, 56 (5), 1731-49, 2018. https://doi.org/10.2514/1.J056586
  • L. Shen, C.-Y. Wen, and H.-A. Chen, Asymmetric flow control on a delta wing with dielectric barrier discharge actuators. AIAA Journal, 54 (2), 652–8, 2016. https://doi.org/10.2514/1.J054373
  • M. Hadidoolabi and H. Ansarian, Computational investigation of vortex structure and breakdown over a delta wing at supersonic pitching maneuver. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 40(2), 78, 2018. https://doi.org/10.1007/ s40430-018-1021-z
  • N. M. Zain, S. Mat, K. A. Kasim, M. Shuhaimi, Md. Nizam Dahlan, N. Othman, Wind tunnel experiments on a generic sharp-edge delta wing UAV Model. Journal of Advanced Research in Fluid Mechanics and Thermal Science, 40 (1), 18-26, 2017.
  • M. Ozgoren, B. Sahin, and D. Rockwell, Vortex structure on a delta wing at high angle of attack. AIAA Journal, 40(2), 285-292, 2002. https://doi.org/10.2514/ 2.1644
  • A. Buzica, J. Bartasevicius, and C. Breitsamter, Experimental investigation of high-incidence delta-wing flow control. Experiments in Fluids, 58 (9), 131, 2017. https://doi.org/10.1007/s00348-017-2408-9
  • C. Cetin, A. Celik, and M. M. Yavuz, Control of flow structure over a nonslender delta wing using periodic blowing. AIAA Journal, 56 (1), 90–9, 2017. https://doi.org/10.2514/1.J056099
  • M. Zharfa, I. Ozturk, and M. M. Yavuz, Flow structure on nonslender delta wing: reynolds number dependence and flow control. AIAA Journal, 54 (3), 880–97, 2016. https://doi.org/10.2514/ 1.J054495
  • C. Canpolat, B. Sahin, S. Yayla, and H. Akilli, Effects of perturbation on the flow over nonslender delta wings. 45th AIAA Fluid Dynamics Conference, 2015. https://doi.org/10.2514/6.2015-2307
  • M. Ozgoren, Impingement of vortex breakdown upon an edge: flow structure and origin of loading. Ph. D. Thesis, Çukurova University Institute of Natural and Applied Sciences, Adana, 2000.
  • B. Yaniktepe and D. Rockwell, Flow structure on a delta wing of low sweep angle. AIAA Journal, 42 (3), 513–23, 2004. https://doi.org/10.2514/ 1.1207
  • S. P. Lemay, S. M. Batill, and R. C. Nelson, Vortex dynamics on a pitching delta wing. Journal of Aircraft, 27 (2), 131–38, 1990. https://doi.org/ 10.2514/3.45908
  • F. Gilliam, J. Wissler, J. Walker, and M. Robinson, Visualization of unsteady separated flow about a pitching delta wing. 25th AIAA Aerospace Sciences Meeting, 1987. https://doi.org/10.2514/6.1987-240
  • G. Reynolds and A. Abtahi, Instabilities in leading-edge vortex development. 5th Applied Aerodynamics Conference, USA, 1987.
  • I. Gursul and W. Xie, Buffeting flows over delta wings. AIAA Journal, 37, 58–65, 1999. https://doi.org/ 10.2514/2.664
  • S. Lemay, S. Batill, and R. Nelson, Leading edge vortex dynamics on a pitching delta wing. 6th Applied Aerodynamics Conference, USA, 1988.
  • D. S. Grismer and R. C. Nelson, Double-delta-wing aerodynamics for pitching motions with and without sideslip. Journal of Aircraft, 32 (6), 1303–11, 1995. https://doi.org/10.2514/3.46879
  • M. Ozgoren and B. Sahin, Effect of pitching delta wing on vortex structures with and without impingement plate. Turkish J. Eng. Env. Sci, 26, 325-43, 2002.

Salınım hareketinin sapma açısı altındaki bir delta kanada etkileri

Year 2021, , 393 - 403, 15.01.2021
https://doi.org/10.28948/ngumuh.780989

Abstract

Bu çalışmada, süpürme açısı Λ=70º olan narin (slender) delta kanadın girdaplı akış yapısındaki değişimi, sapma açısı β=0º, 4º ve 8º karşısındaki değişimi, üç farklı ortalama hücum açısında αm =25º, 30º ve 35º boya deneyi incelemesi amaçlanmıştır. Boya ile nitel görselleştirme deneyleri, Re=2x104 gerçekleştirilmiştir. Kanat modeli istenilen açıda sabitlenerek ve elde edilen deney sonuçlar dikkate alınarak, α0=±0.5º ve ±1º genliğinde ve Te =0.5s, 1s ve 2s periyotlarında kanata sürekli salınım hareketi verilerek girdap çökmesinin belirli ölçüde kontrolü sağlanmaya çalışılmıştır. Ancak, uçağın manevra sırasında maruz kaldığı düşük frekanslı bozulmaların etkileri incelenmiştir. Kelvin-Helmholtz girdaplarının narin delta kanadın daimî salınım hareketi verilen durumunda statik vaka sonuçlarından daha belirgin olduğu gözlenmektedir. Narin delta kanatlarının sıfır sapma açısı, β salınımı hareketi anında; girdap çökme konumu statik durumdan daha geniş bir aralıkta ileri ve geri hareket etmektedir.

Project Number

1. (114M497) 2. (FDK-2019-11368)

References

  • C. Munro, P. Krus, and C. Jouannet, Implications of scale effect for the prediction of high angle of attack aerodynamics. Progress in Aerospace Sciences, 41 (3-4), 301–22, 2005. https://doi.org/10.1016/ j.paerosci.2005.05.001
  • Y. D. Cui, T. T. Lim, and H. M. Tsai, Control of Vortex Breakdown over a Delta Wing Using Forebody Spanwise Slot Blowing. AIAA Journal, 45 (1), 110–117, 2007. https://doi.org/10.2514/1.22575
  • J. M. Delery, Aspects of vortex breakdown. Progress in Aerospace Sciences, 30 (1), 1–59, 1994. https://doi.org/10.1016/0376-0421(94)90002-7
  • F. M. Payne, and R.C. Nelson, An experimental investigation of vortex breakdown on a delta wing. NASA Technical Report, N86-27196, 1986.
  • I. Gursul, Z. Wang, and E. Vardaki, Review of flow control mechanisms of leading-edge vortices. Progress in Aerospace Sciences, 43 (7-8), 246–70, 2007. https://doi.org/10.1016 /j.paerosci.2007.08.001
  • Jaquin, J., Fabre, D., Geffroy, P., and Coustols, E., The Properties of a Transport Aircraft Wake in Extended Near Field: An Experimental Study. 39th Aerospace Sciences Meeting and Exhibit, AIAA Paper 2001-1038, USA 2001. https://doi.org/10.2514/6.2001-1038
  • S. J. Beresh, J. H. Henfling, and R. W. Spillersl, Meander of a fin trailing vortex and the origin of its turbulence. Experiments in Fluids, 49 (3), 599–611, 2010. https://doi.org/10.1007/s00348-010-0825-0
  • G. V. Iungo, Wandering of a wing-tip vortex: rapid scanning and correction of fixed-point measurements. Journal of Aircraft. 54, 1-12, 2017. https://doi.org/10.2514/1.C034120
  • I. Gursul, and W. S. Xie, Origin of vortex wandering over delta wings. Journal of Aircraft, 37 (2), 348–50, 2000. https://doi.org/10.2514/2.2603
  • A. L. Heyes, R. F. Jones, and D. A. Smith, Wandering of wing-tip vortices. Proceedings of the 12th International Symposium of Applied Laser Technologies for Fluid Mechanics, Lisbon, 2004.
  • I. Gursul, M. Allan, and K. Badcock, Opportunities for the integrated use of measurements and computations for the understanding of delta wing aerodynamics. Aerospace Science and Technology, 9 (3), 181–189, 2005. https://doi.org/10.1016/ j.ast.2004.08.007
  • I. Heron and R. Myose, On the impingement of von karman vortex street on a delta wing. 22nd Applied Aerodynamics Conference and Exhibit, Rhode Island USA, 16-19 August 2004. https://doi.org/10.2514/ 1.12808
  • B. Sahin, H. Akilli, J.-C. Lin, and D. Rockwell, Vortex Breakdown-Edge interaction: Consequence of edge oscillations. AIAA Journal, 39, 865–76, 2001. https://doi.org/10.2514/2.1390
  • R. C. Nelson and A. Pelletier, The unsteady aerodynamics of slender wings and aircraft undergoing large amplitude maneuvers. Progress in Aerospace Sciences, 39 (2-3), 185–248, 2003. https://doi.org/10.1016/S0376-0421(02)00088-X
  • O. Lucca-Negro and T. O'doherty, Vortex breakdown: a review. Progress in Energy and Combustion Science, 27 (4), 431–481, 2001. https://doi.org/10.1016/S0360-1285(00)00022-8
  • A. M. Mitchell and J. Délery, Research into vortex breakdown control. Progress in Aerospace Sciences, 37 (4), 385–418, 2001. https://doi.org/10.1016/S0376-0421(01)00010-0
  • Z.-Y. Lu and L.-G. Zhu, Study on forms of vortex breakdown over delta wing. Chinese Journal of Aeronautics, 17 (1), 13–16, 2004. https://doi.org/10.1016/S1000-9361(11)60196-9
  • G. E. Erickson, Water-tunnel studies of leading-edge vortices. J. Aircr. 19 (6): 442–448, 1982. https://doi.org/10.2514/3.57414
  • I. Gursul, Review of unsteady vortex flows over slender delta wings. J. Aircr. 42 (2): 299–319, 2005. https://doi.org/10.2514/1.5269
  • I. Gursul and Z. Wang, Flow control of tip/edge vortices. AIAA Journal, 56 (5), 1731-49, 2018. https://doi.org/10.2514/1.J056586
  • L. Shen, C.-Y. Wen, and H.-A. Chen, Asymmetric flow control on a delta wing with dielectric barrier discharge actuators. AIAA Journal, 54 (2), 652–8, 2016. https://doi.org/10.2514/1.J054373
  • M. Hadidoolabi and H. Ansarian, Computational investigation of vortex structure and breakdown over a delta wing at supersonic pitching maneuver. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 40(2), 78, 2018. https://doi.org/10.1007/ s40430-018-1021-z
  • N. M. Zain, S. Mat, K. A. Kasim, M. Shuhaimi, Md. Nizam Dahlan, N. Othman, Wind tunnel experiments on a generic sharp-edge delta wing UAV Model. Journal of Advanced Research in Fluid Mechanics and Thermal Science, 40 (1), 18-26, 2017.
  • M. Ozgoren, B. Sahin, and D. Rockwell, Vortex structure on a delta wing at high angle of attack. AIAA Journal, 40(2), 285-292, 2002. https://doi.org/10.2514/ 2.1644
  • A. Buzica, J. Bartasevicius, and C. Breitsamter, Experimental investigation of high-incidence delta-wing flow control. Experiments in Fluids, 58 (9), 131, 2017. https://doi.org/10.1007/s00348-017-2408-9
  • C. Cetin, A. Celik, and M. M. Yavuz, Control of flow structure over a nonslender delta wing using periodic blowing. AIAA Journal, 56 (1), 90–9, 2017. https://doi.org/10.2514/1.J056099
  • M. Zharfa, I. Ozturk, and M. M. Yavuz, Flow structure on nonslender delta wing: reynolds number dependence and flow control. AIAA Journal, 54 (3), 880–97, 2016. https://doi.org/10.2514/ 1.J054495
  • C. Canpolat, B. Sahin, S. Yayla, and H. Akilli, Effects of perturbation on the flow over nonslender delta wings. 45th AIAA Fluid Dynamics Conference, 2015. https://doi.org/10.2514/6.2015-2307
  • M. Ozgoren, Impingement of vortex breakdown upon an edge: flow structure and origin of loading. Ph. D. Thesis, Çukurova University Institute of Natural and Applied Sciences, Adana, 2000.
  • B. Yaniktepe and D. Rockwell, Flow structure on a delta wing of low sweep angle. AIAA Journal, 42 (3), 513–23, 2004. https://doi.org/10.2514/ 1.1207
  • S. P. Lemay, S. M. Batill, and R. C. Nelson, Vortex dynamics on a pitching delta wing. Journal of Aircraft, 27 (2), 131–38, 1990. https://doi.org/ 10.2514/3.45908
  • F. Gilliam, J. Wissler, J. Walker, and M. Robinson, Visualization of unsteady separated flow about a pitching delta wing. 25th AIAA Aerospace Sciences Meeting, 1987. https://doi.org/10.2514/6.1987-240
  • G. Reynolds and A. Abtahi, Instabilities in leading-edge vortex development. 5th Applied Aerodynamics Conference, USA, 1987.
  • I. Gursul and W. Xie, Buffeting flows over delta wings. AIAA Journal, 37, 58–65, 1999. https://doi.org/ 10.2514/2.664
  • S. Lemay, S. Batill, and R. Nelson, Leading edge vortex dynamics on a pitching delta wing. 6th Applied Aerodynamics Conference, USA, 1988.
  • D. S. Grismer and R. C. Nelson, Double-delta-wing aerodynamics for pitching motions with and without sideslip. Journal of Aircraft, 32 (6), 1303–11, 1995. https://doi.org/10.2514/3.46879
  • M. Ozgoren and B. Sahin, Effect of pitching delta wing on vortex structures with and without impingement plate. Turkish J. Eng. Env. Sci, 26, 325-43, 2002.
There are 37 citations in total.

Details

Primary Language English
Subjects Mechanical Engineering
Journal Section Mechanical Engineering
Authors

Mehmet Oğuz Taşcı This is me 0000-0002-2456-3241

Sergen Tümse 0000-0003-4764-747X

Beşir Şahin 0000-0003-0671-0890

İlyas Karasu 0000-0003-3138-6236

Hüseyin Akıllı 0000-0002-5342-7046

Project Number 1. (114M497) 2. (FDK-2019-11368)
Publication Date January 15, 2021
Submission Date August 15, 2020
Acceptance Date December 22, 2020
Published in Issue Year 2021

Cite

APA Taşcı, M. O., Tümse, S., Şahin, B., Karasu, İ., et al. (2021). The influence of perturbation motion over a slender delta wing under sideslip angle. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 10(1), 393-403. https://doi.org/10.28948/ngumuh.780989
AMA Taşcı MO, Tümse S, Şahin B, Karasu İ, Akıllı H. The influence of perturbation motion over a slender delta wing under sideslip angle. NÖHÜ Müh. Bilim. Derg. January 2021;10(1):393-403. doi:10.28948/ngumuh.780989
Chicago Taşcı, Mehmet Oğuz, Sergen Tümse, Beşir Şahin, İlyas Karasu, and Hüseyin Akıllı. “The Influence of Perturbation Motion over a Slender Delta Wing under Sideslip Angle”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 10, no. 1 (January 2021): 393-403. https://doi.org/10.28948/ngumuh.780989.
EndNote Taşcı MO, Tümse S, Şahin B, Karasu İ, Akıllı H (January 1, 2021) The influence of perturbation motion over a slender delta wing under sideslip angle. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 10 1 393–403.
IEEE M. O. Taşcı, S. Tümse, B. Şahin, İ. Karasu, and H. Akıllı, “The influence of perturbation motion over a slender delta wing under sideslip angle”, NÖHÜ Müh. Bilim. Derg., vol. 10, no. 1, pp. 393–403, 2021, doi: 10.28948/ngumuh.780989.
ISNAD Taşcı, Mehmet Oğuz et al. “The Influence of Perturbation Motion over a Slender Delta Wing under Sideslip Angle”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 10/1 (January 2021), 393-403. https://doi.org/10.28948/ngumuh.780989.
JAMA Taşcı MO, Tümse S, Şahin B, Karasu İ, Akıllı H. The influence of perturbation motion over a slender delta wing under sideslip angle. NÖHÜ Müh. Bilim. Derg. 2021;10:393–403.
MLA Taşcı, Mehmet Oğuz et al. “The Influence of Perturbation Motion over a Slender Delta Wing under Sideslip Angle”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, vol. 10, no. 1, 2021, pp. 393-0, doi:10.28948/ngumuh.780989.
Vancouver Taşcı MO, Tümse S, Şahin B, Karasu İ, Akıllı H. The influence of perturbation motion over a slender delta wing under sideslip angle. NÖHÜ Müh. Bilim. Derg. 2021;10(1):393-40.

download