Research Article
BibTex RIS Cite

Anahtarlamalı relüktans makinalarının moment salınımı minimizasyonu için modüler bir yükseltici-alçaltıcı sürücü sistemi

Year 2021, , 63 - 70, 15.01.2021
https://doi.org/10.28948/ngumuh.806323

Abstract

Bu makalede modüler yapıda olan üç fazlı bir alçaltıcı yükseltici anahtarlamalı relüktans motoru sürücü (ARM) sistemi önerilmiştir. Bu topolojide üç fazlı ARM sürücü üç adet tek-fazlı modülün paralel bağlanmasıyla oluşturulmuş olup, her tek-fazlı sürücü bir çift yönlü çalışan alçaltıcı-yükseltici DA/DA dönüştürücü ve bunun sonrasına bağlanmış bir H-köprü eviriciden oluşmaktadır. DC/DC dönüştürücü faz geriliminin doğrultulmuş formunu oluşturmakta ve H-köprülü evirici de oluşturulan gerilimin yönünü değiştirerek çıkış geriliminin polaritesini kontrol etmektedir. Bu yapı faz gerilimlerinin birbirinden bağımsız olarak ayarlanmasına önayak olarak, hızlı enerjilenmeyi ve demagnetizasyonu mümkün kılmaktadır. Bunun sonucunda komütasyon performansı iyileştirilmiş ve moment salınımı azaltılmıştır. Gerilim dinamik olarak sürekli regüle edildiğinden büyük DC-bara kondansatörlerine olan ihtiyaç ortadan kalkmış ve böylece sürücü boyutu ve maliyeti azaltılmıştır. Önerilen sistemin üstünlüğünü doğrulamak ve bu sitemi geleneksel sistemle karşılaştırmak üzere MATLAB®/Simulink® ortamında bir dizi benzetim çalışması yapılmıştır. Önerilen sistem ile sadece moment salınımı azaltılmamış daha yüksek bir amper başına moment oranı da elde edilmiştir.

Supporting Institution

TÜBİTAK

Project Number

118E172

References

  • R. Krishnan, Switched Reluctance Motor Drives: Modeling, Simulation, Analysis, Design, and Applications. CRC Press/Taylor & Francis Group, Boca Raton, FL, 2001.
  • B. Bilgin, J. W. Jiang, and A. Emadi, Switched Reluctance Motor Drives. CRC Press/Taylor & Francis Group, Boca Raton, FL, 2019.
  • Y. Yasa, D. Tekgun, Y. Sozer, J. Kutz, and J. Tylenda, Effect of distributed airgap in the stator for acoustic noise reduction in switched reluctance motors, IEEE Applied Power Electronics Conference and Exposition (APEC), page 633-639, Tampa, FL, USA, 26-30 March 2017.
  • T. Husain, Y. Sozer, and I. Husain, DC-Assisted bipolar switched reluctance machine, IEEE Trans. Ind. Appl., 53 (3), 2098–2109, 2017, https://doi.org/ 10.1109/tia.2017.2675363.
  • Y. Sozer and D. A. Torrey, Optimal turn-off angle control in the face of automatic turn-on angle control for switched-reluctance motors, IET Electr. Power Appl., 1 (3), 395, 2007, https://doi.org/10.1049/iet-epa:20060412.
  • H.-N. Huang, K.-W. Hu, and C.-M. Liaw, Switch-mode rectifier fed switched-reluctance motor drive with dynamic commutation shifting using DC-link current, IET Electr. Power Appl., 11 (4), 640–652, 2017, https://doi.org/10.1049/iet-epa.2016.0783.
  • T. Husain, A. Elrayyah, Y. Sozer, and I. Husain, Unified control for switched reluctance motors for wide speed operation. IEEE Trans. Ind. Electron., 66 (5), 3401–3411, 2019, https://doi.org/10.1109/tie.2018. 2849993.
  • T. Husain, A. Elrayyah, Y. Sozer, and I. Husain, Flux-weakening control of switched reluctance machines in rotating reference frame. IEEE Trans. Ind. Appl., 52 (1), 267–277, 2016, https://doi.org/10.1109/tia.2015. 2469778.
  • H. C. Chang and C. M. Liaw, Development of a compact switched-reluctance motor drive for EV propulsion with voltage-boosting and PFC charging capabilities. IEEE Trans. Veh. Technol., 58 (7), 3198–3215, 2009, https://doi.org/10.1109/TVT.2009. 2017546.
  • C. Gan, J. Wu, Y. Hu, S. Yang, W. Cao, and J. M. Guerrero, New integrated multilevel converter for switched reluctance motor drives in plug-in hybrid electric vehicles with flexible energy conversion. IEEE Trans. Power Electron., 32 (5), 3754–3766, 2017, https://doi.org/10.1109/TPEL.2016.2583467.
  • K. W. Hu, P. H. Yi, and C. M. Liaw, An EV SRM Drive powered by battery/supercapacitor with G2V and V2H/V2G capabilities. IEEE Trans. Ind. Electron., 62 (8), 4714–4727, 2015, https://doi.org/10.1109/tie. 2015.2396873.
  • J. W. Ahn, S. J. Park, and D. H. Lee, Hybrid excitation of SRM for reduction of vibration and acoustic noise. IEEE Trans. Ind. Electron., 51 (2), 374–380, 2004, https://doi.org/10.1109/tie.2004.825227.
  • A. K. Jain and N. Mohan, SRM power converter for operation with high demagnetization voltage. IEEE Trans. Ind. Appl., 41 (5), 1224–1231, 2005, https://doi .org/10.1109/TIA.2005.853390.
  • K. Tomczewski and K. Wrobel, Improved C-dump converter for switched reluctance motor drives, IET Power Electron., 7 (10), 2628–2635, 2014, https://doi .org/10.1049/iet-pel.2013.0738.
  • K.-W. Hu, J.-C. Wang, T.-S. Lin, and C.-M. Liaw, A switched-reluctance generator with interleaved interface DC–DC converter. IEEE Trans. Energy Convers., 30 (1), 273–284, 2015, https://doi.org/ 10.1109/tec.2014.2333585.
  • Y. H. Yoon, S. H. Song, T. W. Lee, C. Y. Won, and Y. R. Kim, High performance switched reluctance motor drive for automobiles using C-dump converters. IEEE Int. Symp. Ind. Electron., 2, 969–974, 2004, https://doi.org/10.1109/isie.2004.1571945.
  • A. K. Jain and N. Mohan, SRM power converter for operation with high demagnetization voltage, IEEE Trans. Ind. Appl., 41 (5), 1224–1231, 2005, https://doi. org/10.1109/tia.2005.853390.
  • R. Krishnan, S. Y. Park, and K. Ha, Theory and operation of a four-quadrant switched reluctance motor drive with a single controllable switch - The lowest cost four-quadrant brushless motor drive. IEEE Trans. Ind. Appl., 41 (4), 1047–1055, 2005, https://doi.org/ 10.1109/tia.2005.851019.
  • H. Chang and C. Liaw, An integrated driving/charging switched reluctance motor drive using three-phase power module. IEEE Trans. Ind. Electron., 58 (5), 1763–1775, 2011, https://doi.org/10.1109/tie.2010. 2051938.
  • Q. Sun, J. Wu, C. Gan, J. Si, J. Guo, and Y. Hu, Cascaded multiport converter for SRM-based hybrid electrical vehicle applications, IEEE Trans. Power Electron., 34 (12), 11940–11951, 2019, https://doi.org/ 10.1109/tpel.2019.2909187.
  • T. Kim, W. Qiao, and L. Qu, Power electronics-enabled self-X multicell batteries: A design toward smart batteries, IEEE Trans. Power Electron., 27 (11), 4723–4733, 2012, https://doi.org/10.1109/tpel.2012. 2183618.
  • L. Liu, H. Li, S.-H. Hwang, and J.-M. Kim, An energy-efficient motor drive with autonomous power regenerative control system based on cascaded multilevel inverters and segmented energy storage, IEEE Trans. Ind. Appl., 49 (1), 178–188, 2013, https://doi.org/10.1109/tia.2012.2229687.
  • H. Li, B. Bilgin, and A. Emadi, An improved torque sharing function for torque ripple reduction in switched reluctance machines. IEEE Trans. Power Electron., 34 (2), 1635–1644, 2019, https://doi.org/ 10.1109/tpel.2018.2835773.
  • J. Ye, B. Bilgin, and A. Emadi, An offline torque sharing function for torque ripple reduction in switched reluctance motor drives. IEEE Trans. Energy Convers., 30 (2), 726–735, 2015, https://doi.org/10.1109/ tec.2014.2383991.
  • T. Husain, A. Elrayyah, Y. Sozer, and I. Husain, Flux-weakening control of switched reluctance machines in rotating reference frame. IEEE Trans. Ind. Appl., 52 (1), 267–277, 2016, https://doi.org/10.1109/tia.2015. 2469778.
  • J. Sun, G.-Z. Cao, S.-D. Huang, Y. Peng, J. He, and Q.-Q. Qian, Sliding-mode-observer-based position estimation for sensorless control of the planar switched reluctance motor. IEEE Access, 7, 61034–61045, 2019, https://doi.org/10.1109/access.2019. 2913702.
  • H. N. Huang, K. W. Hu, Y. W. Wu, T. L. Jong, and C. M. Liaw, A current control scheme with back emf cancellation and tracking error adapted commutation shift for switched-reluctance motor drive. IEEE Trans. Ind. Electron., 63 (12), 7381–7392, 2016 , https://doi. org/10.1109/tie.2016.2594168.
  • M. Pittermann, J. Fort, J. Diesl, and V. Pavlicek, Converters for switched reluctance motor - topology comparison, Proc. 2018 18th Int. Conf. Mechatronics - Mechatronika, Brno, Czech Republic, 5-7 Dec. 2018

A modular buck-boost drive system for torque ripple minimization of switched reluctance machines

Year 2021, , 63 - 70, 15.01.2021
https://doi.org/10.28948/ngumuh.806323

Abstract

In this paper, a modular three-phase buck-boost switched reluctance machine (SRM) drive system is proposed. In this topology, the three-phase SRM drive is composed of three single-phase modules that are connected in parallel where each single-phase inverter module is formed with a bidirectional buck-boost DC/DC converter and a cascaded H-bridge inverter. The DC/DC converter generates the rectified form of the phase voltage and the H-bridge inverter alternates and controls the polarity of the output voltage. This structure allows one to adjust the phase voltages independently, which provides faster excitation and demagnetization for a wide range of operating conditions. Since the voltage is always regulated dynamically, the need for bulky DC-bus capacitors is eliminated; hence, the size and the cost of the drive system are reduced. To validate the superiority of the proposed system and compare it with the traditional one, a set of simulations are done in MATLAB®/Simulink®. Not only the torque ripple is reduced, but also a higher torque per ampere ratio is achieved with the proposed system.

Project Number

118E172

References

  • R. Krishnan, Switched Reluctance Motor Drives: Modeling, Simulation, Analysis, Design, and Applications. CRC Press/Taylor & Francis Group, Boca Raton, FL, 2001.
  • B. Bilgin, J. W. Jiang, and A. Emadi, Switched Reluctance Motor Drives. CRC Press/Taylor & Francis Group, Boca Raton, FL, 2019.
  • Y. Yasa, D. Tekgun, Y. Sozer, J. Kutz, and J. Tylenda, Effect of distributed airgap in the stator for acoustic noise reduction in switched reluctance motors, IEEE Applied Power Electronics Conference and Exposition (APEC), page 633-639, Tampa, FL, USA, 26-30 March 2017.
  • T. Husain, Y. Sozer, and I. Husain, DC-Assisted bipolar switched reluctance machine, IEEE Trans. Ind. Appl., 53 (3), 2098–2109, 2017, https://doi.org/ 10.1109/tia.2017.2675363.
  • Y. Sozer and D. A. Torrey, Optimal turn-off angle control in the face of automatic turn-on angle control for switched-reluctance motors, IET Electr. Power Appl., 1 (3), 395, 2007, https://doi.org/10.1049/iet-epa:20060412.
  • H.-N. Huang, K.-W. Hu, and C.-M. Liaw, Switch-mode rectifier fed switched-reluctance motor drive with dynamic commutation shifting using DC-link current, IET Electr. Power Appl., 11 (4), 640–652, 2017, https://doi.org/10.1049/iet-epa.2016.0783.
  • T. Husain, A. Elrayyah, Y. Sozer, and I. Husain, Unified control for switched reluctance motors for wide speed operation. IEEE Trans. Ind. Electron., 66 (5), 3401–3411, 2019, https://doi.org/10.1109/tie.2018. 2849993.
  • T. Husain, A. Elrayyah, Y. Sozer, and I. Husain, Flux-weakening control of switched reluctance machines in rotating reference frame. IEEE Trans. Ind. Appl., 52 (1), 267–277, 2016, https://doi.org/10.1109/tia.2015. 2469778.
  • H. C. Chang and C. M. Liaw, Development of a compact switched-reluctance motor drive for EV propulsion with voltage-boosting and PFC charging capabilities. IEEE Trans. Veh. Technol., 58 (7), 3198–3215, 2009, https://doi.org/10.1109/TVT.2009. 2017546.
  • C. Gan, J. Wu, Y. Hu, S. Yang, W. Cao, and J. M. Guerrero, New integrated multilevel converter for switched reluctance motor drives in plug-in hybrid electric vehicles with flexible energy conversion. IEEE Trans. Power Electron., 32 (5), 3754–3766, 2017, https://doi.org/10.1109/TPEL.2016.2583467.
  • K. W. Hu, P. H. Yi, and C. M. Liaw, An EV SRM Drive powered by battery/supercapacitor with G2V and V2H/V2G capabilities. IEEE Trans. Ind. Electron., 62 (8), 4714–4727, 2015, https://doi.org/10.1109/tie. 2015.2396873.
  • J. W. Ahn, S. J. Park, and D. H. Lee, Hybrid excitation of SRM for reduction of vibration and acoustic noise. IEEE Trans. Ind. Electron., 51 (2), 374–380, 2004, https://doi.org/10.1109/tie.2004.825227.
  • A. K. Jain and N. Mohan, SRM power converter for operation with high demagnetization voltage. IEEE Trans. Ind. Appl., 41 (5), 1224–1231, 2005, https://doi .org/10.1109/TIA.2005.853390.
  • K. Tomczewski and K. Wrobel, Improved C-dump converter for switched reluctance motor drives, IET Power Electron., 7 (10), 2628–2635, 2014, https://doi .org/10.1049/iet-pel.2013.0738.
  • K.-W. Hu, J.-C. Wang, T.-S. Lin, and C.-M. Liaw, A switched-reluctance generator with interleaved interface DC–DC converter. IEEE Trans. Energy Convers., 30 (1), 273–284, 2015, https://doi.org/ 10.1109/tec.2014.2333585.
  • Y. H. Yoon, S. H. Song, T. W. Lee, C. Y. Won, and Y. R. Kim, High performance switched reluctance motor drive for automobiles using C-dump converters. IEEE Int. Symp. Ind. Electron., 2, 969–974, 2004, https://doi.org/10.1109/isie.2004.1571945.
  • A. K. Jain and N. Mohan, SRM power converter for operation with high demagnetization voltage, IEEE Trans. Ind. Appl., 41 (5), 1224–1231, 2005, https://doi. org/10.1109/tia.2005.853390.
  • R. Krishnan, S. Y. Park, and K. Ha, Theory and operation of a four-quadrant switched reluctance motor drive with a single controllable switch - The lowest cost four-quadrant brushless motor drive. IEEE Trans. Ind. Appl., 41 (4), 1047–1055, 2005, https://doi.org/ 10.1109/tia.2005.851019.
  • H. Chang and C. Liaw, An integrated driving/charging switched reluctance motor drive using three-phase power module. IEEE Trans. Ind. Electron., 58 (5), 1763–1775, 2011, https://doi.org/10.1109/tie.2010. 2051938.
  • Q. Sun, J. Wu, C. Gan, J. Si, J. Guo, and Y. Hu, Cascaded multiport converter for SRM-based hybrid electrical vehicle applications, IEEE Trans. Power Electron., 34 (12), 11940–11951, 2019, https://doi.org/ 10.1109/tpel.2019.2909187.
  • T. Kim, W. Qiao, and L. Qu, Power electronics-enabled self-X multicell batteries: A design toward smart batteries, IEEE Trans. Power Electron., 27 (11), 4723–4733, 2012, https://doi.org/10.1109/tpel.2012. 2183618.
  • L. Liu, H. Li, S.-H. Hwang, and J.-M. Kim, An energy-efficient motor drive with autonomous power regenerative control system based on cascaded multilevel inverters and segmented energy storage, IEEE Trans. Ind. Appl., 49 (1), 178–188, 2013, https://doi.org/10.1109/tia.2012.2229687.
  • H. Li, B. Bilgin, and A. Emadi, An improved torque sharing function for torque ripple reduction in switched reluctance machines. IEEE Trans. Power Electron., 34 (2), 1635–1644, 2019, https://doi.org/ 10.1109/tpel.2018.2835773.
  • J. Ye, B. Bilgin, and A. Emadi, An offline torque sharing function for torque ripple reduction in switched reluctance motor drives. IEEE Trans. Energy Convers., 30 (2), 726–735, 2015, https://doi.org/10.1109/ tec.2014.2383991.
  • T. Husain, A. Elrayyah, Y. Sozer, and I. Husain, Flux-weakening control of switched reluctance machines in rotating reference frame. IEEE Trans. Ind. Appl., 52 (1), 267–277, 2016, https://doi.org/10.1109/tia.2015. 2469778.
  • J. Sun, G.-Z. Cao, S.-D. Huang, Y. Peng, J. He, and Q.-Q. Qian, Sliding-mode-observer-based position estimation for sensorless control of the planar switched reluctance motor. IEEE Access, 7, 61034–61045, 2019, https://doi.org/10.1109/access.2019. 2913702.
  • H. N. Huang, K. W. Hu, Y. W. Wu, T. L. Jong, and C. M. Liaw, A current control scheme with back emf cancellation and tracking error adapted commutation shift for switched-reluctance motor drive. IEEE Trans. Ind. Electron., 63 (12), 7381–7392, 2016 , https://doi. org/10.1109/tie.2016.2594168.
  • M. Pittermann, J. Fort, J. Diesl, and V. Pavlicek, Converters for switched reluctance motor - topology comparison, Proc. 2018 18th Int. Conf. Mechatronics - Mechatronika, Brno, Czech Republic, 5-7 Dec. 2018
There are 28 citations in total.

Details

Primary Language English
Subjects Electrical Engineering
Journal Section Electrical and Electronics Engineering
Authors

Burak Tekgün 0000-0003-2720-8816

Project Number 118E172
Publication Date January 15, 2021
Submission Date October 6, 2020
Acceptance Date December 13, 2020
Published in Issue Year 2021

Cite

APA Tekgün, B. (2021). A modular buck-boost drive system for torque ripple minimization of switched reluctance machines. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 10(1), 63-70. https://doi.org/10.28948/ngumuh.806323
AMA Tekgün B. A modular buck-boost drive system for torque ripple minimization of switched reluctance machines. NÖHÜ Müh. Bilim. Derg. January 2021;10(1):63-70. doi:10.28948/ngumuh.806323
Chicago Tekgün, Burak. “A Modular Buck-Boost Drive System for Torque Ripple Minimization of Switched Reluctance Machines”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 10, no. 1 (January 2021): 63-70. https://doi.org/10.28948/ngumuh.806323.
EndNote Tekgün B (January 1, 2021) A modular buck-boost drive system for torque ripple minimization of switched reluctance machines. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 10 1 63–70.
IEEE B. Tekgün, “A modular buck-boost drive system for torque ripple minimization of switched reluctance machines”, NÖHÜ Müh. Bilim. Derg., vol. 10, no. 1, pp. 63–70, 2021, doi: 10.28948/ngumuh.806323.
ISNAD Tekgün, Burak. “A Modular Buck-Boost Drive System for Torque Ripple Minimization of Switched Reluctance Machines”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 10/1 (January 2021), 63-70. https://doi.org/10.28948/ngumuh.806323.
JAMA Tekgün B. A modular buck-boost drive system for torque ripple minimization of switched reluctance machines. NÖHÜ Müh. Bilim. Derg. 2021;10:63–70.
MLA Tekgün, Burak. “A Modular Buck-Boost Drive System for Torque Ripple Minimization of Switched Reluctance Machines”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, vol. 10, no. 1, 2021, pp. 63-70, doi:10.28948/ngumuh.806323.
Vancouver Tekgün B. A modular buck-boost drive system for torque ripple minimization of switched reluctance machines. NÖHÜ Müh. Bilim. Derg. 2021;10(1):63-70.

download