Research Article
BibTex RIS Cite

DETERMINATION OF DIELECTRIC PROPERTIES OF METAL-OXIDE SEMICONDUCTOR CAPACITOR WITH REDUCED GRAPHENE OXIDE INTERFACIAL OXIDE LAYER

Year 2017, Volume: 6 Issue: 2, 387 - 393, 31.07.2017
https://doi.org/10.28948/ngumuh.341185

Abstract

   In this study, the frequency
dependence of the dielectric properties of Au/RGO/p-Si
metal-oxide-semiconductor (MOS) capacitor with silicon nitride (RGO)
interfacial oxide layer have been investigated by taking experimental
capacitance-voltage (C-V) and conductance-voltage (G/w-V) measurements
at 200, 300, 500 and 700 kHz frequencies. Dielectric constant (ε'), dielectric loss (ε"), dielectric loss tangent (tanδ), ac
electrical conductivity (
σac), real and imaginary part
of electric modulus (Μ' and M") values of the MOS capacitor have been
determined in the frequency range of 10 kHz-1 MHz. The obtained results clearly
show that the dielectric parameters are frequency dependent. The values of the
ε' and ε'' decrease with increasing frequency. But the values of the σac,
Μ' and Μ" increase with
increasing frequency.

References

  • [1] SZE, S.M., NG, K.K., Physics of Semiconductor Devices, (3rd ed.), John Wiley and Sons Inc. Hoboken, Canada, USA, 2007.
  • [2] BYRUM, L.E., ARIYAWANSA, G., JAYASINGHE, R.C., DIETZ, N., PERERA, A.G.U., MATSIK, S.G., FERGUSON, I.T., BEZINGER, A., LIU H.C., “Negative Capacitance in GaN/AlGaN Heterojunction Dual-Band Detectors”, Journal of Applied Physics, 106, 053701-053706, 2009.
  • [3] NICOLLIAN, E.H., BREWS, J.R., MOS (Metal Oxide Semiconductor) Physics and Technology, Wiley, New York, USA, 1982.
  • [4] TERMAN, M., “An Investigation of Surface States at Silicon-Silicon Oxide Interface Employing Metal Oxide Silicon Diodes”, Solid State Electron, 5, 285- 299, 1962.
  • [5] WANG, Z., WANG, W., WANG, M., “P-type Reduced Graphene Oxide Membranes Induced by Iodine Doping”, Journal of Materials Science, 48, 2284-2289, 2013.
  • [6] SEO, H., AHN, S., KIM, J., LEE, Y.A., CHUNG, K.H., JEON, K.J., “Multi-Resistive Reduced Graphene Oxide Diode with Reversible Surface Electrochemical Reaction Induced Carrier Control”, Scientific Reports, 4, 5642-5649, 2014.
  • [7] NUR, S.K., HUSSIN, M.R.M., NASIR, I.M., MUKHTER UZ-ZAMAN, A.S.M., HANIM ABDULLAH W.F., ZOOLFAKAR, A.S., “Study of Reduced Graphene Oxide for Trench Schottky Diode”, Materials Science and Engineering, 99, 012031-012036, 2015.
  • [8] WANG, L., PARK, Y.P.S., CUI, H. LEE, B., LEE, S.M., LEE, H. “Facile Preparation of an N-type Reduced Graphene Oxide Field Effect Transistor at Room Temperature”, Chemical Communications., 50, 1224-1226, 2014.
  • [9] ZHU, J.X., YANG, D., YIN, Z.Y., YAN, Q.Y., ZHANG, H., “Graphene and Graphene-Based Materials For Energy Storage Applications”, Small, 10, 3480-3498, 2014.
  • [10] KE, Q., LIU, Y., LIU, H., ZHANG Y., HU, Y., WANG, J., “Surfactant-Modified Chemically Reduced Graphene Oxide for Electrochemical Supercapacitors”, RSC Advances, 4, 26398-26406, 2014.
  • [11] CHEN, X.A., CHEN, X.H., ZHANG, F.Q., YANG, Z., HUANG, S.M., “One-pot Hydrothermal Synthesis of Reduced Graphene Oxide/Carbon Nanotube/Α-Ni(OH)2 Composites for High Performance Electrochemical Supercapacitor”, Journal of Power Sources, 243, 555-561, 2013.
  • [12] BYON, H.R., LEE, S.W., CHEN, S., HAMMOND, P.T., SHAO-HORN Y., “Thin Films of Carbon Nanotubes and Chemically Reduced Graphenes for Electrochemical Micro-Capacitors”, Carbon, 49, 457-467, 2011.
  • [13] HIBINO, H., KAGESHIMA, H., KOTSUGI, M., MAEDA, F., GUO, F.Z., WATANABE, Y., “Dependence of Electronic Properties of Epitaxial Few-Layer Graphene on the Number of Layers Investigated by Photoelectron Emission Microscopy” Physical Review B, 79, 125437-125544, 2009.
  • [14] PARK, J. K., SONG, S.M., MUN, J.H., CHO, B.J., “Dramatic Improvement of High-K Gate Dielectric Reliability by Using Mono-Layer Graphene Gate Electrode”, Proceedings of the 14nm CMOS Technology and Design Co-Optimization and Emerging Memory Technologies, Symposium on VLSI Technology Short Course, 31-32. Kyoto, Japan, 2012.
  • [15] SONG, S.M., PARK, J.K., SUL, O.J., CHO, B.J., “Determination of Work Function of Graphene under a Metal Electrode and Its Role in Contact Resistance”, Nano Letters, 12, 3887-3892, 2012.
  • [16] MISRA, A., WAIKAR, M., GOUR, A., KALITA, H., KHARE, M., ASLAM, M., KOTTANTHARAYIL, A., “Work Function Tuning and Improved Gate Dielectric Reliability with Multilayer Graphene as a Gate Electrode for Metal Oxide Semiconductor Field Effect Device Applications”, Applied Physics Letters, 100, 233506-233601, 2012.
  • [17] COWLEY, A.M., SZE, S.M., “Surface State and Barrier Height of Metal Semiconductor Systems”, Journal of Applied Physics, 36, 3212-3221, 1965.
  • [18] KWAN, C.K., Dielectric Phenomena in Solids: with Emphasis on Physical Concepts of Electronic Processes, Elsevier, Amsterdam, Netherlands, 2004.
  • [19] CHELKOWSKI A., Dielectric Physics, Elsevier, Amsterdam, Netherlands, 1980.
  • [20] RAJU G.G., Dielectrics in Electric Fields, Marcel Dekker Inc., New York, USA, 2003.
  • [21] RICHMAN P., MOS Field-Effect Transistors and Integrated Circuits, Wiley Inc., New York, USA, 1973.
  • [22] VON HIPPEL, A.R., Dielectric Materials and Applications, John Wiley and Sons Inc., New York, USA, 1954.
  • [23] DANIEL, V.V., Dielectric Relaxation, Academic Press, London, UK, 1967.
  • [24] K. RAJASEKAR, SUBBARAYAN, A., SATHYAMOORTHY, R., “AC and Dielectric Properties of Thermally Evaporated P-type (Sb2Te3)70 (Bi2Te3)30 Thin Films”, Solar Energy Materials and Solar Cells, 90, 2515-2522, 2006.
  • [25] PISSIS, P., KYRITSIS, A., “Electrical Conductivity Studies in Hydrogels”, Solid State Electronics, 97, 105-113, 1997.
  • [26] PRABAKAR, K., NARAYANDASS, S.K., MANGALARAJ, D., “Dielectric Properties of Cd0.6Zn0.4Te Thin Films”, Physical Status Solid, 199, 507-514, 2003.
  • [27] DÖKME, I., ALTINDAL, Ş., GÖKÇEN, M., “Frequency and Gate Voltage Effects on the Dielectric Properties of Au/SiO2/n-Si Structures”, Microelectronic Engineering, 85, 1910-1914, 2008.

İNDİRGENMİŞ GRAFEN OKSİT ARAYÜZEY TABAKALI METAL OKSİT YARIİLETKEN KAPASİTÖRÜN DİELEKTRİK ÖZELLİKLERİNİN BELİRLENMESİ

Year 2017, Volume: 6 Issue: 2, 387 - 393, 31.07.2017
https://doi.org/10.28948/ngumuh.341185

Abstract

   Bu çalışmada, İndirgenmiş Grafen Oksit (RGO)
arayüzey oksit tabakalı Au/RGO/p-Si metal-oksit-yarıiletken (MOS) kapasitörün
dielektrik özelliklerinin frekans bağımlılığı 200, 300, 500 ve 700 kHz
frekanslarda deneysel kapasitans-voltaj (C-V) ve iletkenlik-voltaj (G/w-V)
ölçümleri alınarak incelendi. Ayrıca MOS kapasitörün dielektrik sabiti (
ε'), dielektrik
kayıp (
ε"),
dielektrik kayıp açısı (tan
δ), ac elektrik iletkenlik (σac), reel ve
imajiner elektrik modülü (
Μ' ve Μ") değerleri 10 kHz-1 MHz frekans aralığında belirlendi. Elde edilen sonuçlar dielektrik
parametrelerin frekansa bağımlı olduğunu açık bir şekilde göstermektedir. ε' ve
ε'' artan frekansla azalmaktadır. σac,
Μ' ve Μ" değerleri ise artan frekans ile artmaktadır.

References

  • [1] SZE, S.M., NG, K.K., Physics of Semiconductor Devices, (3rd ed.), John Wiley and Sons Inc. Hoboken, Canada, USA, 2007.
  • [2] BYRUM, L.E., ARIYAWANSA, G., JAYASINGHE, R.C., DIETZ, N., PERERA, A.G.U., MATSIK, S.G., FERGUSON, I.T., BEZINGER, A., LIU H.C., “Negative Capacitance in GaN/AlGaN Heterojunction Dual-Band Detectors”, Journal of Applied Physics, 106, 053701-053706, 2009.
  • [3] NICOLLIAN, E.H., BREWS, J.R., MOS (Metal Oxide Semiconductor) Physics and Technology, Wiley, New York, USA, 1982.
  • [4] TERMAN, M., “An Investigation of Surface States at Silicon-Silicon Oxide Interface Employing Metal Oxide Silicon Diodes”, Solid State Electron, 5, 285- 299, 1962.
  • [5] WANG, Z., WANG, W., WANG, M., “P-type Reduced Graphene Oxide Membranes Induced by Iodine Doping”, Journal of Materials Science, 48, 2284-2289, 2013.
  • [6] SEO, H., AHN, S., KIM, J., LEE, Y.A., CHUNG, K.H., JEON, K.J., “Multi-Resistive Reduced Graphene Oxide Diode with Reversible Surface Electrochemical Reaction Induced Carrier Control”, Scientific Reports, 4, 5642-5649, 2014.
  • [7] NUR, S.K., HUSSIN, M.R.M., NASIR, I.M., MUKHTER UZ-ZAMAN, A.S.M., HANIM ABDULLAH W.F., ZOOLFAKAR, A.S., “Study of Reduced Graphene Oxide for Trench Schottky Diode”, Materials Science and Engineering, 99, 012031-012036, 2015.
  • [8] WANG, L., PARK, Y.P.S., CUI, H. LEE, B., LEE, S.M., LEE, H. “Facile Preparation of an N-type Reduced Graphene Oxide Field Effect Transistor at Room Temperature”, Chemical Communications., 50, 1224-1226, 2014.
  • [9] ZHU, J.X., YANG, D., YIN, Z.Y., YAN, Q.Y., ZHANG, H., “Graphene and Graphene-Based Materials For Energy Storage Applications”, Small, 10, 3480-3498, 2014.
  • [10] KE, Q., LIU, Y., LIU, H., ZHANG Y., HU, Y., WANG, J., “Surfactant-Modified Chemically Reduced Graphene Oxide for Electrochemical Supercapacitors”, RSC Advances, 4, 26398-26406, 2014.
  • [11] CHEN, X.A., CHEN, X.H., ZHANG, F.Q., YANG, Z., HUANG, S.M., “One-pot Hydrothermal Synthesis of Reduced Graphene Oxide/Carbon Nanotube/Α-Ni(OH)2 Composites for High Performance Electrochemical Supercapacitor”, Journal of Power Sources, 243, 555-561, 2013.
  • [12] BYON, H.R., LEE, S.W., CHEN, S., HAMMOND, P.T., SHAO-HORN Y., “Thin Films of Carbon Nanotubes and Chemically Reduced Graphenes for Electrochemical Micro-Capacitors”, Carbon, 49, 457-467, 2011.
  • [13] HIBINO, H., KAGESHIMA, H., KOTSUGI, M., MAEDA, F., GUO, F.Z., WATANABE, Y., “Dependence of Electronic Properties of Epitaxial Few-Layer Graphene on the Number of Layers Investigated by Photoelectron Emission Microscopy” Physical Review B, 79, 125437-125544, 2009.
  • [14] PARK, J. K., SONG, S.M., MUN, J.H., CHO, B.J., “Dramatic Improvement of High-K Gate Dielectric Reliability by Using Mono-Layer Graphene Gate Electrode”, Proceedings of the 14nm CMOS Technology and Design Co-Optimization and Emerging Memory Technologies, Symposium on VLSI Technology Short Course, 31-32. Kyoto, Japan, 2012.
  • [15] SONG, S.M., PARK, J.K., SUL, O.J., CHO, B.J., “Determination of Work Function of Graphene under a Metal Electrode and Its Role in Contact Resistance”, Nano Letters, 12, 3887-3892, 2012.
  • [16] MISRA, A., WAIKAR, M., GOUR, A., KALITA, H., KHARE, M., ASLAM, M., KOTTANTHARAYIL, A., “Work Function Tuning and Improved Gate Dielectric Reliability with Multilayer Graphene as a Gate Electrode for Metal Oxide Semiconductor Field Effect Device Applications”, Applied Physics Letters, 100, 233506-233601, 2012.
  • [17] COWLEY, A.M., SZE, S.M., “Surface State and Barrier Height of Metal Semiconductor Systems”, Journal of Applied Physics, 36, 3212-3221, 1965.
  • [18] KWAN, C.K., Dielectric Phenomena in Solids: with Emphasis on Physical Concepts of Electronic Processes, Elsevier, Amsterdam, Netherlands, 2004.
  • [19] CHELKOWSKI A., Dielectric Physics, Elsevier, Amsterdam, Netherlands, 1980.
  • [20] RAJU G.G., Dielectrics in Electric Fields, Marcel Dekker Inc., New York, USA, 2003.
  • [21] RICHMAN P., MOS Field-Effect Transistors and Integrated Circuits, Wiley Inc., New York, USA, 1973.
  • [22] VON HIPPEL, A.R., Dielectric Materials and Applications, John Wiley and Sons Inc., New York, USA, 1954.
  • [23] DANIEL, V.V., Dielectric Relaxation, Academic Press, London, UK, 1967.
  • [24] K. RAJASEKAR, SUBBARAYAN, A., SATHYAMOORTHY, R., “AC and Dielectric Properties of Thermally Evaporated P-type (Sb2Te3)70 (Bi2Te3)30 Thin Films”, Solar Energy Materials and Solar Cells, 90, 2515-2522, 2006.
  • [25] PISSIS, P., KYRITSIS, A., “Electrical Conductivity Studies in Hydrogels”, Solid State Electronics, 97, 105-113, 1997.
  • [26] PRABAKAR, K., NARAYANDASS, S.K., MANGALARAJ, D., “Dielectric Properties of Cd0.6Zn0.4Te Thin Films”, Physical Status Solid, 199, 507-514, 2003.
  • [27] DÖKME, I., ALTINDAL, Ş., GÖKÇEN, M., “Frequency and Gate Voltage Effects on the Dielectric Properties of Au/SiO2/n-Si Structures”, Microelectronic Engineering, 85, 1910-1914, 2008.
There are 27 citations in total.

Details

Subjects Electrical Engineering
Journal Section Electrical and Electronics Engineering
Authors

İbrahim Karteri This is me 0000-0001-8913-6753

Publication Date July 31, 2017
Submission Date April 15, 2017
Acceptance Date June 14, 2017
Published in Issue Year 2017 Volume: 6 Issue: 2

Cite

APA Karteri, İ. (2017). İNDİRGENMİŞ GRAFEN OKSİT ARAYÜZEY TABAKALI METAL OKSİT YARIİLETKEN KAPASİTÖRÜN DİELEKTRİK ÖZELLİKLERİNİN BELİRLENMESİ. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 6(2), 387-393. https://doi.org/10.28948/ngumuh.341185
AMA Karteri İ. İNDİRGENMİŞ GRAFEN OKSİT ARAYÜZEY TABAKALI METAL OKSİT YARIİLETKEN KAPASİTÖRÜN DİELEKTRİK ÖZELLİKLERİNİN BELİRLENMESİ. NOHU J. Eng. Sci. July 2017;6(2):387-393. doi:10.28948/ngumuh.341185
Chicago Karteri, İbrahim. “İNDİRGENMİŞ GRAFEN OKSİT ARAYÜZEY TABAKALI METAL OKSİT YARIİLETKEN KAPASİTÖRÜN DİELEKTRİK ÖZELLİKLERİNİN BELİRLENMESİ”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 6, no. 2 (July 2017): 387-93. https://doi.org/10.28948/ngumuh.341185.
EndNote Karteri İ (July 1, 2017) İNDİRGENMİŞ GRAFEN OKSİT ARAYÜZEY TABAKALI METAL OKSİT YARIİLETKEN KAPASİTÖRÜN DİELEKTRİK ÖZELLİKLERİNİN BELİRLENMESİ. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 6 2 387–393.
IEEE İ. Karteri, “İNDİRGENMİŞ GRAFEN OKSİT ARAYÜZEY TABAKALI METAL OKSİT YARIİLETKEN KAPASİTÖRÜN DİELEKTRİK ÖZELLİKLERİNİN BELİRLENMESİ”, NOHU J. Eng. Sci., vol. 6, no. 2, pp. 387–393, 2017, doi: 10.28948/ngumuh.341185.
ISNAD Karteri, İbrahim. “İNDİRGENMİŞ GRAFEN OKSİT ARAYÜZEY TABAKALI METAL OKSİT YARIİLETKEN KAPASİTÖRÜN DİELEKTRİK ÖZELLİKLERİNİN BELİRLENMESİ”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 6/2 (July 2017), 387-393. https://doi.org/10.28948/ngumuh.341185.
JAMA Karteri İ. İNDİRGENMİŞ GRAFEN OKSİT ARAYÜZEY TABAKALI METAL OKSİT YARIİLETKEN KAPASİTÖRÜN DİELEKTRİK ÖZELLİKLERİNİN BELİRLENMESİ. NOHU J. Eng. Sci. 2017;6:387–393.
MLA Karteri, İbrahim. “İNDİRGENMİŞ GRAFEN OKSİT ARAYÜZEY TABAKALI METAL OKSİT YARIİLETKEN KAPASİTÖRÜN DİELEKTRİK ÖZELLİKLERİNİN BELİRLENMESİ”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, vol. 6, no. 2, 2017, pp. 387-93, doi:10.28948/ngumuh.341185.
Vancouver Karteri İ. İNDİRGENMİŞ GRAFEN OKSİT ARAYÜZEY TABAKALI METAL OKSİT YARIİLETKEN KAPASİTÖRÜN DİELEKTRİK ÖZELLİKLERİNİN BELİRLENMESİ. NOHU J. Eng. Sci. 2017;6(2):387-93.

download