Research Article
BibTex RIS Cite

EFFECT OF ANISOTROPY DETERMINATION METHODS ON FORMING LIMIT CURVE PREDICTION OF 304L STAINLESS STEEL

Year 2017, Volume: 6 Issue: 2, 737 - 751, 31.07.2017
https://doi.org/10.28948/ngumuh.342073

Abstract

   In recent years, numerous
researchers have focused on the determination of the formability limits of the
sheet materials experimentally and numerically. Due to some troubles
encountered during the experimental studies, the modeling of the formability
characteristics of the materials via simple experiments like tensile tests is
the main issue for the most researchers. In the literature, most of the
developed model results strongly depend on yield functions used and their
parameters which reflect the materials’ anisotropic behaviors. In this study,
the capability of BBC family yield functions (BBC2000, 2003, 2005 and 2008)
are investigated to construct the forming limit diagram of 304L stainless steel
by using the Marciniak-Kuczynski instability model. The models
are evaluated for different anisotropy determination approaches and the
predicted results have been compared with the experimental forming limit
diagram.

References

  • [1] KEELER S.P, BACKHOFEN W.A., “Plastic Instability and Fracture in Sheet Stretched over Rigid Punches”, ASM Trans Quart, 56, 25, 1964.
  • [2] GOODWIN, G.M., “Application of Strain Analysis to Sheet Metal Forming in the Press Shop”, SAE paper, No. 680093, 380, 1968.
  • [3] SWIFT, H.W., “Plastic Instability under Plane Stress”, J Mech Phys Solids, 1, 1, 1952.
  • [4] HILL, R., “On Discontinuous Plastic States, with Special Reference to Localized Necking in Thin Sheets”, J. Mech. Phys. Solids, 1, 19, 1952.
  • [5] HASHIGUCHI, K., PROTASOV A., “Localized Necking Analysis by the Subloading Surface Model with Tangential-Strain Rate and Anisotropy”, Int. J. Plasticity, 20, 1909, 2004.
  • [6] BOUDEAU, N., GELIN, J.C., SALHI, S., “Computational Prediction of the Localized Necking in Sheet Forming Based on Microstructural Material Aspects”, Comput Mater Sci., 11, 45, 1998.
  • [7] BRESSAN, J.D., WILLIAMS, J.A., “The use of a Shear Instability Criterion to Predict Local Necking in Sheet Metal Deformation”, Int J Mech Sci., 25, 155, 1983.
  • [8] MARCINIAK, Z., KUCZYNSKI, K., “Limit Strains in the Processes of Stretch Forming Sheet Steel”. J. Mech. Phys. Solids, 1, 609, 1967.
  • [9] HUTCHINSON, J.W., NEALE, K.W., Sheet Necking-II. Time Independent Behavior. In: Koistinen, DP, Wang NM, editors. Mechanics of Sheet Metal Forming. New York: Plenum Press, 1964.
  • [10] BANABIC, D., ARETZ, H., PARAIANU, L., JURCO, P., “Applications of Various Fold Modeling Approaches”, Model Simul Mater Sci. Eng., 13, 759, 2005.
  • [11] BANABIC, D., ARETZ, H.D., COMSA, S., PARAIANU, L., “An Improved Analytical Description of Orthotropy in Metallic Sheets”, Int J Plasticity, 21, 493, 2005.
  • [12] HORA, P., TONG, L., REISSNER J., “A Prediction Method for Ductile Sheet Metal Failure in Fe-Simulation”, Proc. Numisheet’96 Conf., Dearborn, Michigan, 252, 1996.
  • [13] ARRIEUX, R., BRUNET, M., VACHER, P., NHAT, T.N., “A Method to Predict the Onset of Necking in Numerical Simulation of Deep Drawing Operations”, CIRP Annals, 45, 255, 1996.
  • [14] SLOTA, J., SPIŠÁK, E., “Comparison of the Forming Limit Diagram (FLD) Models for Drawing Quality (DQ) Steel Sheets”, Metalurgija, 44, 249, 2005.
  • [15] ASTM E8/E8M-11 Standard Test Methods for Tension Testing of Metallic Materials. West Conshohocken: American Society for Testing and Materials; 2004.
  • [16] TALONEN, J., NENONEN, P., PAPE, G., HÄNNINEN, H., “Effect of Strain Rate on the Strain-Induced Martensite Transformation and Mechanical Properties of Austenitic Stainless Steels”, Metall Mater Trans A 36A: 421–32, 2005.
  • [17] CHUNG, K., AHN, K., YOO, H.D,, CHUNG, K.H., SEO, M.H., PARK, S.H., “Formability of TWIP (Twinning Induced Plasticity) Automotive Sheets”, Int J Plasticity, 27, 52–81, 2011.
  • [18] BANABIC, D., KUWABARA, T., BALAN, T., COMSA, D.S., JULEAN, D., “Non -Quadratic Yield Criterion for Orthotropic Sheet Metals under Plane-Stress Conditions”, Int. J. Mech. Sci., 45, 797-811, 2003.
  • [19] BARLAT, F., LIAN, J., “Plastic Behaviour and Stretchability of Sheet Metals (Part I): A Yield Function for Orthotropic Sheet under Plane Stress Conditions”, Int J Plasticity, 5, 51–56, 1989.
  • [20] BANABIC, D., ARETZ, H., COMSA, D.S., PARAIANU, L., “An Improved Analytical Description Oforthotropy in Metallic Sheets”, Int. J. Plasticity, 21, 493–512, 2005.
  • [21] BANABIC, D., COMSA, D.S., SESTER, M., SELIG, M., KUBLI, W., MATTIASSON, K., SIGVANT, M., “Influence of Constitutive Equations on the Accuracy of Prediction in Sheet Metal Forming Simulation”, Proceeding of the Numisheet Conference, Interlaken, Switzerland, 37-42, 2008,
  • [22] COMSA, D.S., BANABIC, D., Plane-Stress Yield Criterion for Highly-Anisotropic Sheet Metals. In: Hora P (ed) Proceedings of the 7th International Conference and Workshop on Numerical Simulation of 3D Sheet Metal Forming Processes, NUMISHEET 2008, Interlaken, Switzerland, 43–8,2008.
  • [23] CAO, J., YAO, H., KARAFILLIS, A., BOYCE, M.C., “Prediction of Localized Thinning in Sheet Metal Using a General Anisotropic Yield Criterion”, Int. J. Plasticity, 16, 1105–29, 2000.

304L PASLANMAZ ÇELİĞİN ŞEKİLLENDİRME SINIR DİYAGRAMININ BELİRLENMESİNDE ANİZOTROPİ BELİRLEME METODUNUN ETKİSİ

Year 2017, Volume: 6 Issue: 2, 737 - 751, 31.07.2017
https://doi.org/10.28948/ngumuh.342073

Abstract

   Son
yıllarda birçok araştırmacı sac malzemelerin şekillendirme sınırlarının
deneysel ve nümerik olarak belirlenmesi üzerine odaklanmışlardır. Deneysel çalışmalar
esnasında birçok zorluklarla karşılaşılmasından ötürü, birçok araştırmacı için
malzemelerin şekillendirme karakteristiklerini çekme deneyi gibi basit
deneylerden modellenerek elde edilmesi temel bir mesele haline gelmiştir.
Literatürde geliştirilen birçok model sonucu kullanılan akma yüzey
fonksiyonlarına ve malzemelerin anizotropik davranışlarını yansıtan model
parametrelerine büyük ölçüde bağlı bulunmaktadır. Bu çalışma kapsamında BBC
ailesi (
BBC2000,
2003, 2005 ve 2008
) akma yüzeyleri Marciniak-Kuczynski kararsızlık modeli ile 304L paslanmaz çeliğin
şekillendirme sınır diyagramının oluşturulması noktasında kullanılmıştır.
Modeller farklı anizotropi belirleme yöntemleri için değerlendirilmiş ve tahmin
edilen sonuçlar deneysel sonuçlarla karşılaştırılmıştır.

References

  • [1] KEELER S.P, BACKHOFEN W.A., “Plastic Instability and Fracture in Sheet Stretched over Rigid Punches”, ASM Trans Quart, 56, 25, 1964.
  • [2] GOODWIN, G.M., “Application of Strain Analysis to Sheet Metal Forming in the Press Shop”, SAE paper, No. 680093, 380, 1968.
  • [3] SWIFT, H.W., “Plastic Instability under Plane Stress”, J Mech Phys Solids, 1, 1, 1952.
  • [4] HILL, R., “On Discontinuous Plastic States, with Special Reference to Localized Necking in Thin Sheets”, J. Mech. Phys. Solids, 1, 19, 1952.
  • [5] HASHIGUCHI, K., PROTASOV A., “Localized Necking Analysis by the Subloading Surface Model with Tangential-Strain Rate and Anisotropy”, Int. J. Plasticity, 20, 1909, 2004.
  • [6] BOUDEAU, N., GELIN, J.C., SALHI, S., “Computational Prediction of the Localized Necking in Sheet Forming Based on Microstructural Material Aspects”, Comput Mater Sci., 11, 45, 1998.
  • [7] BRESSAN, J.D., WILLIAMS, J.A., “The use of a Shear Instability Criterion to Predict Local Necking in Sheet Metal Deformation”, Int J Mech Sci., 25, 155, 1983.
  • [8] MARCINIAK, Z., KUCZYNSKI, K., “Limit Strains in the Processes of Stretch Forming Sheet Steel”. J. Mech. Phys. Solids, 1, 609, 1967.
  • [9] HUTCHINSON, J.W., NEALE, K.W., Sheet Necking-II. Time Independent Behavior. In: Koistinen, DP, Wang NM, editors. Mechanics of Sheet Metal Forming. New York: Plenum Press, 1964.
  • [10] BANABIC, D., ARETZ, H., PARAIANU, L., JURCO, P., “Applications of Various Fold Modeling Approaches”, Model Simul Mater Sci. Eng., 13, 759, 2005.
  • [11] BANABIC, D., ARETZ, H.D., COMSA, S., PARAIANU, L., “An Improved Analytical Description of Orthotropy in Metallic Sheets”, Int J Plasticity, 21, 493, 2005.
  • [12] HORA, P., TONG, L., REISSNER J., “A Prediction Method for Ductile Sheet Metal Failure in Fe-Simulation”, Proc. Numisheet’96 Conf., Dearborn, Michigan, 252, 1996.
  • [13] ARRIEUX, R., BRUNET, M., VACHER, P., NHAT, T.N., “A Method to Predict the Onset of Necking in Numerical Simulation of Deep Drawing Operations”, CIRP Annals, 45, 255, 1996.
  • [14] SLOTA, J., SPIŠÁK, E., “Comparison of the Forming Limit Diagram (FLD) Models for Drawing Quality (DQ) Steel Sheets”, Metalurgija, 44, 249, 2005.
  • [15] ASTM E8/E8M-11 Standard Test Methods for Tension Testing of Metallic Materials. West Conshohocken: American Society for Testing and Materials; 2004.
  • [16] TALONEN, J., NENONEN, P., PAPE, G., HÄNNINEN, H., “Effect of Strain Rate on the Strain-Induced Martensite Transformation and Mechanical Properties of Austenitic Stainless Steels”, Metall Mater Trans A 36A: 421–32, 2005.
  • [17] CHUNG, K., AHN, K., YOO, H.D,, CHUNG, K.H., SEO, M.H., PARK, S.H., “Formability of TWIP (Twinning Induced Plasticity) Automotive Sheets”, Int J Plasticity, 27, 52–81, 2011.
  • [18] BANABIC, D., KUWABARA, T., BALAN, T., COMSA, D.S., JULEAN, D., “Non -Quadratic Yield Criterion for Orthotropic Sheet Metals under Plane-Stress Conditions”, Int. J. Mech. Sci., 45, 797-811, 2003.
  • [19] BARLAT, F., LIAN, J., “Plastic Behaviour and Stretchability of Sheet Metals (Part I): A Yield Function for Orthotropic Sheet under Plane Stress Conditions”, Int J Plasticity, 5, 51–56, 1989.
  • [20] BANABIC, D., ARETZ, H., COMSA, D.S., PARAIANU, L., “An Improved Analytical Description Oforthotropy in Metallic Sheets”, Int. J. Plasticity, 21, 493–512, 2005.
  • [21] BANABIC, D., COMSA, D.S., SESTER, M., SELIG, M., KUBLI, W., MATTIASSON, K., SIGVANT, M., “Influence of Constitutive Equations on the Accuracy of Prediction in Sheet Metal Forming Simulation”, Proceeding of the Numisheet Conference, Interlaken, Switzerland, 37-42, 2008,
  • [22] COMSA, D.S., BANABIC, D., Plane-Stress Yield Criterion for Highly-Anisotropic Sheet Metals. In: Hora P (ed) Proceedings of the 7th International Conference and Workshop on Numerical Simulation of 3D Sheet Metal Forming Processes, NUMISHEET 2008, Interlaken, Switzerland, 43–8,2008.
  • [23] CAO, J., YAO, H., KARAFILLIS, A., BOYCE, M.C., “Prediction of Localized Thinning in Sheet Metal Using a General Anisotropic Yield Criterion”, Int. J. Plasticity, 16, 1105–29, 2000.
There are 23 citations in total.

Details

Subjects Mechanical Engineering
Journal Section Mechanical Engineering
Authors

Serkan Toros 0000-0003-0438-2862

Publication Date July 31, 2017
Submission Date April 21, 2017
Acceptance Date June 3, 2017
Published in Issue Year 2017 Volume: 6 Issue: 2

Cite

APA Toros, S. (2017). 304L PASLANMAZ ÇELİĞİN ŞEKİLLENDİRME SINIR DİYAGRAMININ BELİRLENMESİNDE ANİZOTROPİ BELİRLEME METODUNUN ETKİSİ. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 6(2), 737-751. https://doi.org/10.28948/ngumuh.342073
AMA Toros S. 304L PASLANMAZ ÇELİĞİN ŞEKİLLENDİRME SINIR DİYAGRAMININ BELİRLENMESİNDE ANİZOTROPİ BELİRLEME METODUNUN ETKİSİ. NOHU J. Eng. Sci. July 2017;6(2):737-751. doi:10.28948/ngumuh.342073
Chicago Toros, Serkan. “304L PASLANMAZ ÇELİĞİN ŞEKİLLENDİRME SINIR DİYAGRAMININ BELİRLENMESİNDE ANİZOTROPİ BELİRLEME METODUNUN ETKİSİ”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 6, no. 2 (July 2017): 737-51. https://doi.org/10.28948/ngumuh.342073.
EndNote Toros S (July 1, 2017) 304L PASLANMAZ ÇELİĞİN ŞEKİLLENDİRME SINIR DİYAGRAMININ BELİRLENMESİNDE ANİZOTROPİ BELİRLEME METODUNUN ETKİSİ. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 6 2 737–751.
IEEE S. Toros, “304L PASLANMAZ ÇELİĞİN ŞEKİLLENDİRME SINIR DİYAGRAMININ BELİRLENMESİNDE ANİZOTROPİ BELİRLEME METODUNUN ETKİSİ”, NOHU J. Eng. Sci., vol. 6, no. 2, pp. 737–751, 2017, doi: 10.28948/ngumuh.342073.
ISNAD Toros, Serkan. “304L PASLANMAZ ÇELİĞİN ŞEKİLLENDİRME SINIR DİYAGRAMININ BELİRLENMESİNDE ANİZOTROPİ BELİRLEME METODUNUN ETKİSİ”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 6/2 (July 2017), 737-751. https://doi.org/10.28948/ngumuh.342073.
JAMA Toros S. 304L PASLANMAZ ÇELİĞİN ŞEKİLLENDİRME SINIR DİYAGRAMININ BELİRLENMESİNDE ANİZOTROPİ BELİRLEME METODUNUN ETKİSİ. NOHU J. Eng. Sci. 2017;6:737–751.
MLA Toros, Serkan. “304L PASLANMAZ ÇELİĞİN ŞEKİLLENDİRME SINIR DİYAGRAMININ BELİRLENMESİNDE ANİZOTROPİ BELİRLEME METODUNUN ETKİSİ”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, vol. 6, no. 2, 2017, pp. 737-51, doi:10.28948/ngumuh.342073.
Vancouver Toros S. 304L PASLANMAZ ÇELİĞİN ŞEKİLLENDİRME SINIR DİYAGRAMININ BELİRLENMESİNDE ANİZOTROPİ BELİRLEME METODUNUN ETKİSİ. NOHU J. Eng. Sci. 2017;6(2):737-51.

download