Research Article
BibTex RIS Cite

Comparison of mechanical and geometrical properties of octet lattice structures using the electron beam melting

Year 2022, , 232 - 238, 14.01.2022
https://doi.org/10.28948/ngumuh.911834

Abstract

Additive manufacturing methods allow to produce complex geometries such as lattice structures. Aim of this study is to identify octet truss lattice structure’s mechanical capabilities. Firstly, octet truss structure designed and used to fill specimens. Specimens 1, 2 and 4 with wall and lattice structure, specimen 3 only with lattice structure and also a filled specimen are modelled. Modelled tensile specimens are additively manufactured from Ti-6Al-4V with Electron Beam Melting method. A comparison between specimens having same structural design (1, 2 and 4) has been made to gain insight about consistency of EBM method. Tensile experiments have been made with all of the specimens and tensile strength difference that can be considered significant determined among specimen 1, 2&4. Specimen 3 resulted not to be a practical approach as it showed poor tensile strength values. Lastly, tensile stress results of filled specimen are shared and compared with the other types of specimens. These results are providing a good sight for assessment of both octet truss structure and EBM manufacturing technology.

References

  • L. Yang, Additive manufacturing of metal cellular structures: Design and fabrication. JOM: Journal of the Minerals, Metals & Materials Society, 67(3), 608-615, 2015. https://doi.org/10.1007/s11837-015-1322-y.
  • L. Kolbus, Comparison of residual stresses in ınconel 718 simple parts made by electron beam melting and direct laser metal sintering. Metallurgical and Materials Transactions A, 46(3), 1419-1439, 2015. https://doi.org/10.1007/s11661-014-2722-2.
  • L.E. Murr, Microstructure and mechanical behaviour of Ti-6Al-4V produced by rapid-layer manufacturing, for biomedical applications. Journal of the Mechanical Behaviour of Biomedical Materials, 2(1), 20-32, 2009. https://doi.org/ 10.1016/j.jmbbm.2008.05.004
  • A. Saigal, J. Tumbleston, H. Vogel, C. Fox, N. and N. Mackay, Mechanical response of octahedral and octet-truss lattice structures fabricated using the CLIP technology. department of mechanical engineering, Tufts University, 200 College Avenue, Medford, USA,2016. https://doi.org/10.12783/ dtcse/cmsam2016/3572.
  • D. Sypeck and H. Wadley, Cellular metal truss core sandwich structures. Advanced Engineering Materials, 759-764, 2005. https://doi.org/ 10.1007/s10443-005-1129-z.
  • N. Z. M. Zaid, M. R. M. Rejab, and N. A. N. Mohamed, Sandwich structure based on corrugated-core: A Review. MATEC Web of Conferences 74, ICMER 2015. https://doi.org 10.1051/matecconf/20167400029
  • L. Dong and H. Wadley, Mechanical Properties of carbon fiber composite octet-truss lattice structures. Computers Science and Technology, 26(33), 119, 2015.https://doi.org/10.1016/j.compscitech.2015.09.022.
  • L. Dong, V. Deshpande and H. Wadley, Mechanical response of Ti-6Al-4V octet-truss lattice structures. International Journal of Solids and Structures, 107(124), 60-61, 2015. https://doi.org /10.1016/j.ijsolstr.2015.02.020.
  • V. Deshpande, N. A. Fleck and M. F. Ashby, Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids, 49(8), 1747-1769, 2001. https://doi.org/ 10.1016/S0022-5096(01)00010-2.
  • W. P. Syam, W. Jianwei, B. Zhao, I. Maskery, W. Elmadih and R. Leach, Design and analysis of strut-based lattice structures for vibration isolation. Precision Engineering, 2017. https://doi.org/ 10.1016/j.precisioneng.2017.09.010.
  • N.A. Fleck, An overview of the mechanical properties of foams and periodic lattice materials. Cambridge University Engineering Department, 2004.
  • A. Vigliotti and D. Pasini, Stiffness and strength of tridimensional periodic lattices. Computational Methods Applications Mechanical Engineering, 27(43), 229-232, 2012. https://doi.org/10.1016/ j.cma.2012.03.018
  • R.B. Fuller, 1961, Octet Truss. U.S. Patent No. 2,986,241
  • K. Finnegan, G. Kooistra and H.N. Wadley, The compressive response of carbon fiber composite pyramidal truss sandwich cores. Int.J.Mater.Res. 98, 1264-1272, 2007. https://doi.org10.3139/ 146.101594.
  • Q. Li, E.Y. Chen and R.B. Douglas and D.C. Dunand, Mechanical properties of cast Ti–6Al–4V lattice block structures. Metall. Mater. Trans. A 39, 441–449, 2008. https://doi.org10.1007/s11661-007-9440-y.
  • Q. Li, E.Y. Chen, D.R. Bice and D.C. Dunand Mechanical properties of cast Ti–6Al–2Sn–4Zr–2Mo lattice block structures. Adv. Eng. Mater. 10, 939–942, 2008. https://doi.org 10.1002/ adem.200800114.
  • A. Torrents, T.A. Schaedler, A.J. Jacobsen, W.B. Carter, and L. Valdevit, Characterization of nickel-based microlattice materials with structural hierarchy from the nanometer to the millimeter scale. Acta Mater., 60, 3511–3523, 2012. https://doi.org/10.1016/j.actamat.2012.03.007
  • X. Zheng, H. Lee, T.H.Weisgraber, M. Shusteff, J. Deotte, E.B. Duoss, .D. Kuntz et al., Ultralight, ultra-stiff mechanical metamaterials. Science 344, 1373–1377, 2014. https://doi.org 10.1126/ science.1252291.
  • K.C. Cheung and N. Gershenfeld, Reversibly assembled cellular composite materials. Science 341, 1219–1221, 2013. https://doi.org 10.1126/science.1240889.
  • L.J. Gibson and M.F. Ashby, Cellular Solids: Structure and Properties. Cambridge University Press,1999.https://doi.org/10.1017/CBO9781139878326.
  • D.W. Rosen, Computer-aided design for additive manufacturing of cellular structures. Comput. Aided Des. Appl. 4, 585–594, 2007.https://doi.org/ 10.1080/16864360.2007.10738493.
  • C.B. Williams, J.K. Cochran and D.W. Rosen, Additive manufacturing of metallic cellular materials via three-dimensional printing. Int. J. Adv. Manuf. Technol. 53, 231–239, 2011. https://doi.org /10.1007/s00170-010-2812-2.
  • M.K. Kulekci, Magnesium and its alloys applications in automotive industry. Int. J. Adv. Manuf. Technol. 39, 851–865, 2008. https://doi.org /10.1007/s00170-007-1279-2.
  • J.R. Couper, W.R. Penney and J.R. Fair, Chemical Process Equipment revised 2nd Edition: Selection and Design, second ed. Gulf Professional Publishing, 2009.
  • R.R. Boyer and R.D. Briggs, The use of titanium alloys in the aerospace industry. J. Mater. Eng. Perform. 14(6), 681–685, 2005. https://doi.org 10.1361/105994905X75448.
  • R. Boyer and E.W. Collings, (Eds.), Materials Properties Handbook: Titanium Alloys. ASM International, 1993.
  • W.D. Brewer, R.K. Bird and A.W. Terryl, Titanium alloys and processing for high speed aircraft. Mater. Sci. Eng., A 243, 299–304, 1998. https://doi.org/10.1016/S0921-5093(97)00818-6.
  • J. Wang, A.G. Evans, K. Dharmasena and H.N.G. Wadley, On the performance of truss panels with Kagome cores. Int. J. Solids Struct. 40, 6981–6988, 2003. https://doi.org/10.1016/S0020-7683(03)00349-4.
  • P. Heinl, et al., Cellular Titanium by Selective Electron Beam Melting. Adv. Eng. Mater. 9(5), 360–364, 2007. https://doi.org/10.1002/ adem.200700025.
  • G. Chahine, et al., The Design and Production of Ti-6Al-4V ELI Customized Dental Implants. JOM November, 60, 50–55, 2008. https://doi.org /10.1007/s11837-008-0148-2.
  • E.F. Bradley, Superalloys; A Technical Guide; ASM International: Materials Park, OH, 1988.
  • S. Biamino, et al., Electron Beam Melting of Ti-48Al-2Cr-2Nb Alloy: Microstructure and Mechanical Properties Investigation. Intermetallics 19, 776–781, 2011. https://doi.org/ 10.1016/ j.intermet.2010.11.017.
  • M. Cronskär, The Use of Additive Manufacturing in the Custom Design of Orthopedic Implants. Thesis for the degree of Licentiate of Technology, Östersund, Sweden, 2011.
  • L.E. Murr, et al., Advanced Metal Powder Based Manufacturing of Complex Components by Electron Beam Melting. Mater. Technol., 24(3), 180–190, 2009. https://doi.org/10.1179/106678509X12475882446133.
  • L.E. Murr, et al., Metallographic Characterization of Additive-layer Manufactured Products by Electron Beam Melting of Ti-6Al-4V Powder. Pract. Metallogr, 46, 442–453, 2009. https://doi.org/10.3139/147.110036.
  • S.M. Gaytan, et al., Structure-property process Optimization in the Rapid-layer Manufacturing of Ti-6Al-4V Components by electron beam melting. tms. ın supplemental proceedings: Fabrication, materials, Processing and Properties, 1, 363–369, 2009.
  • ARCAM A2, Setting the Standards for AdditiveManufacturing,http://www.arcam.com/wp-content/uploads/Arcam-Ti6Al4V-Titanium Alloy.pdf , 2011.
  • L. Wei, et al., Scan Strategy in Electron Beam Selective Melting. Tsinghua Sci. Technol. 14(1), 120–126, 2009. https://doi.org/10.1016/S1007-0214(09)70078-1.
  • Ansys SpaceClaim https://www.ansys.com/ products/3d-design/ansys-spaceclaim.
  • ASTM INTERNATIONAL http://www.astm.org/ cgi-bin/resolver.cgi?D3039D3039M

Elektron ışın eritme yöntemi kullanılarak sekizli kafes örgü yapıların mekanik ve geometrik özelliklerinin karşılaştırılması

Year 2022, , 232 - 238, 14.01.2022
https://doi.org/10.28948/ngumuh.911834

Abstract

Katmanlı üretim yöntemleri, kafes yapıları gibi karmaşık geometrilerin üretimine izin veren yeni bir teknolojidir. Bu çalışmanın amacı sekizli kafes yapısının mekanik özelliklerini belirlemektir. İlk olarak, kafes yapısı oluşturulmamış ve tamamen dolu bir numune kullanılmıştır. 1,2 ve 4 numaralı numuneler duvar kalınlıkla kafes yapıdan modellenmiş, yalnızca 3 numaralı numune duvar kalınlıklı sekizli kafes yapısından oluşturulmuştur. Modellenen çekme numuneleri, Elektron Işını Eritme yöntemi ile Ti-6Al-4V'den malzeme kullanılarak üretilmiştir. EBM yönteminin tutarlılığı hakkında fikir edinmek için aynı yapısal tasarıma (1, 2 ve 4) sahip numuneler arasında bir karşılaştırma yapılmıştır. 1, 2 ve 4 numaralı numuneler arasında önemli sayılabilecek gerilme mukavemeti farkı belirlenmiştir. Numune 3, zayıf gerilme mukavemeti değerleri göstermiştir. Son olarak, doldurulmuş bir numunenin çekme gerilmesi sonuçları paylaşılmış ve diğer numunelerin sonuçlarıyla karşılaştırılmıştır. Bu sonuçlar hem sekizli kafes yapısı hem de EBM üretim teknolojisinin değerlendirilmesi açısından önemlidir.

References

  • L. Yang, Additive manufacturing of metal cellular structures: Design and fabrication. JOM: Journal of the Minerals, Metals & Materials Society, 67(3), 608-615, 2015. https://doi.org/10.1007/s11837-015-1322-y.
  • L. Kolbus, Comparison of residual stresses in ınconel 718 simple parts made by electron beam melting and direct laser metal sintering. Metallurgical and Materials Transactions A, 46(3), 1419-1439, 2015. https://doi.org/10.1007/s11661-014-2722-2.
  • L.E. Murr, Microstructure and mechanical behaviour of Ti-6Al-4V produced by rapid-layer manufacturing, for biomedical applications. Journal of the Mechanical Behaviour of Biomedical Materials, 2(1), 20-32, 2009. https://doi.org/ 10.1016/j.jmbbm.2008.05.004
  • A. Saigal, J. Tumbleston, H. Vogel, C. Fox, N. and N. Mackay, Mechanical response of octahedral and octet-truss lattice structures fabricated using the CLIP technology. department of mechanical engineering, Tufts University, 200 College Avenue, Medford, USA,2016. https://doi.org/10.12783/ dtcse/cmsam2016/3572.
  • D. Sypeck and H. Wadley, Cellular metal truss core sandwich structures. Advanced Engineering Materials, 759-764, 2005. https://doi.org/ 10.1007/s10443-005-1129-z.
  • N. Z. M. Zaid, M. R. M. Rejab, and N. A. N. Mohamed, Sandwich structure based on corrugated-core: A Review. MATEC Web of Conferences 74, ICMER 2015. https://doi.org 10.1051/matecconf/20167400029
  • L. Dong and H. Wadley, Mechanical Properties of carbon fiber composite octet-truss lattice structures. Computers Science and Technology, 26(33), 119, 2015.https://doi.org/10.1016/j.compscitech.2015.09.022.
  • L. Dong, V. Deshpande and H. Wadley, Mechanical response of Ti-6Al-4V octet-truss lattice structures. International Journal of Solids and Structures, 107(124), 60-61, 2015. https://doi.org /10.1016/j.ijsolstr.2015.02.020.
  • V. Deshpande, N. A. Fleck and M. F. Ashby, Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids, 49(8), 1747-1769, 2001. https://doi.org/ 10.1016/S0022-5096(01)00010-2.
  • W. P. Syam, W. Jianwei, B. Zhao, I. Maskery, W. Elmadih and R. Leach, Design and analysis of strut-based lattice structures for vibration isolation. Precision Engineering, 2017. https://doi.org/ 10.1016/j.precisioneng.2017.09.010.
  • N.A. Fleck, An overview of the mechanical properties of foams and periodic lattice materials. Cambridge University Engineering Department, 2004.
  • A. Vigliotti and D. Pasini, Stiffness and strength of tridimensional periodic lattices. Computational Methods Applications Mechanical Engineering, 27(43), 229-232, 2012. https://doi.org/10.1016/ j.cma.2012.03.018
  • R.B. Fuller, 1961, Octet Truss. U.S. Patent No. 2,986,241
  • K. Finnegan, G. Kooistra and H.N. Wadley, The compressive response of carbon fiber composite pyramidal truss sandwich cores. Int.J.Mater.Res. 98, 1264-1272, 2007. https://doi.org10.3139/ 146.101594.
  • Q. Li, E.Y. Chen and R.B. Douglas and D.C. Dunand, Mechanical properties of cast Ti–6Al–4V lattice block structures. Metall. Mater. Trans. A 39, 441–449, 2008. https://doi.org10.1007/s11661-007-9440-y.
  • Q. Li, E.Y. Chen, D.R. Bice and D.C. Dunand Mechanical properties of cast Ti–6Al–2Sn–4Zr–2Mo lattice block structures. Adv. Eng. Mater. 10, 939–942, 2008. https://doi.org 10.1002/ adem.200800114.
  • A. Torrents, T.A. Schaedler, A.J. Jacobsen, W.B. Carter, and L. Valdevit, Characterization of nickel-based microlattice materials with structural hierarchy from the nanometer to the millimeter scale. Acta Mater., 60, 3511–3523, 2012. https://doi.org/10.1016/j.actamat.2012.03.007
  • X. Zheng, H. Lee, T.H.Weisgraber, M. Shusteff, J. Deotte, E.B. Duoss, .D. Kuntz et al., Ultralight, ultra-stiff mechanical metamaterials. Science 344, 1373–1377, 2014. https://doi.org 10.1126/ science.1252291.
  • K.C. Cheung and N. Gershenfeld, Reversibly assembled cellular composite materials. Science 341, 1219–1221, 2013. https://doi.org 10.1126/science.1240889.
  • L.J. Gibson and M.F. Ashby, Cellular Solids: Structure and Properties. Cambridge University Press,1999.https://doi.org/10.1017/CBO9781139878326.
  • D.W. Rosen, Computer-aided design for additive manufacturing of cellular structures. Comput. Aided Des. Appl. 4, 585–594, 2007.https://doi.org/ 10.1080/16864360.2007.10738493.
  • C.B. Williams, J.K. Cochran and D.W. Rosen, Additive manufacturing of metallic cellular materials via three-dimensional printing. Int. J. Adv. Manuf. Technol. 53, 231–239, 2011. https://doi.org /10.1007/s00170-010-2812-2.
  • M.K. Kulekci, Magnesium and its alloys applications in automotive industry. Int. J. Adv. Manuf. Technol. 39, 851–865, 2008. https://doi.org /10.1007/s00170-007-1279-2.
  • J.R. Couper, W.R. Penney and J.R. Fair, Chemical Process Equipment revised 2nd Edition: Selection and Design, second ed. Gulf Professional Publishing, 2009.
  • R.R. Boyer and R.D. Briggs, The use of titanium alloys in the aerospace industry. J. Mater. Eng. Perform. 14(6), 681–685, 2005. https://doi.org 10.1361/105994905X75448.
  • R. Boyer and E.W. Collings, (Eds.), Materials Properties Handbook: Titanium Alloys. ASM International, 1993.
  • W.D. Brewer, R.K. Bird and A.W. Terryl, Titanium alloys and processing for high speed aircraft. Mater. Sci. Eng., A 243, 299–304, 1998. https://doi.org/10.1016/S0921-5093(97)00818-6.
  • J. Wang, A.G. Evans, K. Dharmasena and H.N.G. Wadley, On the performance of truss panels with Kagome cores. Int. J. Solids Struct. 40, 6981–6988, 2003. https://doi.org/10.1016/S0020-7683(03)00349-4.
  • P. Heinl, et al., Cellular Titanium by Selective Electron Beam Melting. Adv. Eng. Mater. 9(5), 360–364, 2007. https://doi.org/10.1002/ adem.200700025.
  • G. Chahine, et al., The Design and Production of Ti-6Al-4V ELI Customized Dental Implants. JOM November, 60, 50–55, 2008. https://doi.org /10.1007/s11837-008-0148-2.
  • E.F. Bradley, Superalloys; A Technical Guide; ASM International: Materials Park, OH, 1988.
  • S. Biamino, et al., Electron Beam Melting of Ti-48Al-2Cr-2Nb Alloy: Microstructure and Mechanical Properties Investigation. Intermetallics 19, 776–781, 2011. https://doi.org/ 10.1016/ j.intermet.2010.11.017.
  • M. Cronskär, The Use of Additive Manufacturing in the Custom Design of Orthopedic Implants. Thesis for the degree of Licentiate of Technology, Östersund, Sweden, 2011.
  • L.E. Murr, et al., Advanced Metal Powder Based Manufacturing of Complex Components by Electron Beam Melting. Mater. Technol., 24(3), 180–190, 2009. https://doi.org/10.1179/106678509X12475882446133.
  • L.E. Murr, et al., Metallographic Characterization of Additive-layer Manufactured Products by Electron Beam Melting of Ti-6Al-4V Powder. Pract. Metallogr, 46, 442–453, 2009. https://doi.org/10.3139/147.110036.
  • S.M. Gaytan, et al., Structure-property process Optimization in the Rapid-layer Manufacturing of Ti-6Al-4V Components by electron beam melting. tms. ın supplemental proceedings: Fabrication, materials, Processing and Properties, 1, 363–369, 2009.
  • ARCAM A2, Setting the Standards for AdditiveManufacturing,http://www.arcam.com/wp-content/uploads/Arcam-Ti6Al4V-Titanium Alloy.pdf , 2011.
  • L. Wei, et al., Scan Strategy in Electron Beam Selective Melting. Tsinghua Sci. Technol. 14(1), 120–126, 2009. https://doi.org/10.1016/S1007-0214(09)70078-1.
  • Ansys SpaceClaim https://www.ansys.com/ products/3d-design/ansys-spaceclaim.
  • ASTM INTERNATIONAL http://www.astm.org/ cgi-bin/resolver.cgi?D3039D3039M
There are 40 citations in total.

Details

Primary Language English
Journal Section Mechanical Engineering
Authors

Bilçen Mutlu 0000-0003-1598-4850

Publication Date January 14, 2022
Submission Date April 8, 2021
Acceptance Date August 11, 2021
Published in Issue Year 2022

Cite

APA Mutlu, B. (2022). Comparison of mechanical and geometrical properties of octet lattice structures using the electron beam melting. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 11(1), 232-238. https://doi.org/10.28948/ngumuh.911834
AMA Mutlu B. Comparison of mechanical and geometrical properties of octet lattice structures using the electron beam melting. NÖHÜ Müh. Bilim. Derg. January 2022;11(1):232-238. doi:10.28948/ngumuh.911834
Chicago Mutlu, Bilçen. “Comparison of Mechanical and Geometrical Properties of Octet Lattice Structures Using the Electron Beam Melting”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 11, no. 1 (January 2022): 232-38. https://doi.org/10.28948/ngumuh.911834.
EndNote Mutlu B (January 1, 2022) Comparison of mechanical and geometrical properties of octet lattice structures using the electron beam melting. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 11 1 232–238.
IEEE B. Mutlu, “Comparison of mechanical and geometrical properties of octet lattice structures using the electron beam melting”, NÖHÜ Müh. Bilim. Derg., vol. 11, no. 1, pp. 232–238, 2022, doi: 10.28948/ngumuh.911834.
ISNAD Mutlu, Bilçen. “Comparison of Mechanical and Geometrical Properties of Octet Lattice Structures Using the Electron Beam Melting”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 11/1 (January 2022), 232-238. https://doi.org/10.28948/ngumuh.911834.
JAMA Mutlu B. Comparison of mechanical and geometrical properties of octet lattice structures using the electron beam melting. NÖHÜ Müh. Bilim. Derg. 2022;11:232–238.
MLA Mutlu, Bilçen. “Comparison of Mechanical and Geometrical Properties of Octet Lattice Structures Using the Electron Beam Melting”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, vol. 11, no. 1, 2022, pp. 232-8, doi:10.28948/ngumuh.911834.
Vancouver Mutlu B. Comparison of mechanical and geometrical properties of octet lattice structures using the electron beam melting. NÖHÜ Müh. Bilim. Derg. 2022;11(1):232-8.

download