Research Article
BibTex RIS Cite

FÜZELERDE KULLANILAN KÜÇÜK BİR GAZ TÜRBİNLİ MOTORUN DENEY DÜZENEĞİ, TESTİ VE PERFORMANS ÖLÇÜMÜ

Year 2017, Volume: 6 Issue: 2, 717 - 728, 31.07.2017
https://doi.org/10.28948/ngumuh.341995

Abstract

   Bu
çalışmada, deneysel küçük bir turbojet motor test edilerek, motorun performans
modellemesi elde edilmiştir. Deneysel turbojet motor, bir havaalığı, santrafüj
kompresör, ters akışlı yanma odası, eksenel akışlı türbin ve egzozdan
oluşmaktadır. Turbojet motor, test hücresinde farklı devirlerde (RPM) test edilerek,
itki (
t), özgül
yakıt sarfiyatı (SFC), yakıt debisi (FF) ve egzoz gaz sıcaklığı (EGT)
arasındaki değişimler incelenerek matematiksel bağıntılar elde edilmiştir.
Turbojet deneyleri, 25.000<RPM<48.500 ve 130 N<
t<1.260 N
arasında gerçekleştirilmiştir. Performans parametreleri arasındaki ilişkiler,
güvenirlik değerleriyle verilmiştir. Benzer füze tasarımı çalışmalarında enerji
sağlayıcı olarak bir turbojet motoru seçilmesi durumunda, bu çalışmanın model
olarak alınabileceği öngörülmektedir.

References

  • [1] DİNÇ, A., “Optimization of a Turboprop UAV for Maximum Loiter and Specific Power Using Genetic Algorithm”, International Journal of Turbo&Jet Engine, DOI 10.1515/tjj-2015-0030, 2015.
  • [2] FAA. Federal Aviation Administration, Aviation Safety Unmanned Aircraft Program Office (UAPO), Interim Operational Approval Guidance. Unmanned Aircraft Systems Operations in the U. S. National Airspace System, 2008.
  • [3] U.S. Department of Defense. Office of the Secretary of Defense 2007–2032 Unmanned Systems Roadmap, 2007.
  • [4] GUHA, A., “Optimization of Aero Gas Turbine Engines”, The Aeronautical Journal, 105, 1049, 345-358, 2001.
  • [5] GUHA, A., “Performance and Optimization of Gas Turbine Engine with Real Gas Effects”, Proceedings Institution of Mechanical Engineers, 215, 4, 507-512, 2001.
  • [6] BAKLACIOĞLU, T., TURAN, O. and AYDIN, H., “ Dynamic Modeling of Exergy Efficiency of Turboprop Engine Components Using Hybrid Genetic Algorithm-Artificial Neural Networks”, Energy, 86, 709-721, 2015.
  • [7] TURAN, O., “Effect of Reference Altitudes for a Turbofan Engine with the Aid of Specific-Exergy Based Method”, International Journal of Exergy, 11, 252-270, 2012.
  • [8] TURAN, O.,”An Exergy Way to Quantify Sustainability Metrics for a High Bypass Turbofan Engine”, Energy, 86, 722-736, 2015.
  • [9] TURAN, O., “Exergetic Effects of Some Design Parameters on the Small Turbojet Engine for Unmanned Air Vehicle Applications, Energy, 46, 51-61, 2012.
  • [10] TURAN, O., AYDIN, H., “ Exergetic and Exergo-Economic Analyses of an Aero-Derivative Gas Turbine Engine”, Energy, 74, 638-650, 2014.
  • [11] BÜLBÜL, A., “TRS-18 Test Bremzesi”, Anadolu Üniversitesi Sivil Havacılık Yüksekokulu Bitirme Tezi, 2010.
  • [12] http://www.microturbo.fr/article.php3?id_article=174&lang=en (erişim tarihi: 22.01.2010)
  • [13] MATTINGLY, D., J., “Elements of Gas Turbine Propulsion”, McGraw-Hill, International Editions, Singapore, 1996.
  • [14] OATES, C., G., ”Aerothermodynamics of Gas Turbine and Rocket Propulsion”, Fourth Printing, AIAA Education Series, ABD., 1998.
  • [15] TURAN, Ö., “ Gaz Türbinli Motorlarda Performans Analiz ve Değerlendirme Programları”, Yüksek Lisans Tezi, Anadolu Üniversitesi, Fen Bilimleri Enstitüsü, Eskişehir, 2000.
  • [16] DOPELHEUR, A., “Aircraft Emission Parameter Modelling”, Air and Space Europe, 2, 34-37, 2000.
  • [17] TRS18a Turbojet Motorunun Eğitim Manüeli, Microturbo Company, 1993.

EXPERIMENTAL SET-UP, TESTING AND PERFORMANCE MODELING OF A TURBOJET ENGINE FOR TARGET DRONE APPLICATIONS

Year 2017, Volume: 6 Issue: 2, 717 - 728, 31.07.2017
https://doi.org/10.28948/ngumuh.341995

Abstract

   In this paper, experimental turbojet engine is tested and performed
performance modelling of turbojet engine. The main components of this engine
include an inlet bell mouth, a centrifugal compressor, a reverse flow
combustion chamber, an axial flow turbine and an exhaust. The engine is tested
under various shaft speed (RPM) for yielding mathematical correlation between
thrust force (
t), specific fuel consumption (SFC), fuel flow (FF) and exhaust gas
temperature. Testing upper and lower limits for shaft speed and thrust are
under 25,000< RPM <48,500 and 130 N<
t <1,260 N, respectively. Each correlation equations
are given with R-squared value. It is expected that this study can be able to a
model related to future design work in case of selecting turbojet as an energy
supplier of a target drone.

References

  • [1] DİNÇ, A., “Optimization of a Turboprop UAV for Maximum Loiter and Specific Power Using Genetic Algorithm”, International Journal of Turbo&Jet Engine, DOI 10.1515/tjj-2015-0030, 2015.
  • [2] FAA. Federal Aviation Administration, Aviation Safety Unmanned Aircraft Program Office (UAPO), Interim Operational Approval Guidance. Unmanned Aircraft Systems Operations in the U. S. National Airspace System, 2008.
  • [3] U.S. Department of Defense. Office of the Secretary of Defense 2007–2032 Unmanned Systems Roadmap, 2007.
  • [4] GUHA, A., “Optimization of Aero Gas Turbine Engines”, The Aeronautical Journal, 105, 1049, 345-358, 2001.
  • [5] GUHA, A., “Performance and Optimization of Gas Turbine Engine with Real Gas Effects”, Proceedings Institution of Mechanical Engineers, 215, 4, 507-512, 2001.
  • [6] BAKLACIOĞLU, T., TURAN, O. and AYDIN, H., “ Dynamic Modeling of Exergy Efficiency of Turboprop Engine Components Using Hybrid Genetic Algorithm-Artificial Neural Networks”, Energy, 86, 709-721, 2015.
  • [7] TURAN, O., “Effect of Reference Altitudes for a Turbofan Engine with the Aid of Specific-Exergy Based Method”, International Journal of Exergy, 11, 252-270, 2012.
  • [8] TURAN, O.,”An Exergy Way to Quantify Sustainability Metrics for a High Bypass Turbofan Engine”, Energy, 86, 722-736, 2015.
  • [9] TURAN, O., “Exergetic Effects of Some Design Parameters on the Small Turbojet Engine for Unmanned Air Vehicle Applications, Energy, 46, 51-61, 2012.
  • [10] TURAN, O., AYDIN, H., “ Exergetic and Exergo-Economic Analyses of an Aero-Derivative Gas Turbine Engine”, Energy, 74, 638-650, 2014.
  • [11] BÜLBÜL, A., “TRS-18 Test Bremzesi”, Anadolu Üniversitesi Sivil Havacılık Yüksekokulu Bitirme Tezi, 2010.
  • [12] http://www.microturbo.fr/article.php3?id_article=174&lang=en (erişim tarihi: 22.01.2010)
  • [13] MATTINGLY, D., J., “Elements of Gas Turbine Propulsion”, McGraw-Hill, International Editions, Singapore, 1996.
  • [14] OATES, C., G., ”Aerothermodynamics of Gas Turbine and Rocket Propulsion”, Fourth Printing, AIAA Education Series, ABD., 1998.
  • [15] TURAN, Ö., “ Gaz Türbinli Motorlarda Performans Analiz ve Değerlendirme Programları”, Yüksek Lisans Tezi, Anadolu Üniversitesi, Fen Bilimleri Enstitüsü, Eskişehir, 2000.
  • [16] DOPELHEUR, A., “Aircraft Emission Parameter Modelling”, Air and Space Europe, 2, 34-37, 2000.
  • [17] TRS18a Turbojet Motorunun Eğitim Manüeli, Microturbo Company, 1993.
There are 17 citations in total.

Details

Subjects Mechanical Engineering
Journal Section Mechanical Engineering
Authors

Önder Turan This is me 0000-0003-0303-4313

Publication Date July 31, 2017
Submission Date February 22, 2017
Acceptance Date May 10, 2017
Published in Issue Year 2017 Volume: 6 Issue: 2

Cite

APA Turan, Ö. (2017). FÜZELERDE KULLANILAN KÜÇÜK BİR GAZ TÜRBİNLİ MOTORUN DENEY DÜZENEĞİ, TESTİ VE PERFORMANS ÖLÇÜMÜ. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 6(2), 717-728. https://doi.org/10.28948/ngumuh.341995
AMA Turan Ö. FÜZELERDE KULLANILAN KÜÇÜK BİR GAZ TÜRBİNLİ MOTORUN DENEY DÜZENEĞİ, TESTİ VE PERFORMANS ÖLÇÜMÜ. NOHU J. Eng. Sci. July 2017;6(2):717-728. doi:10.28948/ngumuh.341995
Chicago Turan, Önder. “FÜZELERDE KULLANILAN KÜÇÜK BİR GAZ TÜRBİNLİ MOTORUN DENEY DÜZENEĞİ, TESTİ VE PERFORMANS ÖLÇÜMÜ”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 6, no. 2 (July 2017): 717-28. https://doi.org/10.28948/ngumuh.341995.
EndNote Turan Ö (July 1, 2017) FÜZELERDE KULLANILAN KÜÇÜK BİR GAZ TÜRBİNLİ MOTORUN DENEY DÜZENEĞİ, TESTİ VE PERFORMANS ÖLÇÜMÜ. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 6 2 717–728.
IEEE Ö. Turan, “FÜZELERDE KULLANILAN KÜÇÜK BİR GAZ TÜRBİNLİ MOTORUN DENEY DÜZENEĞİ, TESTİ VE PERFORMANS ÖLÇÜMÜ”, NOHU J. Eng. Sci., vol. 6, no. 2, pp. 717–728, 2017, doi: 10.28948/ngumuh.341995.
ISNAD Turan, Önder. “FÜZELERDE KULLANILAN KÜÇÜK BİR GAZ TÜRBİNLİ MOTORUN DENEY DÜZENEĞİ, TESTİ VE PERFORMANS ÖLÇÜMÜ”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 6/2 (July 2017), 717-728. https://doi.org/10.28948/ngumuh.341995.
JAMA Turan Ö. FÜZELERDE KULLANILAN KÜÇÜK BİR GAZ TÜRBİNLİ MOTORUN DENEY DÜZENEĞİ, TESTİ VE PERFORMANS ÖLÇÜMÜ. NOHU J. Eng. Sci. 2017;6:717–728.
MLA Turan, Önder. “FÜZELERDE KULLANILAN KÜÇÜK BİR GAZ TÜRBİNLİ MOTORUN DENEY DÜZENEĞİ, TESTİ VE PERFORMANS ÖLÇÜMÜ”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, vol. 6, no. 2, 2017, pp. 717-28, doi:10.28948/ngumuh.341995.
Vancouver Turan Ö. FÜZELERDE KULLANILAN KÜÇÜK BİR GAZ TÜRBİNLİ MOTORUN DENEY DÜZENEĞİ, TESTİ VE PERFORMANS ÖLÇÜMÜ. NOHU J. Eng. Sci. 2017;6(2):717-28.

download