Research Article
BibTex RIS Cite

Su içeriği ve ısıl kür süresinin atık bazalt tozu esaslı geopolimer harçların fiziksel ve mekanik özelliklerine etkisi

Year 2021, , 328 - 332, 15.01.2021
https://doi.org/10.28948/ngumuh.836998

Abstract

Bu çalışmada bazalt taşı kesim atıkları ile üretilen geopolimer harçların mekanik ve fiziksel özellikleri araştırılmıştır. Bu amaçla 4 farklı su içeriği ile geopolimer harçlar üretilmiştir. Harçlarda aktivatör olarak sodyum silikat kullanılmıştır. Üretilen geopolimer harçlar 4, 8 ve 24 saat olmak üzere 3 farklı sürede 90ºC’de ısıl küre tabi tutulmuştur. Harçlar üzerinde yayılma, su emme-boşluk oranı, eğilme dayanımı ve basınç dayanımı deneyleri gerçekleştirilmiştir. En yüksek dayanım değerlerine en düşük su içeriği ile üretilen harçlarda ulaşılmıştır. 4 saat, 8 saat ve 24 saat ısıl küre tabi tutulan harçlarda en yüksek 28 günlük basınç dayanımları sırasıyla 8,1 MPa, 17,7 MPa ve 28,6 MPa olarak elde edilmiştir. Bu deneysel çalışmanın bir sonucu olarak, atık bazalt tozunun geopolimer üretiminde değerlendirilebileceği ve bu sayede çevresel ve ekonomik fayda sağlanabileceği söylenebilir.

References

  • G. Kürklü and G. Görhan, (2019). Investigation of usability of quarry dust waste in fly ash-based geopolymer adhesive mortar production. Construction and Building Materials, 217, 498-506, 2019. https://doi.org/10.1016/j.conbuildmat.2019.05.104.
  • İ. Tekin, Properties of NaOH activated geopolymer with marble, travertine and volcanic tuff wastes. Construction and Building Materials, 127, 607-617, 2016.https://doi.org/10.1016/j.conbuildmat.2016.10.038.
  • J. Davidovits, Geopolymers: Ceramic-like inorganic polymers, J. Ceram. Sci. Technol. 8, 335–350, 2017. https://doi.org/10.4416/JCST2017-00038.
  • M. Kaya, M. Uysal, K. Yılmaz, O. Karahan, C. D. Atiş, Mechanical properties of class C and F fly ash geopolymer mortars. Gradevinar, 72 (4), 297-309, 2020. https://doi.org/10.14256/JCE.2421.2018.
  • Ü. Yurt, High performance cementless composites from alkali activated GGBFS. Construction and Building Materials, 264, 120222, 2020. https://doi.org/10.1016/j.conbuildmat.2020.120222.
  • M. Rostami and K. Behfarnia, The effect of silica fume on durability of alkali activated slag concrete. Construction and building materials, 134, 262-268, 2017.https://doi.org/10.1016/j.conbuildmat.2016.12.072.
  • S. Çelikten, Mechanical and microstructural properties of waste andesite dust-based geopolymer mortars. Advanced Powder Technology, InPress, 2020. https://doi.org/ 10.1016/j.apt.2020.10.011.
  • B. Coppola, P. Palmero, L. Montanaro, and J. M. Tulliani, Alkali-activation of marble sludge: Influence of curing conditions and waste glass addition. Journal of the European Ceramic Society, 40 (11), 3776-3787, 2020. https://doi.org/10.1016/j.jeurceramsoc.2019. 11.068.
  • U. Durak, O. Karahan, B. Uzal, S. İlkentapar, and C. D. Atiş, Influence of nano SiO2 and nano CaCO3 particles on strength, workability, and microstructural properties of fly ash‐based geopolymer. Structural Concrete, 2020. https://doi.org/10.1002/suco.201900479.
  • C. Bilim and C. D. Atiş, Alkali activation of mortars containing different replacement levels of ground granulated blast furnace slag. Construction and Building Materials, 28(1), 708-712, 2012. https://doi. org/10.1016/j.conbuildmat.2011.10.018.
  • İ. İ. Atabey, O. Karahan, C. Bilim, C.D. Atiş, The influence of activator type and quantity on the transport properties of class F fly ash geopolymer. Construction and Building Materials, 264, 120268, 2020. https://doi.org/10.1016/j.conbuildmat.2020.120268.
  • S. Çelikten, M. Sarıdemir, and İ.Ö. Deneme, Mechanical and microstructural properties of alkali-activated slag and slag+ fly ash mortars exposed to high temperature. Construction and Building Materials, 217, 50-61, 2019. https://doi.org/10.1016/j.conbuildmat. 2019.05.055.
  • C. Villa, E. T. Pecina, R. Torres, and L. Gómez, Geopolymer synthesis using alkaline activation of natural zeolite. Construction and Building Materials, 24 (11), 2084-2090, 2010. https://doi.org/10.1016/ j.conbuildmat.2010.04.052.
  • Ü. Yurt, B. Dündar, and E. Çınar, Jeopolimer betonlarda sülfürik asit etkisinin araştırılması. Düzce Üniversitesi Bilim ve Teknoloji Dergisi, 8 (2), 1548-1561,2020. https://doi.org/10.29130/dubited.644176.
  • M. Sarıdemir, Alkali ile aktive edilmiş öğütülmüş diatomitli harçların dayanım özellikleri. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 5(2), 124-134, 2016. https://doi.org/10.28948/ ngumuh.294970.
  • Ü. Yurt, An experimental study on fracture energy of alkali activated slag composites incorporated different fibers. Journal of Building Engineering, 101519, 2020. https://doi.org/10.1016/j.jobe.2020.101519.
  • İ. İ Atabey, O. Karahan, C. Bilim, and C. Atiş, Very high strength Na2SiO3 and NaOH activated fly ash based geopolymer mortar. Cement Wapno Beton, 25, 292-305, 2020. https://doi.org/10.32047/cwb.2020.25. 4.4.
  • V. Akyüncü, and M. T. Cihan, Bazalt tozu katkılı harçların mekanik ve geçirimlilik özeliklerinin araştırılması. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 21 (2), 697-707, 2019. https://doi.org/10.25092/ baunfbed.636998.
  • H. Dilbas, and Ö. Çakır, Influence of basalt fiber on physical and mechanical properties of treated recycled aggregate concrete. Construction and Building Materials, 254, 119216, 2020. https://doi.org/10.1016/ j.conbuildmat.2020.119216.
  • P. P. Li, Q. L. Yu, and H. J. H. Brouwers, Effect of coarse basalt aggregates on the properties of Ultra-high Performance Concrete (UHPC). Construction and Building Materials, 170, 649-659, 2018. https://doi.org/ 10.1016/j.conbuildmat.2018.03.109.
  • M. Dobiszewska, and A. Beycioğlu, Investigating the influence of waste basalt powder on selected properties of cement paste and mortar. Materials Science and Engineering, 245 (2), 2017. https://doi.org/10.1088/ 1757-899X/245/2/022027.
  • Çelikten S, Aktivatör türünün atık bazalt tozu esaslı jeopolimer harçların dayanım özelliklerine etkisi. Uluslararası Marmara Fen ve Sosyal Bilimler Kongresi IMASCON, Online/Kocaeli/Türkiye. 4-5 Kasım 2020.
  • TS EN 1015-3, Kagir harcı- Deney metotları- Bölüm 3: Taze harç kıvamının tayini (yayılma tablası ile). Türk Standartları Enstitüsü, Ankara, 2006.
  • TS EN 196 -1, Çimento Deney Metotları - Bölüm 1: Dayanım Tayini. Türk Standartları Enstitüsü, Ankara, 2016.
  • S. Thokchom, P. Ghosh, and S. Ghosh, Effect of water absorption, porosity and sorptivity on durability of geopolymer mortars. ARPN Journal of engineering and Applied Sciences, 4(7), 28-32, 2009.
  • J. N. Y. Djobo, A. Elimbi, H. K. Tchakouté, and S Kumar, Mechanical properties and durability of volcanic ash based geopolymer mortars. Construction and Building Materials, 124, 606-614, 2016. https://doi.org/10.1016/ j.conbuildmat.2016.07.141.
  • Z. Zuhua, Y. Xiao, Z. Huajun, and C. Yue, Role of water in the synthesis of calcined kaolin-based geopolymer, Applied. Clay Science, 43 (2) 218–23 2009. https://doi.org/10.1016/j.clay.2008.09.003.
  • M. Lizcano, A. Gonzalez, S. Basu, K. Lozano, and M. Radovic, Effects of water content and chemical composition on structural properties of alkaline activated metakaolin‐based geopolymers. Journal of the American Ceramic Society, 95(7), 2169-2177, 2012 https://doi.org/10.1111/j.1551-2916.2012.05184.x.
  • R. Pouhet, M. Cyr, R. Bucher, Influence of the initial water content in flash calcined metakaolin-based geopolymer Construction and Building Materials, 201, 421-429, 2019. https://doi.org/10.1016/j.conbuildmat. 2018.12.201.
  • A. A. Aliabdo, M. Abd Elmoaty, and H. A. Salem, Effect of water addition, plasticizer and alkaline solution constitution on fly ash based geopolymer concrete performance. Construction and Building Materials, 121, 694-703, 2016. https://doi.org/10.1016/ j.conbuildmat.2016.06.062.
  • P. R. Vora, and U. V. Dave, Parametric studies on compressive strength of geopolymer concrete. Procedia Engineering, 51, 210-219, 2013. https://doi.org/ 10.1016/j.proeng.2013.01.030.
  • A. A. Aliabdo, M. Abd Elmoaty, and H. A. Salem, Effect of cement addition, solution resting time and curing characteristics on fly ash based geopolymer concrete performance. Construction and building materials, 123, 581-593 2016. https://doi.org/10.1016/ j.conbuildmat. 2016.07.043.
  • B. H. Mo, H. Zhu, X. M. Cui, Y. He, S. Y. Gong, Effect of curing temperature on geopolymerization of metakaolin-based geopolymers. Applied clay science, 99, 144-148, 2014. https://doi.org/10.1016/j.clay.2014. 06.024.
  • S. Celikten, and B. Isikdag, Strength development of ground perlite-based geopolymer mortars. Advances in concrete construction, 9(3), 227-234, 2020. https://doi.org/10.12989/acc.2020.9.3.227

The effects of water content and thermal curing time on physical and mechanical properties of waste basalt powder based geopolymer mortars

Year 2021, , 328 - 332, 15.01.2021
https://doi.org/10.28948/ngumuh.836998

Abstract

In this study, the mechanical and physical properties of geopolymer mortars produced with cutting waste of basalt stone has been investigated. For this purpose, geopolymer mortars made with four different water content. Sodium silicate was used as activator in the mortars. The produced mortars subjected to heat-curing for 4, 8 and 24 hours at 90ºC, separately. The flowing, water absorption-porosity, flexural and compressive strength tests were performed on the mortars. The highest strength values were obtained on the mortars made with the lowest water content. The highest 28-day compressive strengths were obtained as 8.1 MPa, 17.7 MPa and 28.6 MPa in mortars heat cured for 4 hours, 8 hours and 24 hours, respectively. Besides, it can be concluded that the waste basalt powder can be utilized for the geopolymer production and thus environmental and economic benefits can be obtained.

References

  • G. Kürklü and G. Görhan, (2019). Investigation of usability of quarry dust waste in fly ash-based geopolymer adhesive mortar production. Construction and Building Materials, 217, 498-506, 2019. https://doi.org/10.1016/j.conbuildmat.2019.05.104.
  • İ. Tekin, Properties of NaOH activated geopolymer with marble, travertine and volcanic tuff wastes. Construction and Building Materials, 127, 607-617, 2016.https://doi.org/10.1016/j.conbuildmat.2016.10.038.
  • J. Davidovits, Geopolymers: Ceramic-like inorganic polymers, J. Ceram. Sci. Technol. 8, 335–350, 2017. https://doi.org/10.4416/JCST2017-00038.
  • M. Kaya, M. Uysal, K. Yılmaz, O. Karahan, C. D. Atiş, Mechanical properties of class C and F fly ash geopolymer mortars. Gradevinar, 72 (4), 297-309, 2020. https://doi.org/10.14256/JCE.2421.2018.
  • Ü. Yurt, High performance cementless composites from alkali activated GGBFS. Construction and Building Materials, 264, 120222, 2020. https://doi.org/10.1016/j.conbuildmat.2020.120222.
  • M. Rostami and K. Behfarnia, The effect of silica fume on durability of alkali activated slag concrete. Construction and building materials, 134, 262-268, 2017.https://doi.org/10.1016/j.conbuildmat.2016.12.072.
  • S. Çelikten, Mechanical and microstructural properties of waste andesite dust-based geopolymer mortars. Advanced Powder Technology, InPress, 2020. https://doi.org/ 10.1016/j.apt.2020.10.011.
  • B. Coppola, P. Palmero, L. Montanaro, and J. M. Tulliani, Alkali-activation of marble sludge: Influence of curing conditions and waste glass addition. Journal of the European Ceramic Society, 40 (11), 3776-3787, 2020. https://doi.org/10.1016/j.jeurceramsoc.2019. 11.068.
  • U. Durak, O. Karahan, B. Uzal, S. İlkentapar, and C. D. Atiş, Influence of nano SiO2 and nano CaCO3 particles on strength, workability, and microstructural properties of fly ash‐based geopolymer. Structural Concrete, 2020. https://doi.org/10.1002/suco.201900479.
  • C. Bilim and C. D. Atiş, Alkali activation of mortars containing different replacement levels of ground granulated blast furnace slag. Construction and Building Materials, 28(1), 708-712, 2012. https://doi. org/10.1016/j.conbuildmat.2011.10.018.
  • İ. İ. Atabey, O. Karahan, C. Bilim, C.D. Atiş, The influence of activator type and quantity on the transport properties of class F fly ash geopolymer. Construction and Building Materials, 264, 120268, 2020. https://doi.org/10.1016/j.conbuildmat.2020.120268.
  • S. Çelikten, M. Sarıdemir, and İ.Ö. Deneme, Mechanical and microstructural properties of alkali-activated slag and slag+ fly ash mortars exposed to high temperature. Construction and Building Materials, 217, 50-61, 2019. https://doi.org/10.1016/j.conbuildmat. 2019.05.055.
  • C. Villa, E. T. Pecina, R. Torres, and L. Gómez, Geopolymer synthesis using alkaline activation of natural zeolite. Construction and Building Materials, 24 (11), 2084-2090, 2010. https://doi.org/10.1016/ j.conbuildmat.2010.04.052.
  • Ü. Yurt, B. Dündar, and E. Çınar, Jeopolimer betonlarda sülfürik asit etkisinin araştırılması. Düzce Üniversitesi Bilim ve Teknoloji Dergisi, 8 (2), 1548-1561,2020. https://doi.org/10.29130/dubited.644176.
  • M. Sarıdemir, Alkali ile aktive edilmiş öğütülmüş diatomitli harçların dayanım özellikleri. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 5(2), 124-134, 2016. https://doi.org/10.28948/ ngumuh.294970.
  • Ü. Yurt, An experimental study on fracture energy of alkali activated slag composites incorporated different fibers. Journal of Building Engineering, 101519, 2020. https://doi.org/10.1016/j.jobe.2020.101519.
  • İ. İ Atabey, O. Karahan, C. Bilim, and C. Atiş, Very high strength Na2SiO3 and NaOH activated fly ash based geopolymer mortar. Cement Wapno Beton, 25, 292-305, 2020. https://doi.org/10.32047/cwb.2020.25. 4.4.
  • V. Akyüncü, and M. T. Cihan, Bazalt tozu katkılı harçların mekanik ve geçirimlilik özeliklerinin araştırılması. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 21 (2), 697-707, 2019. https://doi.org/10.25092/ baunfbed.636998.
  • H. Dilbas, and Ö. Çakır, Influence of basalt fiber on physical and mechanical properties of treated recycled aggregate concrete. Construction and Building Materials, 254, 119216, 2020. https://doi.org/10.1016/ j.conbuildmat.2020.119216.
  • P. P. Li, Q. L. Yu, and H. J. H. Brouwers, Effect of coarse basalt aggregates on the properties of Ultra-high Performance Concrete (UHPC). Construction and Building Materials, 170, 649-659, 2018. https://doi.org/ 10.1016/j.conbuildmat.2018.03.109.
  • M. Dobiszewska, and A. Beycioğlu, Investigating the influence of waste basalt powder on selected properties of cement paste and mortar. Materials Science and Engineering, 245 (2), 2017. https://doi.org/10.1088/ 1757-899X/245/2/022027.
  • Çelikten S, Aktivatör türünün atık bazalt tozu esaslı jeopolimer harçların dayanım özelliklerine etkisi. Uluslararası Marmara Fen ve Sosyal Bilimler Kongresi IMASCON, Online/Kocaeli/Türkiye. 4-5 Kasım 2020.
  • TS EN 1015-3, Kagir harcı- Deney metotları- Bölüm 3: Taze harç kıvamının tayini (yayılma tablası ile). Türk Standartları Enstitüsü, Ankara, 2006.
  • TS EN 196 -1, Çimento Deney Metotları - Bölüm 1: Dayanım Tayini. Türk Standartları Enstitüsü, Ankara, 2016.
  • S. Thokchom, P. Ghosh, and S. Ghosh, Effect of water absorption, porosity and sorptivity on durability of geopolymer mortars. ARPN Journal of engineering and Applied Sciences, 4(7), 28-32, 2009.
  • J. N. Y. Djobo, A. Elimbi, H. K. Tchakouté, and S Kumar, Mechanical properties and durability of volcanic ash based geopolymer mortars. Construction and Building Materials, 124, 606-614, 2016. https://doi.org/10.1016/ j.conbuildmat.2016.07.141.
  • Z. Zuhua, Y. Xiao, Z. Huajun, and C. Yue, Role of water in the synthesis of calcined kaolin-based geopolymer, Applied. Clay Science, 43 (2) 218–23 2009. https://doi.org/10.1016/j.clay.2008.09.003.
  • M. Lizcano, A. Gonzalez, S. Basu, K. Lozano, and M. Radovic, Effects of water content and chemical composition on structural properties of alkaline activated metakaolin‐based geopolymers. Journal of the American Ceramic Society, 95(7), 2169-2177, 2012 https://doi.org/10.1111/j.1551-2916.2012.05184.x.
  • R. Pouhet, M. Cyr, R. Bucher, Influence of the initial water content in flash calcined metakaolin-based geopolymer Construction and Building Materials, 201, 421-429, 2019. https://doi.org/10.1016/j.conbuildmat. 2018.12.201.
  • A. A. Aliabdo, M. Abd Elmoaty, and H. A. Salem, Effect of water addition, plasticizer and alkaline solution constitution on fly ash based geopolymer concrete performance. Construction and Building Materials, 121, 694-703, 2016. https://doi.org/10.1016/ j.conbuildmat.2016.06.062.
  • P. R. Vora, and U. V. Dave, Parametric studies on compressive strength of geopolymer concrete. Procedia Engineering, 51, 210-219, 2013. https://doi.org/ 10.1016/j.proeng.2013.01.030.
  • A. A. Aliabdo, M. Abd Elmoaty, and H. A. Salem, Effect of cement addition, solution resting time and curing characteristics on fly ash based geopolymer concrete performance. Construction and building materials, 123, 581-593 2016. https://doi.org/10.1016/ j.conbuildmat. 2016.07.043.
  • B. H. Mo, H. Zhu, X. M. Cui, Y. He, S. Y. Gong, Effect of curing temperature on geopolymerization of metakaolin-based geopolymers. Applied clay science, 99, 144-148, 2014. https://doi.org/10.1016/j.clay.2014. 06.024.
  • S. Celikten, and B. Isikdag, Strength development of ground perlite-based geopolymer mortars. Advances in concrete construction, 9(3), 227-234, 2020. https://doi.org/10.12989/acc.2020.9.3.227
There are 34 citations in total.

Details

Primary Language Turkish
Subjects Civil Engineering
Journal Section Civil Engineering
Authors

Serhat Çelikten 0000-0001-8154-7590

İsmail İsa Atabey 0000-0002-7026-5579

Publication Date January 15, 2021
Submission Date December 7, 2020
Acceptance Date December 18, 2020
Published in Issue Year 2021

Cite

APA Çelikten, S., & Atabey, İ. İ. (2021). Su içeriği ve ısıl kür süresinin atık bazalt tozu esaslı geopolimer harçların fiziksel ve mekanik özelliklerine etkisi. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 10(1), 328-332. https://doi.org/10.28948/ngumuh.836998
AMA Çelikten S, Atabey İİ. Su içeriği ve ısıl kür süresinin atık bazalt tozu esaslı geopolimer harçların fiziksel ve mekanik özelliklerine etkisi. NÖHÜ Müh. Bilim. Derg. January 2021;10(1):328-332. doi:10.28948/ngumuh.836998
Chicago Çelikten, Serhat, and İsmail İsa Atabey. “Su içeriği Ve ısıl kür süresinin atık Bazalt Tozu Esaslı Geopolimer harçların Fiziksel Ve Mekanik özelliklerine Etkisi”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 10, no. 1 (January 2021): 328-32. https://doi.org/10.28948/ngumuh.836998.
EndNote Çelikten S, Atabey İİ (January 1, 2021) Su içeriği ve ısıl kür süresinin atık bazalt tozu esaslı geopolimer harçların fiziksel ve mekanik özelliklerine etkisi. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 10 1 328–332.
IEEE S. Çelikten and İ. İ. Atabey, “Su içeriği ve ısıl kür süresinin atık bazalt tozu esaslı geopolimer harçların fiziksel ve mekanik özelliklerine etkisi”, NÖHÜ Müh. Bilim. Derg., vol. 10, no. 1, pp. 328–332, 2021, doi: 10.28948/ngumuh.836998.
ISNAD Çelikten, Serhat - Atabey, İsmail İsa. “Su içeriği Ve ısıl kür süresinin atık Bazalt Tozu Esaslı Geopolimer harçların Fiziksel Ve Mekanik özelliklerine Etkisi”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 10/1 (January 2021), 328-332. https://doi.org/10.28948/ngumuh.836998.
JAMA Çelikten S, Atabey İİ. Su içeriği ve ısıl kür süresinin atık bazalt tozu esaslı geopolimer harçların fiziksel ve mekanik özelliklerine etkisi. NÖHÜ Müh. Bilim. Derg. 2021;10:328–332.
MLA Çelikten, Serhat and İsmail İsa Atabey. “Su içeriği Ve ısıl kür süresinin atık Bazalt Tozu Esaslı Geopolimer harçların Fiziksel Ve Mekanik özelliklerine Etkisi”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, vol. 10, no. 1, 2021, pp. 328-32, doi:10.28948/ngumuh.836998.
Vancouver Çelikten S, Atabey İİ. Su içeriği ve ısıl kür süresinin atık bazalt tozu esaslı geopolimer harçların fiziksel ve mekanik özelliklerine etkisi. NÖHÜ Müh. Bilim. Derg. 2021;10(1):328-32.

download