Research Article
BibTex RIS Cite

Aklime edilmiş aktif çamur mikroorganizmaları ile sürekli sistem yukarı akışlı dolgulu kolonda 2,4- diklorofenol gideriminin incelenmesi

Year 2021, , 456 - 464, 27.07.2021
https://doi.org/10.28948/ngumuh.799013

Abstract

Endüstriyel üretim sonrası ortaya çıkan atıksular alıcı ortamlara verilmeden önce atıksu içeriğinde bulunan kirlilik parametrelerinin deşarj kriterlerin altında arıtılması gerekmektedir. Fenol ve türevi olan kimyasal bileşikler endüstriyel üretim sonrası atıksular içerisinde yüksek konsantrasyonda bulunmaktadırlar. Bu fenol ve türevi bileşikleri içeren atıksular kanserojenik ve teratojenik etkilere sahiptir. Bu nedenle bu tip atıksuların alıcı ortamlara arıtılmadan deşarj edilmemesi gerekmektedir. Bu amaçla bu çalışmada 2,4- diklorofenol ile aklime edilmiş aktif çamur mikroorganizmalarının yukarı akışlı olarak poliüretan ile doldurulmuş kolonda 2,4- diklorofenol giderimi incelenmiştir. Aklime edilmiş aktif çamur mikroorganizmaları poliüretan sünger parçaları üzerine immobilize edilmiş ve yukarı akışlı dolgulu kolonda 2,4-dikolorofenolün sürekli sistemde 90 gün boyunca arıtımı incelenmiştir. Elde edilen sonuçlara göre en optimum 500 mg/L 2,4-dikolorofenol komsatrasyonunda %83 KOİ ve %86 fenol giderimi sağlanmıştır.

References

  • R. Mtibaà et al., Biodegradation and toxicity reduction of nonylphenol, 4-tert-octylphenol and 2,4-dichlorophenol by the ascomycetous fungus Thielavia sp HJ22: Identification of fungal metabolites and proposal of a putative pathway. Sci. Total Environ., 708, 2020.doi: 10.1016/j.scitotenv.2019.135129.
  • T. Rasheed, M. Bilal, C. Li, F. Nabeel, M. Khalid, and H. M. N. Iqbal, Catalytic potential of bio-synthesized silver nanoparticles using Convolvulus arvensis extract for the degradation of environmental pollutants. J. Photochem. Photobiol. B Biol., 181, 44–52, 2018.doi: 10.1016/j.jphotobiol.2018.02.024.
  • I. B. Gomes, L. C. Simões, and M. Simões, The effects of emerging environmental contaminants on Stenotrophomonas maltophilia isolated from drinking water in planktonic and sessile states. Sci. Total Environ., 643, 1348–1356, 2018.doi: 10.1016/ j.scitotenv.2018.06.263.
  • Y. Luo et al., A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment. Sci. Total Environ., 473–474, 619–641, 2014.doi: 10.1016/ j.scitotenv.2013.12.065.
  • A. A. Oluwasanu, Fate and toxicity of chlorinated phenols of environmental ımplications: A Review. Med. Anal. Chem. Int. J., 2(4), 2018.doi: 10.23880/ macij-16000126.
  • S. M. Blunt et al., Association between degradation of pharmaceuticals and endocrine-disrupting compounds and microbial communities along a treated wastewater effluent gradient in Lake Mead. Sci. Total Environ., 622(623), 1640–1648, 2018. doi: 10.1016/ j.scitotenv.2017.10.052.T .
  • P. Van Aken, R. Van den Broeck, J. Degrève, and R. Dewil, The effect of ozonation on the toxicity and biodegradability of 2,4-dichlorophenol-containing wastewater. Chemical Engineering Journal, 280. 728–736, 2015.doi: 10.1016/j.cej.2015.06.019.
  • N. C. Saha, F. Bhunia, and A. Kaviraj, Toxicity of phenol to fish and aquatic ecosystems. Bull. Environ. Contam. Toxicol., 63(2), 195–202, 1999.doi: 10.1007/ s001289900966.
  • WHO, Pharmaceuticals in Drinking Water: Public Health and Environment Water, Sanitation, Hygiene and Health, 2011.
  • H. Cabana, J. P. Jones, and S. N. Agathos, Elimination of endocrine disrupting chemicals using white rot fungi and their lignin modifying enzymes: A review, Eng. Life Sci., 7(5), 429–456, 2007.doi: 10.1002/elsc.200700017.
  • Z. Huang et al., Toxicity mechanisms and synergies of silver nanoparticles in 2,4-dichlorophenol degradation by Phanerochaete chrysosporium. Journal of Hazardous Materials, 321. 37–46, 2017.doi: 10.1016/j.jhazmat.2016.08.075.
  • T. Janicki, M. Krupiński, and J. Długoński, Degradation and toxicity reduction of the endocrine disruptors nonylphenol, 4-tert-octylphenol and 4-cumylphenol by the non-ligninolytic fungus Umbelopsis isabellina. Bioresour. Technol., 200, 223–229, 2016.doi: 10.1016/j.biortech.2015.10.034.
  • R. K. Rajendran, S.-L. Huang, C.-C. Lin, and R. Kirschner, Biodegradation of the endocrine disrupter 4-tert-octylphenol by the yeast strain Candida rugopelliculosa RRKY5 via phenolic ring hydroxylation and alkyl chain oxidation pathways, Bioresour. Technol., 226, 55–64, 2017.doi: 10.1016/ j.biortech.2016.11.129.
  • M. Bajaj, C. Gallert, and J. Winter, Biodegradation of high phenol containing synthetic wastewater by an aerobic fixed bed reactor. Bioresour. Technol., 99(17), 8376–8381, 2008.doi: 10.1016/j.biortech.2008.02.057.
  • G. Mujtaba, M. Rizwan, G. Kim, and K. Lee, Removal of nutrients and COD through co-culturing activated sludge and immobilized Chlorella vulgaris. Chemical Engineering Journal, 343. 155–162, 2018.doi: 10.1016/ j.cej.2018.03.007.
  • H. Li et al., Production of polyhydroxyalkanoates by activated sludge: Correlation with extracellular polymeric substances and characteristics of activated sludge. Chem. Eng. J., 361, 219–226, 2019.doi: 10.1016/j.cej.2018.12.066.
  • Q. Yu et al., Bioaugmentated activated sludge degradation of progesterone: Kinetics and mechanism. Chemical Engineering Journal, 352.214–224, 2018.doi: 10.1016/j.cej.2018.06.159.
  • X. Liu, W. Yuan, M. Di, Z. Li, and J. Wang, Transfer and fate of microplastics during the conventional activated sludge process in one wastewater treatment plant of China. Chem. Eng. J., 362, 176–182, 2019.doi: 10.1016/j.cej.2019.01.033.
  • M. Cai et al., Improving dewaterability and filterability of waste activated sludge by electrochemical Fenton pretreatment. Chem. Eng. J. 362, 525–536, 2019.doi: 10.1016/j.cej.2019.01.047.
  • D. Dölgen and M. N. Alparslan, Biyolojik filtre reaktörler (BFR) için dolgu malzemesi alternatifleri. DEÜ Mühendislik Fakültesi Fen Ve Mühendislik Derg., 4(3), 13–26, 2002.
  • E. Ü. Deveci, Treatibility of wastewater containing 2,4 dichlorophenol using aclimated activated sludge microorganisms in packed upflow column bioreactor. Polish J. Environ. Stud., 27(5), 1997–2005, 2018.doi:10.15244/pjoes/78045.
  • A. Nuhoglu and B. Yalcin, Modelling of phenol removal in a batch reactor. Process Biochem., 40(3-4), 1233–1239, 2005.doi: 10.1016/j.procbio.2004.04.003.
  • M. S. Barlak, N. Değermenci, İ. Cengiz, H. Ucun Özel, and E. Yildiz, Comparison of phenol removal with ozonation in jet loop reactor and bubble column. J. Environ. Chem. Eng., 8(5), no. 104402, 2020. doi.org/10.1016/j.jece.2020.104402.
  • I. Gallizia, S. McClean, and I. M. Banat, Bacterial biodegradation of phenol and 2,4-dichlorophenol. J. Chem. Technol. Biotechnol., 78(9), 959–963, 2003.doi: 10.1002/jctb.890.
  • E. Sahinkaya and F. B. Dilek, Biodegradation of 4-chlorophenol by acclimated and unacclimated activated sludge—Evaluation of biokinetic coefficients. Environ. Res., 99(2), 2, 243–252, 2005. https://doi.org/10.1016/j.envres.2004.11.005.
  • K. Kumar Gupta and D. Devi, Biodegradation of low density polyethylene by selected bacillus sp. Gazi Univ. J. Sci., 32(3), 802–813, 2019.doi: 10.35378/gujs.496392.
  • B. Basak et al., Biodegradation of high concentration phenol using sugarcane bagasse immobilized Candida tropicalis PHB5 in a packed-bed column reactor. Ecotoxicol. Environ. Saf., 180, 317–325, 2019.
  • Y. Jiang, J. Wen, J. Bai, X. Jia, and Z. Hu, Biodegradation of phenol at high initial concentration by Alcaligenes faecalis. J. Hazard. Mater, 147(1), 672–676, 2007,.doi.org/10.1016/j.jhazmat.2007.05.031.
  • Z. Aksu and F. Gönen, Biosorption of phenol by immobilized activated sludge in a continuous packed bed: prediction of breakthrough curves. Process Biochem., 39(5), 599–613, 2004.doi.org/ 10.1016/S0032-9592(03)00132-8.

Investigation of 2,4- dichlorophenol removal in continuous system upflow filled column with activated sludge microorganisms

Year 2021, , 456 - 464, 27.07.2021
https://doi.org/10.28948/ngumuh.799013

Abstract

The pollution parameters in the wastewater must be treated below the discharge criteria before the wastewater generated after industrial production is discharged to the receiving environment. Phenol and its derivatives are found in high concentrations in wastewater after industrial production. Wastewater containing this phenol and its derivatives have carcinogenic and teratogenic effects. Therefore, this type of wastewater should not be discharged to receiving environments without treatment. For this purpose, in this study, the removal of 2,4-dichlorophenol in a column filled with polyurethane upstream of activated sludge microorganisms activated with 2,4-dichlorophenol was investigated. Activated sludge microorganisms were immobilized on polyurethane sponge pieces and the purification of 2,4-dichlorophenol in a continuous system for 90 days in an upstream filled column was studied. According to the results, 83% COD and 86% phenol removal was achieved at the optimum 500 mg / L 2,4-dichlorophenol compensation.

References

  • R. Mtibaà et al., Biodegradation and toxicity reduction of nonylphenol, 4-tert-octylphenol and 2,4-dichlorophenol by the ascomycetous fungus Thielavia sp HJ22: Identification of fungal metabolites and proposal of a putative pathway. Sci. Total Environ., 708, 2020.doi: 10.1016/j.scitotenv.2019.135129.
  • T. Rasheed, M. Bilal, C. Li, F. Nabeel, M. Khalid, and H. M. N. Iqbal, Catalytic potential of bio-synthesized silver nanoparticles using Convolvulus arvensis extract for the degradation of environmental pollutants. J. Photochem. Photobiol. B Biol., 181, 44–52, 2018.doi: 10.1016/j.jphotobiol.2018.02.024.
  • I. B. Gomes, L. C. Simões, and M. Simões, The effects of emerging environmental contaminants on Stenotrophomonas maltophilia isolated from drinking water in planktonic and sessile states. Sci. Total Environ., 643, 1348–1356, 2018.doi: 10.1016/ j.scitotenv.2018.06.263.
  • Y. Luo et al., A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment. Sci. Total Environ., 473–474, 619–641, 2014.doi: 10.1016/ j.scitotenv.2013.12.065.
  • A. A. Oluwasanu, Fate and toxicity of chlorinated phenols of environmental ımplications: A Review. Med. Anal. Chem. Int. J., 2(4), 2018.doi: 10.23880/ macij-16000126.
  • S. M. Blunt et al., Association between degradation of pharmaceuticals and endocrine-disrupting compounds and microbial communities along a treated wastewater effluent gradient in Lake Mead. Sci. Total Environ., 622(623), 1640–1648, 2018. doi: 10.1016/ j.scitotenv.2017.10.052.T .
  • P. Van Aken, R. Van den Broeck, J. Degrève, and R. Dewil, The effect of ozonation on the toxicity and biodegradability of 2,4-dichlorophenol-containing wastewater. Chemical Engineering Journal, 280. 728–736, 2015.doi: 10.1016/j.cej.2015.06.019.
  • N. C. Saha, F. Bhunia, and A. Kaviraj, Toxicity of phenol to fish and aquatic ecosystems. Bull. Environ. Contam. Toxicol., 63(2), 195–202, 1999.doi: 10.1007/ s001289900966.
  • WHO, Pharmaceuticals in Drinking Water: Public Health and Environment Water, Sanitation, Hygiene and Health, 2011.
  • H. Cabana, J. P. Jones, and S. N. Agathos, Elimination of endocrine disrupting chemicals using white rot fungi and their lignin modifying enzymes: A review, Eng. Life Sci., 7(5), 429–456, 2007.doi: 10.1002/elsc.200700017.
  • Z. Huang et al., Toxicity mechanisms and synergies of silver nanoparticles in 2,4-dichlorophenol degradation by Phanerochaete chrysosporium. Journal of Hazardous Materials, 321. 37–46, 2017.doi: 10.1016/j.jhazmat.2016.08.075.
  • T. Janicki, M. Krupiński, and J. Długoński, Degradation and toxicity reduction of the endocrine disruptors nonylphenol, 4-tert-octylphenol and 4-cumylphenol by the non-ligninolytic fungus Umbelopsis isabellina. Bioresour. Technol., 200, 223–229, 2016.doi: 10.1016/j.biortech.2015.10.034.
  • R. K. Rajendran, S.-L. Huang, C.-C. Lin, and R. Kirschner, Biodegradation of the endocrine disrupter 4-tert-octylphenol by the yeast strain Candida rugopelliculosa RRKY5 via phenolic ring hydroxylation and alkyl chain oxidation pathways, Bioresour. Technol., 226, 55–64, 2017.doi: 10.1016/ j.biortech.2016.11.129.
  • M. Bajaj, C. Gallert, and J. Winter, Biodegradation of high phenol containing synthetic wastewater by an aerobic fixed bed reactor. Bioresour. Technol., 99(17), 8376–8381, 2008.doi: 10.1016/j.biortech.2008.02.057.
  • G. Mujtaba, M. Rizwan, G. Kim, and K. Lee, Removal of nutrients and COD through co-culturing activated sludge and immobilized Chlorella vulgaris. Chemical Engineering Journal, 343. 155–162, 2018.doi: 10.1016/ j.cej.2018.03.007.
  • H. Li et al., Production of polyhydroxyalkanoates by activated sludge: Correlation with extracellular polymeric substances and characteristics of activated sludge. Chem. Eng. J., 361, 219–226, 2019.doi: 10.1016/j.cej.2018.12.066.
  • Q. Yu et al., Bioaugmentated activated sludge degradation of progesterone: Kinetics and mechanism. Chemical Engineering Journal, 352.214–224, 2018.doi: 10.1016/j.cej.2018.06.159.
  • X. Liu, W. Yuan, M. Di, Z. Li, and J. Wang, Transfer and fate of microplastics during the conventional activated sludge process in one wastewater treatment plant of China. Chem. Eng. J., 362, 176–182, 2019.doi: 10.1016/j.cej.2019.01.033.
  • M. Cai et al., Improving dewaterability and filterability of waste activated sludge by electrochemical Fenton pretreatment. Chem. Eng. J. 362, 525–536, 2019.doi: 10.1016/j.cej.2019.01.047.
  • D. Dölgen and M. N. Alparslan, Biyolojik filtre reaktörler (BFR) için dolgu malzemesi alternatifleri. DEÜ Mühendislik Fakültesi Fen Ve Mühendislik Derg., 4(3), 13–26, 2002.
  • E. Ü. Deveci, Treatibility of wastewater containing 2,4 dichlorophenol using aclimated activated sludge microorganisms in packed upflow column bioreactor. Polish J. Environ. Stud., 27(5), 1997–2005, 2018.doi:10.15244/pjoes/78045.
  • A. Nuhoglu and B. Yalcin, Modelling of phenol removal in a batch reactor. Process Biochem., 40(3-4), 1233–1239, 2005.doi: 10.1016/j.procbio.2004.04.003.
  • M. S. Barlak, N. Değermenci, İ. Cengiz, H. Ucun Özel, and E. Yildiz, Comparison of phenol removal with ozonation in jet loop reactor and bubble column. J. Environ. Chem. Eng., 8(5), no. 104402, 2020. doi.org/10.1016/j.jece.2020.104402.
  • I. Gallizia, S. McClean, and I. M. Banat, Bacterial biodegradation of phenol and 2,4-dichlorophenol. J. Chem. Technol. Biotechnol., 78(9), 959–963, 2003.doi: 10.1002/jctb.890.
  • E. Sahinkaya and F. B. Dilek, Biodegradation of 4-chlorophenol by acclimated and unacclimated activated sludge—Evaluation of biokinetic coefficients. Environ. Res., 99(2), 2, 243–252, 2005. https://doi.org/10.1016/j.envres.2004.11.005.
  • K. Kumar Gupta and D. Devi, Biodegradation of low density polyethylene by selected bacillus sp. Gazi Univ. J. Sci., 32(3), 802–813, 2019.doi: 10.35378/gujs.496392.
  • B. Basak et al., Biodegradation of high concentration phenol using sugarcane bagasse immobilized Candida tropicalis PHB5 in a packed-bed column reactor. Ecotoxicol. Environ. Saf., 180, 317–325, 2019.
  • Y. Jiang, J. Wen, J. Bai, X. Jia, and Z. Hu, Biodegradation of phenol at high initial concentration by Alcaligenes faecalis. J. Hazard. Mater, 147(1), 672–676, 2007,.doi.org/10.1016/j.jhazmat.2007.05.031.
  • Z. Aksu and F. Gönen, Biosorption of phenol by immobilized activated sludge in a continuous packed bed: prediction of breakthrough curves. Process Biochem., 39(5), 599–613, 2004.doi.org/ 10.1016/S0032-9592(03)00132-8.
There are 29 citations in total.

Details

Primary Language Turkish
Subjects Environmental Engineering
Journal Section Environmental Engineering
Authors

Ece Ummu Deveci 0000-0002-7551-188X

Publication Date July 27, 2021
Submission Date September 23, 2020
Acceptance Date January 10, 2021
Published in Issue Year 2021

Cite

APA Deveci, E. U. (2021). Aklime edilmiş aktif çamur mikroorganizmaları ile sürekli sistem yukarı akışlı dolgulu kolonda 2,4- diklorofenol gideriminin incelenmesi. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 10(2), 456-464. https://doi.org/10.28948/ngumuh.799013
AMA Deveci EU. Aklime edilmiş aktif çamur mikroorganizmaları ile sürekli sistem yukarı akışlı dolgulu kolonda 2,4- diklorofenol gideriminin incelenmesi. NÖHÜ Müh. Bilim. Derg. July 2021;10(2):456-464. doi:10.28948/ngumuh.799013
Chicago Deveci, Ece Ummu. “Aklime Edilmiş Aktif çamur Mikroorganizmaları Ile sürekli Sistem Yukarı akışlı Dolgulu Kolonda 2,4- Diklorofenol Gideriminin Incelenmesi”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 10, no. 2 (July 2021): 456-64. https://doi.org/10.28948/ngumuh.799013.
EndNote Deveci EU (July 1, 2021) Aklime edilmiş aktif çamur mikroorganizmaları ile sürekli sistem yukarı akışlı dolgulu kolonda 2,4- diklorofenol gideriminin incelenmesi. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 10 2 456–464.
IEEE E. U. Deveci, “Aklime edilmiş aktif çamur mikroorganizmaları ile sürekli sistem yukarı akışlı dolgulu kolonda 2,4- diklorofenol gideriminin incelenmesi”, NÖHÜ Müh. Bilim. Derg., vol. 10, no. 2, pp. 456–464, 2021, doi: 10.28948/ngumuh.799013.
ISNAD Deveci, Ece Ummu. “Aklime Edilmiş Aktif çamur Mikroorganizmaları Ile sürekli Sistem Yukarı akışlı Dolgulu Kolonda 2,4- Diklorofenol Gideriminin Incelenmesi”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 10/2 (July 2021), 456-464. https://doi.org/10.28948/ngumuh.799013.
JAMA Deveci EU. Aklime edilmiş aktif çamur mikroorganizmaları ile sürekli sistem yukarı akışlı dolgulu kolonda 2,4- diklorofenol gideriminin incelenmesi. NÖHÜ Müh. Bilim. Derg. 2021;10:456–464.
MLA Deveci, Ece Ummu. “Aklime Edilmiş Aktif çamur Mikroorganizmaları Ile sürekli Sistem Yukarı akışlı Dolgulu Kolonda 2,4- Diklorofenol Gideriminin Incelenmesi”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, vol. 10, no. 2, 2021, pp. 456-64, doi:10.28948/ngumuh.799013.
Vancouver Deveci EU. Aklime edilmiş aktif çamur mikroorganizmaları ile sürekli sistem yukarı akışlı dolgulu kolonda 2,4- diklorofenol gideriminin incelenmesi. NÖHÜ Müh. Bilim. Derg. 2021;10(2):456-64.

download