Review
BibTex RIS Cite

The possible role of plants in combating Covid-19

Year 2021, , 866 - 880, 27.07.2021
https://doi.org/10.28948/ngumuh.912506

Abstract

With the Covid-19 pandemic that started in Wuhan province of China towards the end of 2019 and spread rapidly, many people around the world lost their lives. Existing crisis has led researchers to find solutions quickly and studies on different research topics have been initiated. The treatment methods used during the SARS and MERS epidemics were insufficient in treatment of patients, and different resources have been sought in order to develop a fully effective protocols. Plants, one of these sources, can be used in vaccine production through different biotechnological ways, and secondary metabolites of plants can also be evaluated for therapeutic purposes. It has been shown that plants have been used in the treatment of various viral diseases in previous epidemics and that they can offer a safe, fast and effective solution. The use of plants as bioreactors for the production of vaccine and antiviral proteins is an inexpensive technique that allows mass production. Plants are regarded as effective means of combating viruses with the antiviral effect of their secondary metabolites. In this review, after giving general information about the SARS-CoV-2 virus, which causes a massive health crisis all over the world, information about vaccine production methods in viral epidemics, vaccines which obtained from plants, potential use of edible vaccines as Covid-19 vaccine and roles of antiviral effects of plant secondary metabolites in the control of the epidemic are summarized.

References

  • K. Dhama, N. Senthilkumar, M.I. Yatoo , S.K. Patel, R. Tiwari, S.K. Saxena and H. Harapan, Plant-based vaccines and antibodies to combat COVID-19: current status and prospects. Human Vaccines & Immunotherapeutics, 16:12, 2913-2920, 2020. https://doi:10.1 080/21645515 .2020 .1842034.
  • B. Shanmugaraj and W. Phoolcharoen, Addressing demand for recombinant biopharmaceuticals in the COVID-19 era. Asian Pacific Journal of Tropical Medicine, 14(2), 49-51, 2021. https://doi:10.4103/ 1995-7645.306736.
  • A.B. Jena, , N. Kanungo, V. Nayak, G.B.N. Chainy and J. Dandapat, Catechin and curcumin interact with S protein of SARS CoV2 and ACE2 of human cell membrane: insights from computational studies. Scientific Reports, 11, 2043, 1-14, 2021. https://doi.org/10.1038/s41598-021-81462-7.
  • S. Shinde and A. Thomas, Plant derived polyphenol - Catechin as a potential antiviral drug against Covid-19. Pharmaceutical Resonance, 3(2), 58-62, 2021. https:// doi. org/10.1080/07391102.2020.1796810.
  • M. J .I. Shohag, F. Z. Khan, L. Tang, Y. Wei, Z. He and X. Yang, COVID-19 Crisis: How Can Plant Biotechnology Help? Plants, 10, 352, 1-10, 2021. https://doi. org/ 10.3390/plants10020352.
  • O. Sytar, M. Brestic, S. Hajihashemi, M. Skalicky, J. Kubeš, L. Lamilla-Tamayo, U. Ibrahimova, S. Ibadullayeva and M. Landi, COVID-19 Prophylaxis Efforts Based on Natural Antiviral Plant Extracts and Their Compounds. Molecules, 26, 727, 1-19, 2021. https://doi.org/ 10.3390/ molecules26030727.
  • T. Khan, M. A. Khan, K. Karam, N. Ullah, Z. U. R. Mashwani and A. Nadhman, Plant in vitro Culture Technologies; A Promise Into Factories of Secondary Metabolites Against COVID-19. Frontiers in Plant Science, 12, 610194, 1-21, 2021. https://doi:10.3389/ fpls. 2021 .610194.
  • A. Ferid, A. Mohammed, S.I. Khalivulla, M. Korivi and M.K.A.A. Razab, Plant cell and callus cultures as an alternative source of bioactive compounds with therapeutic potential against coronavirus disease (COVID-19). IOP Conference Series: Earth and Environmental Science, 596 012099. 2020. https://doi:10.1088/1755-1315/596/ 1/012 09 9.
  • I. Jahan and A. Onay, Potentials of plant-based substance to inhabit and probable cure for the COVID-19. Turkish Journal of Biology, 44, 228-24, 2020. https://doi:10.3906/ biy-2005-114.
  • N. Mahmood, S.B. Nasir and K. Hefferon, Plant-Based Drugs and Vaccines for COVID-19. Vaccines, 9, 15, 1-16, 2021. https://doi.org/10.3390/vaccines9010015.
  • K. Siriwattananon, S. Manopwisedjaroen, P. Kanjanasirirat, P. Budi Purwono, K. Rattanapisit, B. Shanmugaraj, D.R. Smith, S. Borwornpinyo, A. Thitithanyanont and W. Phoolcharoen, Development of Plant-Produced Recombinant ACE2-Fc Fusion Protein as a Potential Therapeutic Agent Against SARS-CoV-2. Frontiers in Plant Science, 11, 604663, 1-12, 2021. https://doi:10.3389/fpls.2020.604663.
  • M. I. Sohail, A. Siddiqui, E. Natasha and M. Karmran, Chapter 25: Phytomedicine and the COVID-19 pandemic. In R.A.Bhat, K.R. Hakeem,, M.A.Dervash (Eds.) Phytomedicine: A Treasure of Pharmacologically Active Products from Plants. 693-708. 2021.
  • S. Rosalez-Mendosa, V. A. Merquez-Escobar, O. Gonzales-Ortega, R. Nieto-Gomez and J.I. Arevalo-Villalobos, What Does Plant-Based Vaccine Technology Offer to the Fight against COVID-19?. Vaccines, 8, 183, 1-19, 2020. https://doi:10.3390/vaccines8020183.
  • T.M. Karpinsky, M. Ozarowski, A.S. Mrozikiewicz, H. Wolski and D. Wlodkowic, The 2020 race towards SARS-CoV-2 specific vaccines. Theranostics, 11 (4), 1690-1702, 2021. https://doi:10.7150/thno.53691.
  • N. Şekeroğlu and S. Gezici, Koronavirüs Pandemisi ve Türkiye’nin Bazı Şifalı Bitkileri. Anadolu Kliniği Tıp Bilimleri Dergisi, 25 (Özel Sayı 1), 163-182, 2020. https://doi:10.21673/anadoluklin.724210.
  • D. Paraskevis, E. G. Kostaki, G. Magiorkinis, G. Panayiotakopoulos, G. Sourvinos and S. Tsiodras, Full-genome evolutionary analysis of the novel corona virus (2019-nCoV) rejects the hypothesis of emergence as a result of a recent recombination event. Infection, Genetics and Evolution, 79, 104212, 1-4, 2020. https://doi.org/ 10.1016/ j.meegid.2020.104212.
  • Y. C. Liu, R. L. Kuo and S. R. Shih, COVID-19: The first documented coronaviruspandemic in history. Biomedical Journal, 43, 328-333, 2020. https://doi.org/10.1016/j.bj. 2020.04.007.
  • M. Letko, A. Marzi and V. Munster, Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronaviruses. Nature Microbiology, 5, 562-569, 2020. https://doi.org/10.1038/ s41564-020-0688-y.
  • W. Liu, M.J. Moore, N. Vassilleva, J. Sui, S.K. Wong, M.A. Berne, M. Somasundaran, J.L. Sullivan, K. Luzuriaga, T.C. Greenough, H.Choe and M. Farzan, Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature, 426, 450-454, 2003. https://doi:10. 1038/nature02145.
  • M. De Jesus, J. T. Gaza, H. Junio and R. Nellas, Molecular docking of secondary metabolites from Psidium guajava L. and Piper nigrum L. to Covid-19 associated receptors ACE2, Spike Protein RBD, and TMPRSS2. ChemRxiv. Preprint, 2020. https://doi.org/10.26434/ chemrxiv.12867350.v1.
  • F. R. Bhuiyan, S. Howlader, T. Raihan and M. Hasan, Plants metabolites: Possibility of natural therapeutics against the COVID-19 pandemic, Frontiers in Medicine, 7, 444, 1-26, 2020. https://doi:10.3389/fmed.2020.00444.
  • L. Liu, J. Y. Gao, W. Hu, X. Zhang, L. Guo, C. Liu, Y. Tang, C. Lang, F. Mou, Z. Yi, Q.Pei, K. Sun, J. Xiang and J. Xiao, Clinical characteristics of 51 patients discharged from hospital with COVID-19 in Chongqing, China. medRxiv The Preprint Server for Health Science, 2020. https://doi.org/10.1101/2020.02.20.20025536.
  • X. Qin, S. Qiu, Y. Yuan, Y. Zong, Z. Tuo, J. Li and J. Liu, Clinical characteristics and treatment of patients infected with COVID-19 in Shishou, China. The Lancet Respiratory Medicine, 2020. Preprint. https://dx.doi.org/ 10.2139/ssrn.3541147.
  • S. Sharma and N. Negi, Production and Challenges of Plant based Vaccines. Annals of the Romanian Society for Cell Biology, 25(1), 3625 – 3639, 2021.
  • Z. LeBlanc, P. Waterhouse and J. Bally, Plant-Based Vaccines: The Way Ahead? Viruses, 13, 5, 2021. https://dx.doi.org/doi:10.3390/v13010005.
  • D. A. Ullisch, C. A. Müller, S. Maibaum, J. Kirchhoff, A. Schiermeyer, S. Schillberg, J. L. Roberts, W. Treffenfeld and J. Büchs, Comprehensive characterization of two different Nicotiana tabacum cell lines leads to doubled GFP and HA protein production by media optimization. Journal of Bioscience and Bioengineering, 113(2), 242–248, 2012. https://doi:10.1016/j.jbiosc.2011.09.022.
  • Z. He, X. Du, W. Yao and J. Dai, Pharmaceutical proteins produced in plant bioreactor in recent years. African Journal of Biotechnology, 7 (25), 4917-4925, 2008.
  • K. Herbers and U. Sonnewald, Production of new/modified proteins in transgenic plants. Current Opinion in Biotechnology, 10, 163–168, 1999. https://doi:10.1016/ s0958-1669(99)80029-9.
  • E. Altındiş, S. Gülçe-İz, M. Ö. Ozen, P. Nartop, İ. Deliloğlu-Gürhan and A. Gürel, Plant derived edible vaccines and therapeutics, Frontier in Clinical Drug Research: Anti-Infectives, Vol(1), 200-236, 2014.
  • Y. C. Kuo, C. C. Tan, J. Y. Ku, W. C. Hsu, S. C. Su, C. A. Lu and L. F. Huang, Improving pharmaceutical protein production in Oryza sativa. International Journal of Molecular Science, 14, 8719-8739, 2013. https://doi: 10.3390/ijms14058719.
  • B. R. Holtz, B. R. Berquist, L. D. Bennet, V. J. M. Kommineni, R. K. Munigunti, E. L. White, D. C. Wilkerson, K. Y. I. Wongii, L. H. Ly and S. Marcel, Commercial-scale biotherapeutics manufacturing facility for plant-made pharmaceuticals. Plant Biotechnology Journal, 13, 1180–1190, 2015. https://doi:10.1111/pbi.12469.
  • A. K. Sharma and M. K. Sharma, Plants as bioreactors: Recent developments and emerging opportunities. Biotechnology Advances, 27, 811-832, 2009. https://doi.org/10.1016/j.biotechadv.2009.06.004.
  • L .R. Wilken and Z. L. Nikolov, Recovery and purification of plant-made recombinant proteins. Biotechnology Advances, 30, 419-433, 2012. https://doi: 10.1016/j.biotechadv.2011.07.020.
  • J. Xu, M. C. Dolan, G. Medrano, C. L. Cramer and P. J. Weathers, Green factory: Plants as bioproduction platforms for recombinant proteins. Biotechnology Advances, 30, 1171–1184, 2012. https://doi:10.1016/ j.biotechadv. 2011 . 08.020.
  • M. M. Rigano and A. M. Walmsley, Expression systems and developments in plant-made vaccines. Immunology and Cell Biology, 83, 271–277, 2005. https://doi:10.1111/j.1440-1711.2005.01336.x.
  • M. M. Rigano, G. D. Guzman, A. M. Walmsley, L. Frusciante and A. Barone, Production of pharmaceutical proteins in solanaceae food crops. International Journal of Molecular Science, 14, 2753-2773, 2013. https://doi:10.3390 /ijms14022753.
  • P. Rashmi and B. L. R. Madhavi, Vaccine development and delivery strategies–A glimpse. Journal of Vaccines and Immunology, 7(1), 004-008, 2021. https://dx.doi.org/ 10.17352/jvi.000038.
  • Medicago, 2020. (Erişim tarihi: 20.03.2021) https://www.medicago.com/en/covid-19-programs/
  • Covid19 Vaccine Tracker. (Erişim tarihi: 20.03.2021) https://covid19.trackvaccines.org/vaccines/18/
  • K. A. McDonald and R. B. Holtz, From farm to finger prick—A perspective on how plants can help in the fight against COVID-19. Frontiers in Bioengineering and Biotechnology, 8, 782, 1-5, 2020. https://doi:10.3389/ fbioe.2020.00782.
  • S. Nandi, A. T. Kwong, B. R. Holtz, R. L. Erwin, S. Marcel, and K. A. McDonald, Techno-economic analysis of a transient plantbased platform for monoclonal antibody production. mAbs, 8, 1456–1466, 2016. https://doi:10.1080/ 19420862.2016.1227901.
  • Ortaakarsu, A. (Erişim tarihi: 24.03.2021). https://www.ortaakarsu.net/?cat=6
  • N. Mohammadi and N. Shaghaghi, Inhibitory effect of eight secondary metabolites from conventional medicinal plants on COVID_19 virus protease by molecular docking analysis. ChemRxiv. Preprint, 2020. https://doi.org/ 10.26434/chemrxiv.11987475.v1
  • M. H. Abdellatiif, A. Ali, A. Ali and M. A. Hussien, Computational studies by molecular docking of some antiviral drugs with COVID-19 receptors are an approach to medication for COVID-19. Open Chemistry, 19, 245-264, 2021. https://doi.org/10.1515/chem-2021-0024.
  • R. Patil, R. Chikhale, P. Khanal, N. Gurav, M. Ayyanar, S. Sinha, S. Prasad, Y. N. Dey, M. Wanjari and S.S. Gurav, Computational and network pharmacology analysis of bioflavonoids as possible natural antiviral compounds in COVID-19. Informatics in Medicine Unlocked, 22, 100504, 1-14, 2021. https://doi.org/ 10.1016/j.imu.2020.100504.
  • D. Kumar and S. Bhagat, Natural compound against COVID-19 in silico screening by attacking Mpro and ACE2 using molecular docking. International Journal for Research in Applied Sciences and Biotechnology, 7(6), 168-180, 2020. https://doi.org/10.31033/ijrasb.7.6.25.
  • H. M. Wahedi, S. Ahmad and S. W. Abbasi, Stilbene-based natural compounds as promising drug candidates against COVID-19. Journal of Biomolecular Structure and Dynamics, 1–10, 2020. https://doi.org/ 10.1080/07391102. 2020.1762743.
  • P. Pandey, F. Khan, A. K. Rana, Y. Srivastava, S. K. Jha and N. K. Jha, A drug repurposing approach towards elucidating the potential of flavonoids as COVID-19 spike protein inhibitors. Biointerface Research in Applied Chemistry, 11(1), 8482 – 8501, 2021. https://doi.org/ 10.33263/BRIAC111.84828501.
  • S. Kumar, P. Kashyap, S. Chowdhury, S. Kumar, A. Panwar and A. Kumar, Identification of phytochemicals as potential therapeutic agents that binds to Nsp15 protein target of coronavirus (SARS-CoV-2) that are capable of inhibiting virus replication. Phytomedicine, In Press, 2021. https://doi.org/10.1016/j.phymed.2020.153317.
  • R. Farjaminezhad and G. Garoosi, Improvement and prediction of secondary metabolites production under yeast extract elicitation of Azadirachta indica cell suspension culture using response surface methodology. AMB express, 11-43, 1-16, 2021. https://doi:10.1186/s13568-021-01203-x.
  • A. Teke, M. Yener, Ş. Akkuş and A. Gümüşçü, Chapter 12: Halkın Tıbbi-Aromatik Bitkiler Kullanımı Ve Tanımasında Bilinç Durumu: Çumra Örneği. Research in Medicinal and Aromatic Plants (Edt: Gülen Özyazıcı).Iksad Publication. 267:289. 2020.
  • S. Mazraedoost, G. Behbudi, S. M. Mousavi and S. A. Hashemi, Covid-19 treatment by plant compounds. Advances in Applied NanoBio-Technologies, 2(1), 23-33, 2020. https://dx.doi.org/10.47277/AANBT/2(1)33.
  • M. Srivastava and P. Misra, Enhancement of Medicinally Important Bioactive Compounds in Hairy Root Cultures of Glycyrrhiza, Rauwolfia, and Solanum Through In Vitro Stress Application. In: Malik S. (eds) Production of Plant Derived Natural Compounds through Hairy Root Culture. Springer, Cham. 2017. https://doi.org/10.1007/978-3-319-69769-7_6
  • J. Cinatl, B. Morgenstern, G. Bauer, P. Chandra, H. Rabenau and H. W. Doerr, Glycyrrhizin, an active component of liquorice roots, and replication of SARS-associated coronavirus. The Lancet, 361, 2045-2046, 2003. https://doi:10.1016/s0140-6736(03)13615-x.
  • J. K. Cho, M. J. Curtis-Long, K. H. Lee, D. W. Kim, H. W. Ryu, H. J. Yuk and K. H. Park, Geranylated flavonoids displaying SARS-CoV papain-like protease inhibition from the fruits of Paulownia tomentosa. Bioorganic & Medicinal Chemistry, 21, 3051-3057, 2013. https://doi.org/10.1016/ j.bmc.2013.03.027.
  • D. W. Kim, K. H. Seo, M. J. Curtis-Long, K. Y. Oh, J. W. Oh, J. K. Cho, K. H. Lee and K. H. Park, Phenolic phytochemical displaying SARS-CoV papain-like protease inhibition from the seeds of Psoralea corylifolia. Journal of Enzyme Inhibition and Medicinal Chemistry, 29(1), 59-63, 2014. https://doi.org/10.3109/14756366.2012.753591.
  • Y. B. Ryu, H. J. Jeong, J. H. Kim, M. Y. Kim, J. Y. Park, D. Kim, T. T. H. Nguyen, S. J. Park, J. S. Chang, K. H. Park, M. C. Rho and W. S. Lee, Biflavonoids from Torreya nucifera displaying SARS-CoV 3CL (pro) inhibition. Bioorganic & Medicinal Chemistry, 18(22), 7940-7947, 2010. https://doi.org/10.1016/j.bmc.2010.09.035.
  • H. Liu, F. Ye, Q. Sun, H. Liang, C. Li, S. Li, R. Lu, B. Huang, W. Tan and L. Lai, Scutellaria baicalensis extract and baicalein inhibit replication of SARS-CoV-2 and its 3C-like protease in vitro. Journal of Enzyme Inhibition and Medicinal Chemistry, 36(1), 497-503, 2021. https://doi.org/ 10.1080/14756366.2021.1873977.
  • F. Chen, K. H. Chan, Y. Jiang, R. Y. T. Kao, H. T. Lu, K. W. Fan, V. C. C. Cheng, W. H. W. Tsui, I. F. N. Hung, T. S. W. Lee, Y. Guan, J. S. M. Peiris and K. Y. Yuen, In vitro susceptibility of 10 clinical isolates of SARS coronavirus to selected antiviral compounds. Journal of Clinical Virology, 31, 69–75, 2004. http://doi:10.1016/ j.jcv.2004.03.003.
  • J. Y. Park, H. J. Yuk, H. W. Ryu, S. H. Lim, K. S. Kim and K. H. Park, Evaluation of polyphenols from Broussonetia papyrifera as coronavirus protease inhibitors. Journal of Enzyme Inhibition and Medicinal Chemıstry, 32(1), 504–512, 2017. http://dx.doi.org/10.1080/14756366. 2016. 1265519.
  • J. Y. Kim, Y. I. Kim, S. J. Park, I. K. Kim, Y. K. Choi and S. H. Kim, Safe, high-throughput screening of natural compounds of MERS-CoV entry inhibitors using a pseudovirus expressing MERS-CoV spike protein. International Journal of Antimicrobial Agents, 52, 730–732, 2018. http://doi:10.1016/j.ijantimicag.2018.05.003.
  • T. Y. Ho, S. L. Wu, J. C. Chen, C. C. Li and C. Y. Hsiang, Emodin blocks the SARS coronavirus spike protein and angiotensin-converting enzyme 2 interaction. Antiviral Research, 74, 92–101, 2007. https://doi.org/10.1016/ j .antiviral.2006.04.014.
  • C. Y. Wu, J. T. Jan, S. H. Ma, C. J. Kuo, H. F. Juan, Y. S. E. Cheng, H. H. Hsu, H. C. Huang, D. Wu, A. Brik, F. S. Liang, R. S. Liu, J. M. Fang, S. T. Chen, P. H. Liang and C. H. Wong, Small molecules targeting severe acute respiratory syndrome human coronavirus. Proceedings of the National Academy of Sciences of the United States of America, 101(27), 10012–10017, 2004. https://doi:10.1073/ pnas.0403596101.
  • T. T. H. Nguyen, H. J. Woo, H. K. Kang, V. D. Nguyen, Y. M. Kim, D. W. Kim, S. A. Ahn, Y. Xia and D. Kim, Flavonoid-mediated inhibition of SARS coronavirus 3C-like protease expressed in Pichia pastoris. Biotechnology Letters, 34, 831–838, 2012. https://doi.org/ 10.1007/s10529-011-0845-8.
  • C. W. Lin, F. J. Tsai, C. H. Tsai, C. C. Lai, L. Wan, T. Y. Ho, C. C. Hsieh and P. D. L. Chao, Anti-SARS coronavirus 3C-like protease effects of Isatis indigotica root and plant-derived phenolic compounds. Antiviral Research, 68, 36–42, 2005. https://doi.org/10.1016/j.antiviral .2005.07.002.
  • J. Y. Park, H. J. Jeong, J. H. Kim, Y. M. Kim, S. J. Park, D. Kim, K. H. Park, W. S. Lee and Y. B. Ryu, Diarylheptanoids from Alnus japonica inhibit papain-like protease of severe acute respiratory syndrome coronavirus. Biological and Pharmaceutical Bulletin, 35(11), 2036–2042, 2012. https://doi.org/10.1248/bpb.b12-00623.
  • Y. B. Ryu, S. J. Park, Y. M. Kim, J. Y. Lee, W. D. Seo, J. S. Chang, K. H. Park, M. C. Rho and W. S. Lee, SARS-CoV 3CLpro inhibitory effects of quinone-methide triterpenes from Tripterygium regelii. Bioorganic & Medicinal Chemistry Letters, 20, 1873–1876, 2010. https://doi:10.1016/j.bmcl.2010.01.152.
  • K. H. Chiow, M. C. Phoon, T. Putti, B. K. H. Tan and V. T. Chow, Evaluation of antiviral activities of Houttuynia cordata Thunb. extract, quercetin, quercetrin and cinanserin on murine coronavirus and dengue virus infection. Asian Pacific Journal of Tropical Medicine, 9(1), 1–7, 2016. http://dx.doi.org/10.1016/j.apjtm.2015.12.002.
  • J. Y. Park, J. A. Ko, D. W. Kim, Y. M. Kim, H. J. Kwon, H. J. Jeong, C. Y. Kim, K. H. Park, W. S. Lee and Y. B. Ryu, Chalcones isolated from Angelica keiskei inhibit cysteine proteases of SARS-CoV. Journal of Enzyme Inhibition and Medicinal Chemistry, 31(1), 23–30, 2016. https://doi.org/10.3109/14756366.2014.1003215.
  • H. H. Fan, L. Q. Wang, W. L. Liu, X. P. An, Z. D. Liu, X.Q. He, L. H. Song and Y. G. Tong, Repurposing of clinically approved drugs for treatment of coronavirus disease 2019 in a 2019-novel coronavirus-related coronavirus model. Chinese Medical Journal, 133(9), 1051-1056, 2020. https://doi:10.1097/CM9.0000000000000797.
  • Y. C. Tsai, C. L. Lee, H. R. Yen, Y. S. Chang, Y. P. Lin, S. H. Huang and C. W. Lin, Antiviral action of tryptanthrin isolated from Strobilanthes cusia leaf against Human Coronavirus NL63. Biomolecules, 10 (366), 1-17, 2020. https://doi:10.3390/biom10030366.
  • M. Hesami and A. M. P. Jones, Application of artificial intelligence models and optimization algorithms in plant cell and tissue culture. Applied Microbiology and Biotechnology, 104, 9449–9485, 2020. https://doi.org/ 10.1007/s00253-020-10888-2.
  • N. Nabi, S. Singh and P. Saffeullah, Responses of in vitro cell cultures to elicitation: regulatory role of jasmonic acid and methyl jasmonate: a review. In Vitro Cellular & Developmental Biology-Plant, 57, 341–355, 2021. https://doi.org/10.1007/s11627-020-10140-6

Covid-19 ile mücadelede bitkilerin olası rolü

Year 2021, , 866 - 880, 27.07.2021
https://doi.org/10.28948/ngumuh.912506

Abstract

2019 yılının sonlarına doğru Çin’in Wuhan eyaletinde başlayan ve hızla yayılan Covid-19 pandemisi ile tüm dünyada yaşam durma noktasına gelmiş çok sayıda insan hayatını kaybetmiştir. Varolan kriz araştırmacıları süratli çözüm bulmaya yönlendirmiş ve farklı araştırma konularında çalışmalara başlanmıştır. SARS ve MERS salgınları sırasında kullanılan tedavi yöntemleri hastaların iyileştirilmesinde yetersiz kalmış ve tam etkili protokollerin geliştirilmesi amacıyla farklı kaynaklar araştırılmaya başlanmıştır. Bu kaynaklardan birisi olan bitkiler, farklı biyoteknolojik yollar aracılığıyla aşı üretiminde kullanılabilecekleri gibi, sahip oldukları sekonder metabolitler nedeniyle tedavi amaçlı olarak da değerlendirilmektedir. Bitkilerin çeşitli viral hastalıkların tedavisinde daha önceki salgınlarda da kullanıldığı, güvenli, hızlı ve etkili bir çözüm yolu sunabildikleri gösterilmiştir. Bitkilerin aşı ve antiviral proteinlerin üretimleri için biyoreaktör olarak kullanımları, kitlesel üretimlere izin verecek nitelikte ucuz bir tekniktir. Bitkiler sahip oldukları sekonder metabolitlerin gösterdikleri antiviral etki ile virüslerle mücadelede etkili araçlar olarak kabul edilebilirler. Gerçekleştirilen bu derlemede tüm dünyada kitlesel bir sağlık krizine neden olan SARS-CoV-2 virüsü ile ilgili genel bilgiler verildikten sonra, viral salgınlarda aşı üretim yöntemleri, bitkilerden elde edilen aşılar, yenebilir aşıların Covid-19 aşısı olarak kullanım potansiyelleri ve bitki sekonder metabolitlerinin antiviral etkilerinin salgının kontrolündeki rolleri üzerine bilgiler özetlenmiştir.

References

  • K. Dhama, N. Senthilkumar, M.I. Yatoo , S.K. Patel, R. Tiwari, S.K. Saxena and H. Harapan, Plant-based vaccines and antibodies to combat COVID-19: current status and prospects. Human Vaccines & Immunotherapeutics, 16:12, 2913-2920, 2020. https://doi:10.1 080/21645515 .2020 .1842034.
  • B. Shanmugaraj and W. Phoolcharoen, Addressing demand for recombinant biopharmaceuticals in the COVID-19 era. Asian Pacific Journal of Tropical Medicine, 14(2), 49-51, 2021. https://doi:10.4103/ 1995-7645.306736.
  • A.B. Jena, , N. Kanungo, V. Nayak, G.B.N. Chainy and J. Dandapat, Catechin and curcumin interact with S protein of SARS CoV2 and ACE2 of human cell membrane: insights from computational studies. Scientific Reports, 11, 2043, 1-14, 2021. https://doi.org/10.1038/s41598-021-81462-7.
  • S. Shinde and A. Thomas, Plant derived polyphenol - Catechin as a potential antiviral drug against Covid-19. Pharmaceutical Resonance, 3(2), 58-62, 2021. https:// doi. org/10.1080/07391102.2020.1796810.
  • M. J .I. Shohag, F. Z. Khan, L. Tang, Y. Wei, Z. He and X. Yang, COVID-19 Crisis: How Can Plant Biotechnology Help? Plants, 10, 352, 1-10, 2021. https://doi. org/ 10.3390/plants10020352.
  • O. Sytar, M. Brestic, S. Hajihashemi, M. Skalicky, J. Kubeš, L. Lamilla-Tamayo, U. Ibrahimova, S. Ibadullayeva and M. Landi, COVID-19 Prophylaxis Efforts Based on Natural Antiviral Plant Extracts and Their Compounds. Molecules, 26, 727, 1-19, 2021. https://doi.org/ 10.3390/ molecules26030727.
  • T. Khan, M. A. Khan, K. Karam, N. Ullah, Z. U. R. Mashwani and A. Nadhman, Plant in vitro Culture Technologies; A Promise Into Factories of Secondary Metabolites Against COVID-19. Frontiers in Plant Science, 12, 610194, 1-21, 2021. https://doi:10.3389/ fpls. 2021 .610194.
  • A. Ferid, A. Mohammed, S.I. Khalivulla, M. Korivi and M.K.A.A. Razab, Plant cell and callus cultures as an alternative source of bioactive compounds with therapeutic potential against coronavirus disease (COVID-19). IOP Conference Series: Earth and Environmental Science, 596 012099. 2020. https://doi:10.1088/1755-1315/596/ 1/012 09 9.
  • I. Jahan and A. Onay, Potentials of plant-based substance to inhabit and probable cure for the COVID-19. Turkish Journal of Biology, 44, 228-24, 2020. https://doi:10.3906/ biy-2005-114.
  • N. Mahmood, S.B. Nasir and K. Hefferon, Plant-Based Drugs and Vaccines for COVID-19. Vaccines, 9, 15, 1-16, 2021. https://doi.org/10.3390/vaccines9010015.
  • K. Siriwattananon, S. Manopwisedjaroen, P. Kanjanasirirat, P. Budi Purwono, K. Rattanapisit, B. Shanmugaraj, D.R. Smith, S. Borwornpinyo, A. Thitithanyanont and W. Phoolcharoen, Development of Plant-Produced Recombinant ACE2-Fc Fusion Protein as a Potential Therapeutic Agent Against SARS-CoV-2. Frontiers in Plant Science, 11, 604663, 1-12, 2021. https://doi:10.3389/fpls.2020.604663.
  • M. I. Sohail, A. Siddiqui, E. Natasha and M. Karmran, Chapter 25: Phytomedicine and the COVID-19 pandemic. In R.A.Bhat, K.R. Hakeem,, M.A.Dervash (Eds.) Phytomedicine: A Treasure of Pharmacologically Active Products from Plants. 693-708. 2021.
  • S. Rosalez-Mendosa, V. A. Merquez-Escobar, O. Gonzales-Ortega, R. Nieto-Gomez and J.I. Arevalo-Villalobos, What Does Plant-Based Vaccine Technology Offer to the Fight against COVID-19?. Vaccines, 8, 183, 1-19, 2020. https://doi:10.3390/vaccines8020183.
  • T.M. Karpinsky, M. Ozarowski, A.S. Mrozikiewicz, H. Wolski and D. Wlodkowic, The 2020 race towards SARS-CoV-2 specific vaccines. Theranostics, 11 (4), 1690-1702, 2021. https://doi:10.7150/thno.53691.
  • N. Şekeroğlu and S. Gezici, Koronavirüs Pandemisi ve Türkiye’nin Bazı Şifalı Bitkileri. Anadolu Kliniği Tıp Bilimleri Dergisi, 25 (Özel Sayı 1), 163-182, 2020. https://doi:10.21673/anadoluklin.724210.
  • D. Paraskevis, E. G. Kostaki, G. Magiorkinis, G. Panayiotakopoulos, G. Sourvinos and S. Tsiodras, Full-genome evolutionary analysis of the novel corona virus (2019-nCoV) rejects the hypothesis of emergence as a result of a recent recombination event. Infection, Genetics and Evolution, 79, 104212, 1-4, 2020. https://doi.org/ 10.1016/ j.meegid.2020.104212.
  • Y. C. Liu, R. L. Kuo and S. R. Shih, COVID-19: The first documented coronaviruspandemic in history. Biomedical Journal, 43, 328-333, 2020. https://doi.org/10.1016/j.bj. 2020.04.007.
  • M. Letko, A. Marzi and V. Munster, Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronaviruses. Nature Microbiology, 5, 562-569, 2020. https://doi.org/10.1038/ s41564-020-0688-y.
  • W. Liu, M.J. Moore, N. Vassilleva, J. Sui, S.K. Wong, M.A. Berne, M. Somasundaran, J.L. Sullivan, K. Luzuriaga, T.C. Greenough, H.Choe and M. Farzan, Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature, 426, 450-454, 2003. https://doi:10. 1038/nature02145.
  • M. De Jesus, J. T. Gaza, H. Junio and R. Nellas, Molecular docking of secondary metabolites from Psidium guajava L. and Piper nigrum L. to Covid-19 associated receptors ACE2, Spike Protein RBD, and TMPRSS2. ChemRxiv. Preprint, 2020. https://doi.org/10.26434/ chemrxiv.12867350.v1.
  • F. R. Bhuiyan, S. Howlader, T. Raihan and M. Hasan, Plants metabolites: Possibility of natural therapeutics against the COVID-19 pandemic, Frontiers in Medicine, 7, 444, 1-26, 2020. https://doi:10.3389/fmed.2020.00444.
  • L. Liu, J. Y. Gao, W. Hu, X. Zhang, L. Guo, C. Liu, Y. Tang, C. Lang, F. Mou, Z. Yi, Q.Pei, K. Sun, J. Xiang and J. Xiao, Clinical characteristics of 51 patients discharged from hospital with COVID-19 in Chongqing, China. medRxiv The Preprint Server for Health Science, 2020. https://doi.org/10.1101/2020.02.20.20025536.
  • X. Qin, S. Qiu, Y. Yuan, Y. Zong, Z. Tuo, J. Li and J. Liu, Clinical characteristics and treatment of patients infected with COVID-19 in Shishou, China. The Lancet Respiratory Medicine, 2020. Preprint. https://dx.doi.org/ 10.2139/ssrn.3541147.
  • S. Sharma and N. Negi, Production and Challenges of Plant based Vaccines. Annals of the Romanian Society for Cell Biology, 25(1), 3625 – 3639, 2021.
  • Z. LeBlanc, P. Waterhouse and J. Bally, Plant-Based Vaccines: The Way Ahead? Viruses, 13, 5, 2021. https://dx.doi.org/doi:10.3390/v13010005.
  • D. A. Ullisch, C. A. Müller, S. Maibaum, J. Kirchhoff, A. Schiermeyer, S. Schillberg, J. L. Roberts, W. Treffenfeld and J. Büchs, Comprehensive characterization of two different Nicotiana tabacum cell lines leads to doubled GFP and HA protein production by media optimization. Journal of Bioscience and Bioengineering, 113(2), 242–248, 2012. https://doi:10.1016/j.jbiosc.2011.09.022.
  • Z. He, X. Du, W. Yao and J. Dai, Pharmaceutical proteins produced in plant bioreactor in recent years. African Journal of Biotechnology, 7 (25), 4917-4925, 2008.
  • K. Herbers and U. Sonnewald, Production of new/modified proteins in transgenic plants. Current Opinion in Biotechnology, 10, 163–168, 1999. https://doi:10.1016/ s0958-1669(99)80029-9.
  • E. Altındiş, S. Gülçe-İz, M. Ö. Ozen, P. Nartop, İ. Deliloğlu-Gürhan and A. Gürel, Plant derived edible vaccines and therapeutics, Frontier in Clinical Drug Research: Anti-Infectives, Vol(1), 200-236, 2014.
  • Y. C. Kuo, C. C. Tan, J. Y. Ku, W. C. Hsu, S. C. Su, C. A. Lu and L. F. Huang, Improving pharmaceutical protein production in Oryza sativa. International Journal of Molecular Science, 14, 8719-8739, 2013. https://doi: 10.3390/ijms14058719.
  • B. R. Holtz, B. R. Berquist, L. D. Bennet, V. J. M. Kommineni, R. K. Munigunti, E. L. White, D. C. Wilkerson, K. Y. I. Wongii, L. H. Ly and S. Marcel, Commercial-scale biotherapeutics manufacturing facility for plant-made pharmaceuticals. Plant Biotechnology Journal, 13, 1180–1190, 2015. https://doi:10.1111/pbi.12469.
  • A. K. Sharma and M. K. Sharma, Plants as bioreactors: Recent developments and emerging opportunities. Biotechnology Advances, 27, 811-832, 2009. https://doi.org/10.1016/j.biotechadv.2009.06.004.
  • L .R. Wilken and Z. L. Nikolov, Recovery and purification of plant-made recombinant proteins. Biotechnology Advances, 30, 419-433, 2012. https://doi: 10.1016/j.biotechadv.2011.07.020.
  • J. Xu, M. C. Dolan, G. Medrano, C. L. Cramer and P. J. Weathers, Green factory: Plants as bioproduction platforms for recombinant proteins. Biotechnology Advances, 30, 1171–1184, 2012. https://doi:10.1016/ j.biotechadv. 2011 . 08.020.
  • M. M. Rigano and A. M. Walmsley, Expression systems and developments in plant-made vaccines. Immunology and Cell Biology, 83, 271–277, 2005. https://doi:10.1111/j.1440-1711.2005.01336.x.
  • M. M. Rigano, G. D. Guzman, A. M. Walmsley, L. Frusciante and A. Barone, Production of pharmaceutical proteins in solanaceae food crops. International Journal of Molecular Science, 14, 2753-2773, 2013. https://doi:10.3390 /ijms14022753.
  • P. Rashmi and B. L. R. Madhavi, Vaccine development and delivery strategies–A glimpse. Journal of Vaccines and Immunology, 7(1), 004-008, 2021. https://dx.doi.org/ 10.17352/jvi.000038.
  • Medicago, 2020. (Erişim tarihi: 20.03.2021) https://www.medicago.com/en/covid-19-programs/
  • Covid19 Vaccine Tracker. (Erişim tarihi: 20.03.2021) https://covid19.trackvaccines.org/vaccines/18/
  • K. A. McDonald and R. B. Holtz, From farm to finger prick—A perspective on how plants can help in the fight against COVID-19. Frontiers in Bioengineering and Biotechnology, 8, 782, 1-5, 2020. https://doi:10.3389/ fbioe.2020.00782.
  • S. Nandi, A. T. Kwong, B. R. Holtz, R. L. Erwin, S. Marcel, and K. A. McDonald, Techno-economic analysis of a transient plantbased platform for monoclonal antibody production. mAbs, 8, 1456–1466, 2016. https://doi:10.1080/ 19420862.2016.1227901.
  • Ortaakarsu, A. (Erişim tarihi: 24.03.2021). https://www.ortaakarsu.net/?cat=6
  • N. Mohammadi and N. Shaghaghi, Inhibitory effect of eight secondary metabolites from conventional medicinal plants on COVID_19 virus protease by molecular docking analysis. ChemRxiv. Preprint, 2020. https://doi.org/ 10.26434/chemrxiv.11987475.v1
  • M. H. Abdellatiif, A. Ali, A. Ali and M. A. Hussien, Computational studies by molecular docking of some antiviral drugs with COVID-19 receptors are an approach to medication for COVID-19. Open Chemistry, 19, 245-264, 2021. https://doi.org/10.1515/chem-2021-0024.
  • R. Patil, R. Chikhale, P. Khanal, N. Gurav, M. Ayyanar, S. Sinha, S. Prasad, Y. N. Dey, M. Wanjari and S.S. Gurav, Computational and network pharmacology analysis of bioflavonoids as possible natural antiviral compounds in COVID-19. Informatics in Medicine Unlocked, 22, 100504, 1-14, 2021. https://doi.org/ 10.1016/j.imu.2020.100504.
  • D. Kumar and S. Bhagat, Natural compound against COVID-19 in silico screening by attacking Mpro and ACE2 using molecular docking. International Journal for Research in Applied Sciences and Biotechnology, 7(6), 168-180, 2020. https://doi.org/10.31033/ijrasb.7.6.25.
  • H. M. Wahedi, S. Ahmad and S. W. Abbasi, Stilbene-based natural compounds as promising drug candidates against COVID-19. Journal of Biomolecular Structure and Dynamics, 1–10, 2020. https://doi.org/ 10.1080/07391102. 2020.1762743.
  • P. Pandey, F. Khan, A. K. Rana, Y. Srivastava, S. K. Jha and N. K. Jha, A drug repurposing approach towards elucidating the potential of flavonoids as COVID-19 spike protein inhibitors. Biointerface Research in Applied Chemistry, 11(1), 8482 – 8501, 2021. https://doi.org/ 10.33263/BRIAC111.84828501.
  • S. Kumar, P. Kashyap, S. Chowdhury, S. Kumar, A. Panwar and A. Kumar, Identification of phytochemicals as potential therapeutic agents that binds to Nsp15 protein target of coronavirus (SARS-CoV-2) that are capable of inhibiting virus replication. Phytomedicine, In Press, 2021. https://doi.org/10.1016/j.phymed.2020.153317.
  • R. Farjaminezhad and G. Garoosi, Improvement and prediction of secondary metabolites production under yeast extract elicitation of Azadirachta indica cell suspension culture using response surface methodology. AMB express, 11-43, 1-16, 2021. https://doi:10.1186/s13568-021-01203-x.
  • A. Teke, M. Yener, Ş. Akkuş and A. Gümüşçü, Chapter 12: Halkın Tıbbi-Aromatik Bitkiler Kullanımı Ve Tanımasında Bilinç Durumu: Çumra Örneği. Research in Medicinal and Aromatic Plants (Edt: Gülen Özyazıcı).Iksad Publication. 267:289. 2020.
  • S. Mazraedoost, G. Behbudi, S. M. Mousavi and S. A. Hashemi, Covid-19 treatment by plant compounds. Advances in Applied NanoBio-Technologies, 2(1), 23-33, 2020. https://dx.doi.org/10.47277/AANBT/2(1)33.
  • M. Srivastava and P. Misra, Enhancement of Medicinally Important Bioactive Compounds in Hairy Root Cultures of Glycyrrhiza, Rauwolfia, and Solanum Through In Vitro Stress Application. In: Malik S. (eds) Production of Plant Derived Natural Compounds through Hairy Root Culture. Springer, Cham. 2017. https://doi.org/10.1007/978-3-319-69769-7_6
  • J. Cinatl, B. Morgenstern, G. Bauer, P. Chandra, H. Rabenau and H. W. Doerr, Glycyrrhizin, an active component of liquorice roots, and replication of SARS-associated coronavirus. The Lancet, 361, 2045-2046, 2003. https://doi:10.1016/s0140-6736(03)13615-x.
  • J. K. Cho, M. J. Curtis-Long, K. H. Lee, D. W. Kim, H. W. Ryu, H. J. Yuk and K. H. Park, Geranylated flavonoids displaying SARS-CoV papain-like protease inhibition from the fruits of Paulownia tomentosa. Bioorganic & Medicinal Chemistry, 21, 3051-3057, 2013. https://doi.org/10.1016/ j.bmc.2013.03.027.
  • D. W. Kim, K. H. Seo, M. J. Curtis-Long, K. Y. Oh, J. W. Oh, J. K. Cho, K. H. Lee and K. H. Park, Phenolic phytochemical displaying SARS-CoV papain-like protease inhibition from the seeds of Psoralea corylifolia. Journal of Enzyme Inhibition and Medicinal Chemistry, 29(1), 59-63, 2014. https://doi.org/10.3109/14756366.2012.753591.
  • Y. B. Ryu, H. J. Jeong, J. H. Kim, M. Y. Kim, J. Y. Park, D. Kim, T. T. H. Nguyen, S. J. Park, J. S. Chang, K. H. Park, M. C. Rho and W. S. Lee, Biflavonoids from Torreya nucifera displaying SARS-CoV 3CL (pro) inhibition. Bioorganic & Medicinal Chemistry, 18(22), 7940-7947, 2010. https://doi.org/10.1016/j.bmc.2010.09.035.
  • H. Liu, F. Ye, Q. Sun, H. Liang, C. Li, S. Li, R. Lu, B. Huang, W. Tan and L. Lai, Scutellaria baicalensis extract and baicalein inhibit replication of SARS-CoV-2 and its 3C-like protease in vitro. Journal of Enzyme Inhibition and Medicinal Chemistry, 36(1), 497-503, 2021. https://doi.org/ 10.1080/14756366.2021.1873977.
  • F. Chen, K. H. Chan, Y. Jiang, R. Y. T. Kao, H. T. Lu, K. W. Fan, V. C. C. Cheng, W. H. W. Tsui, I. F. N. Hung, T. S. W. Lee, Y. Guan, J. S. M. Peiris and K. Y. Yuen, In vitro susceptibility of 10 clinical isolates of SARS coronavirus to selected antiviral compounds. Journal of Clinical Virology, 31, 69–75, 2004. http://doi:10.1016/ j.jcv.2004.03.003.
  • J. Y. Park, H. J. Yuk, H. W. Ryu, S. H. Lim, K. S. Kim and K. H. Park, Evaluation of polyphenols from Broussonetia papyrifera as coronavirus protease inhibitors. Journal of Enzyme Inhibition and Medicinal Chemıstry, 32(1), 504–512, 2017. http://dx.doi.org/10.1080/14756366. 2016. 1265519.
  • J. Y. Kim, Y. I. Kim, S. J. Park, I. K. Kim, Y. K. Choi and S. H. Kim, Safe, high-throughput screening of natural compounds of MERS-CoV entry inhibitors using a pseudovirus expressing MERS-CoV spike protein. International Journal of Antimicrobial Agents, 52, 730–732, 2018. http://doi:10.1016/j.ijantimicag.2018.05.003.
  • T. Y. Ho, S. L. Wu, J. C. Chen, C. C. Li and C. Y. Hsiang, Emodin blocks the SARS coronavirus spike protein and angiotensin-converting enzyme 2 interaction. Antiviral Research, 74, 92–101, 2007. https://doi.org/10.1016/ j .antiviral.2006.04.014.
  • C. Y. Wu, J. T. Jan, S. H. Ma, C. J. Kuo, H. F. Juan, Y. S. E. Cheng, H. H. Hsu, H. C. Huang, D. Wu, A. Brik, F. S. Liang, R. S. Liu, J. M. Fang, S. T. Chen, P. H. Liang and C. H. Wong, Small molecules targeting severe acute respiratory syndrome human coronavirus. Proceedings of the National Academy of Sciences of the United States of America, 101(27), 10012–10017, 2004. https://doi:10.1073/ pnas.0403596101.
  • T. T. H. Nguyen, H. J. Woo, H. K. Kang, V. D. Nguyen, Y. M. Kim, D. W. Kim, S. A. Ahn, Y. Xia and D. Kim, Flavonoid-mediated inhibition of SARS coronavirus 3C-like protease expressed in Pichia pastoris. Biotechnology Letters, 34, 831–838, 2012. https://doi.org/ 10.1007/s10529-011-0845-8.
  • C. W. Lin, F. J. Tsai, C. H. Tsai, C. C. Lai, L. Wan, T. Y. Ho, C. C. Hsieh and P. D. L. Chao, Anti-SARS coronavirus 3C-like protease effects of Isatis indigotica root and plant-derived phenolic compounds. Antiviral Research, 68, 36–42, 2005. https://doi.org/10.1016/j.antiviral .2005.07.002.
  • J. Y. Park, H. J. Jeong, J. H. Kim, Y. M. Kim, S. J. Park, D. Kim, K. H. Park, W. S. Lee and Y. B. Ryu, Diarylheptanoids from Alnus japonica inhibit papain-like protease of severe acute respiratory syndrome coronavirus. Biological and Pharmaceutical Bulletin, 35(11), 2036–2042, 2012. https://doi.org/10.1248/bpb.b12-00623.
  • Y. B. Ryu, S. J. Park, Y. M. Kim, J. Y. Lee, W. D. Seo, J. S. Chang, K. H. Park, M. C. Rho and W. S. Lee, SARS-CoV 3CLpro inhibitory effects of quinone-methide triterpenes from Tripterygium regelii. Bioorganic & Medicinal Chemistry Letters, 20, 1873–1876, 2010. https://doi:10.1016/j.bmcl.2010.01.152.
  • K. H. Chiow, M. C. Phoon, T. Putti, B. K. H. Tan and V. T. Chow, Evaluation of antiviral activities of Houttuynia cordata Thunb. extract, quercetin, quercetrin and cinanserin on murine coronavirus and dengue virus infection. Asian Pacific Journal of Tropical Medicine, 9(1), 1–7, 2016. http://dx.doi.org/10.1016/j.apjtm.2015.12.002.
  • J. Y. Park, J. A. Ko, D. W. Kim, Y. M. Kim, H. J. Kwon, H. J. Jeong, C. Y. Kim, K. H. Park, W. S. Lee and Y. B. Ryu, Chalcones isolated from Angelica keiskei inhibit cysteine proteases of SARS-CoV. Journal of Enzyme Inhibition and Medicinal Chemistry, 31(1), 23–30, 2016. https://doi.org/10.3109/14756366.2014.1003215.
  • H. H. Fan, L. Q. Wang, W. L. Liu, X. P. An, Z. D. Liu, X.Q. He, L. H. Song and Y. G. Tong, Repurposing of clinically approved drugs for treatment of coronavirus disease 2019 in a 2019-novel coronavirus-related coronavirus model. Chinese Medical Journal, 133(9), 1051-1056, 2020. https://doi:10.1097/CM9.0000000000000797.
  • Y. C. Tsai, C. L. Lee, H. R. Yen, Y. S. Chang, Y. P. Lin, S. H. Huang and C. W. Lin, Antiviral action of tryptanthrin isolated from Strobilanthes cusia leaf against Human Coronavirus NL63. Biomolecules, 10 (366), 1-17, 2020. https://doi:10.3390/biom10030366.
  • M. Hesami and A. M. P. Jones, Application of artificial intelligence models and optimization algorithms in plant cell and tissue culture. Applied Microbiology and Biotechnology, 104, 9449–9485, 2020. https://doi.org/ 10.1007/s00253-020-10888-2.
  • N. Nabi, S. Singh and P. Saffeullah, Responses of in vitro cell cultures to elicitation: regulatory role of jasmonic acid and methyl jasmonate: a review. In Vitro Cellular & Developmental Biology-Plant, 57, 341–355, 2021. https://doi.org/10.1007/s11627-020-10140-6
There are 73 citations in total.

Details

Primary Language Turkish
Journal Section Others
Authors

Begüm Güler 0000-0002-9970-2111

Meltem Bayraktar 0000-0002-7569-6925

Aynur Gürel 0000-0002-7002-9752

Publication Date July 27, 2021
Submission Date April 9, 2021
Acceptance Date June 22, 2021
Published in Issue Year 2021

Cite

APA Güler, B., Bayraktar, M., & Gürel, A. (2021). Covid-19 ile mücadelede bitkilerin olası rolü. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 10(2), 866-880. https://doi.org/10.28948/ngumuh.912506
AMA Güler B, Bayraktar M, Gürel A. Covid-19 ile mücadelede bitkilerin olası rolü. NÖHÜ Müh. Bilim. Derg. July 2021;10(2):866-880. doi:10.28948/ngumuh.912506
Chicago Güler, Begüm, Meltem Bayraktar, and Aynur Gürel. “Covid-19 Ile mücadelede Bitkilerin Olası Rolü”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 10, no. 2 (July 2021): 866-80. https://doi.org/10.28948/ngumuh.912506.
EndNote Güler B, Bayraktar M, Gürel A (July 1, 2021) Covid-19 ile mücadelede bitkilerin olası rolü. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 10 2 866–880.
IEEE B. Güler, M. Bayraktar, and A. Gürel, “Covid-19 ile mücadelede bitkilerin olası rolü”, NÖHÜ Müh. Bilim. Derg., vol. 10, no. 2, pp. 866–880, 2021, doi: 10.28948/ngumuh.912506.
ISNAD Güler, Begüm et al. “Covid-19 Ile mücadelede Bitkilerin Olası Rolü”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 10/2 (July 2021), 866-880. https://doi.org/10.28948/ngumuh.912506.
JAMA Güler B, Bayraktar M, Gürel A. Covid-19 ile mücadelede bitkilerin olası rolü. NÖHÜ Müh. Bilim. Derg. 2021;10:866–880.
MLA Güler, Begüm et al. “Covid-19 Ile mücadelede Bitkilerin Olası Rolü”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, vol. 10, no. 2, 2021, pp. 866-80, doi:10.28948/ngumuh.912506.
Vancouver Güler B, Bayraktar M, Gürel A. Covid-19 ile mücadelede bitkilerin olası rolü. NÖHÜ Müh. Bilim. Derg. 2021;10(2):866-80.

download