Research Article
BibTex RIS Cite

NUMERICAL INVESTIGATION AND EXPERIMENTAL VERIFICATION OF PROTON ELECTROLYTE MEMBRANED (PEM) ELECTROLYSER

Year 2018, Volume: 7 Issue: 1, 370 - 380, 31.01.2018
https://doi.org/10.28948/ngumuh.387154

Abstract

   In this
study, the physical and the electrochemical phenomena occurred within the
proton exchange membrane (PEM) electrolysis cell and the effects of some
operating parameters such as cell voltage, current density on the cell
performance were investigated numerically and experimentally. The equations
which characterize flow, mass transfer, conservation of charge and
electrochemical reactions were solved by using COMSOL Multiphysics commercial
software. In the experimental setup, the Membrane Electrode Group (MEG) which
has 50 cm2 active area, porous titanium at anode and carbon paper as
gas diffusion layer at cathode are used. The numerical results compared with
measured experimental data. It is sound that while the model satisfactorily
agrees with experimental data at low current densities, it deviates at high
current densities mainly because of isothermal assumption employed. The
numerical results have shown that the oxygen and hydrogen concentrations increase
along the channel. Also the hydrogen production starts at 1.48 V and it increase as the current density
increase. However, the voltage efficiencies of PEM electrolyser for numerical
and experimental study were found as 0.809 and 0.871, respectively.

References

  • [1] KONOPKA, A., GREGORY D., “Hydrogen Production by Electrolysis: Present and Future”, 10th Intersociety Energy Conversion Engineering Conference, 1184-1193. New York, USA, 1975.
  • [2] TSUTOMU, O., YOSHINORI, S., “Optimum Hydrogen Generation Capacity and Current Density of the PEM-type Water Electrolyser Operated Only During the off-peak Period of Electricity Demand”, Journal of Power Sources, 129, 229–237, 2004.
  • [3] SLADE, S., CAMPBELL, S., RALPH, T., WALSH, F., “Ionic Conductivity of an Extruded Nafion 1100 EW Series of Membranes”, Journal of Electrochemical Society, 149, A1556-A1564, 2002.
  • [4] SELAMET, O.F., PASAOGULLARI, U., SPERNJAK, D., HUSSEY, D.S.D., JACOBSON, L., MAT, M.D., “Two-phase Flow in a Proton Exchange Membrane Electrolyzer Visualized in Situ by Simultaneous Neutron Radiography and Optical Imaging”, International Journal of Hydrogen Energy, 38, 5823-5835, 2013.
  • [5] SELAMET, O.F., ACAR, C.M., MAT, M.D., KAPLAN, Y., “Effects of Operating Parameters on the Performance of a High-Pressure Proton Exchange Membrane Electrolyzer”, International Journal of Energy Research, 37, 457-467, 2013.
  • [6] SELAMET, O.F., BECERİKLİ, F., MAT, M.D., KAPLAN, Y., “Development and Testing of a Highly Efficient Proton Exchange Membrane (PEM) Electrolyzer Stack”, International Journal of Hydrogen Energy, 36, 11480-11487, 2011.
  • [7] LAOUN, B., BELHAMEL, M., NACEUR, W., SERIR, L., “Electrochemical Aided Model to Study Solid Polymer Electrolyte Electrolysis”, Revue des Energies Renouvelables, 11, 267-276, 2008.
  • [8] NI, M., LEUNG, M.K.H., LEUNG, D.Y.C., “Electrochemistry Modeling of Proton Exchange Membrane (PEM) Water Electrolysis for Hydrogen Production”, World Hydrogen Energy Conference, Paris, France, 13-16 June, 2006.
  • [9] NIE, J., CHEN, Y., BOEHM, R.F., KATUKOTA, S., “A Photochemical Model of Proton Exchange Water Electrolysis for Hydrogen Production”, Journal of Heat Transfer, 130, 042409-1-042409-6, 2008.
  • [10] GRIGORIEV, S.A., KALINNIKOV, A.A., MILLET, P., POREMBSKY, V.I., FATEEV, V.N., “Mathematical Modeling of High Pressure PEM Water Electrolysis”, Journal of Applied Electrochemistry, 40, 921-932, 2010.
  • [11] GORGUN, H., “Dynamic Modelling of a Proton Excahnge Membrane (PEM) Electrolyzer”, International Journal of Hydrogen Energy, 31, 29-38, 2006.
  • [12] BUSQUET, S., HUBERT, C., E., LABBE, J., MAYER, D., METKEMEIJER, R., “A New Approach to Empirical Electrical Modelling of a Fuel Cell, an Electrolyser or a Regenerative Fuel Cell”, Journal of Power Sources, 134, 41-48, 2004.
  • [13] CHOI, P., BESSARABOV, D., G., DATTA, R., “A Simple Model for Solid Polymer Electrolyte (SPE) Water Electrolysis”, Solid State Ionics, 175, 535-539, 2004.
  • [14] BERNARDI, D.M., VERBRUGGE, M.W., “A Mathematical Model of the Solid-Polymer-Electrolyte Fuel Cell”, Jounal of Electrochemical Society, 139, 2477-2491, 1992.
  • [15] SCOTT, K., TAAMA, W., CRUICKSHANK, J., “Performance and Modelling of a Direct Methanol Solid Polymer Electrolyte Fuel Cell”, Journal of Power Sources, 65, 159-171, 1997.
  • [16] BERNING, T., DJILALI, N., “Three-Dimensional Computational Analysis of Transport in a PEM Fuel Cell”, Journal of Power Sources, 124, 440-452, 2003.
  • [17] BARD, J.A., FAULKNER, R.L., “Electrochemical Methods: Fundamentals and Applications”, Wiley, New York, 1980.
  • [18] SCHROEDER, D.V., “An Introduction to Thermal Physics”, Addison Wesley, 2000.

PROTON ELEKTROLİT MEMBRANLI (PEM) ELEKTROLİZÖRÜN SAYISAL İNCELENMESİ VE DENEYSEL DOĞRULANMASI

Year 2018, Volume: 7 Issue: 1, 370 - 380, 31.01.2018
https://doi.org/10.28948/ngumuh.387154

Abstract

   Bu çalışmada Proton Elektrolit Membranlı (PEM)
elektrolizör hücresinde meydana gelen fiziksel ve elektrokimyasal olaylar ve
hücre voltajı, akım yoğunluğu gibi çalışma parametrelerinin hücre performansına
etkileri sayısal ve deneysel olarak incelenmiştir. Elektroliz hücresinde akış,
kütle transferi, şarj korunumu ve elektrokimyasal olayları karakterize eden
denklemler COMSOL Multiphysics ticari yazılımı ile çözülmüştür. Deney
düzeneğinde 50 cm2 aktif alana sahip membran elektrot grubu (MEG)
kullanılırken, anotta gözenekli titanyum, katotta gaz difüzyon tabakası olarak
karbon kâğıt kullanılmıştır. Ölçülen deneysel sonuçlar hesaplanan sayısal
sonuçlarla karşılaştırılmış, özellikle yüksek akım yoğunluklarında sayısal
modelin hücre davranışını tahmininde öngörülen hata ile doğru sonuç verdiği
görülmüştür. Bu durumun modelde yapılan eş sıcaklık kabulünden kaynaklandığı
değerlendirilmiştir. Sayısal sonuçlar kanal boyunca oksijen ve hidrojen
konsantrasyonlarının arttığını göstermiştir. Hidrojen üretimi 1,48 V’da başlarken akım yoğunluğu arttıkça
hidrojen üretiminin de arttığı tespit edilmiştir. Ayrıca voltaj verimi sayısal
çözümde 0,809 iken deneyselde 0,871 olarak tespit edilmiştir.

References

  • [1] KONOPKA, A., GREGORY D., “Hydrogen Production by Electrolysis: Present and Future”, 10th Intersociety Energy Conversion Engineering Conference, 1184-1193. New York, USA, 1975.
  • [2] TSUTOMU, O., YOSHINORI, S., “Optimum Hydrogen Generation Capacity and Current Density of the PEM-type Water Electrolyser Operated Only During the off-peak Period of Electricity Demand”, Journal of Power Sources, 129, 229–237, 2004.
  • [3] SLADE, S., CAMPBELL, S., RALPH, T., WALSH, F., “Ionic Conductivity of an Extruded Nafion 1100 EW Series of Membranes”, Journal of Electrochemical Society, 149, A1556-A1564, 2002.
  • [4] SELAMET, O.F., PASAOGULLARI, U., SPERNJAK, D., HUSSEY, D.S.D., JACOBSON, L., MAT, M.D., “Two-phase Flow in a Proton Exchange Membrane Electrolyzer Visualized in Situ by Simultaneous Neutron Radiography and Optical Imaging”, International Journal of Hydrogen Energy, 38, 5823-5835, 2013.
  • [5] SELAMET, O.F., ACAR, C.M., MAT, M.D., KAPLAN, Y., “Effects of Operating Parameters on the Performance of a High-Pressure Proton Exchange Membrane Electrolyzer”, International Journal of Energy Research, 37, 457-467, 2013.
  • [6] SELAMET, O.F., BECERİKLİ, F., MAT, M.D., KAPLAN, Y., “Development and Testing of a Highly Efficient Proton Exchange Membrane (PEM) Electrolyzer Stack”, International Journal of Hydrogen Energy, 36, 11480-11487, 2011.
  • [7] LAOUN, B., BELHAMEL, M., NACEUR, W., SERIR, L., “Electrochemical Aided Model to Study Solid Polymer Electrolyte Electrolysis”, Revue des Energies Renouvelables, 11, 267-276, 2008.
  • [8] NI, M., LEUNG, M.K.H., LEUNG, D.Y.C., “Electrochemistry Modeling of Proton Exchange Membrane (PEM) Water Electrolysis for Hydrogen Production”, World Hydrogen Energy Conference, Paris, France, 13-16 June, 2006.
  • [9] NIE, J., CHEN, Y., BOEHM, R.F., KATUKOTA, S., “A Photochemical Model of Proton Exchange Water Electrolysis for Hydrogen Production”, Journal of Heat Transfer, 130, 042409-1-042409-6, 2008.
  • [10] GRIGORIEV, S.A., KALINNIKOV, A.A., MILLET, P., POREMBSKY, V.I., FATEEV, V.N., “Mathematical Modeling of High Pressure PEM Water Electrolysis”, Journal of Applied Electrochemistry, 40, 921-932, 2010.
  • [11] GORGUN, H., “Dynamic Modelling of a Proton Excahnge Membrane (PEM) Electrolyzer”, International Journal of Hydrogen Energy, 31, 29-38, 2006.
  • [12] BUSQUET, S., HUBERT, C., E., LABBE, J., MAYER, D., METKEMEIJER, R., “A New Approach to Empirical Electrical Modelling of a Fuel Cell, an Electrolyser or a Regenerative Fuel Cell”, Journal of Power Sources, 134, 41-48, 2004.
  • [13] CHOI, P., BESSARABOV, D., G., DATTA, R., “A Simple Model for Solid Polymer Electrolyte (SPE) Water Electrolysis”, Solid State Ionics, 175, 535-539, 2004.
  • [14] BERNARDI, D.M., VERBRUGGE, M.W., “A Mathematical Model of the Solid-Polymer-Electrolyte Fuel Cell”, Jounal of Electrochemical Society, 139, 2477-2491, 1992.
  • [15] SCOTT, K., TAAMA, W., CRUICKSHANK, J., “Performance and Modelling of a Direct Methanol Solid Polymer Electrolyte Fuel Cell”, Journal of Power Sources, 65, 159-171, 1997.
  • [16] BERNING, T., DJILALI, N., “Three-Dimensional Computational Analysis of Transport in a PEM Fuel Cell”, Journal of Power Sources, 124, 440-452, 2003.
  • [17] BARD, J.A., FAULKNER, R.L., “Electrochemical Methods: Fundamentals and Applications”, Wiley, New York, 1980.
  • [18] SCHROEDER, D.V., “An Introduction to Thermal Physics”, Addison Wesley, 2000.
There are 18 citations in total.

Details

Primary Language Turkish
Subjects Mechanical Engineering
Journal Section Mechanical Engineering
Authors

Ömer Genç This is me 0000-0002-0313-4085

Mehmet Ali Kallioğlu This is me 0000-0002-0313-4085

Publication Date January 31, 2018
Submission Date April 19, 2017
Acceptance Date July 14, 2017
Published in Issue Year 2018 Volume: 7 Issue: 1

Cite

APA Genç, Ö., & Kallioğlu, M. A. (2018). PROTON ELEKTROLİT MEMBRANLI (PEM) ELEKTROLİZÖRÜN SAYISAL İNCELENMESİ VE DENEYSEL DOĞRULANMASI. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 7(1), 370-380. https://doi.org/10.28948/ngumuh.387154
AMA Genç Ö, Kallioğlu MA. PROTON ELEKTROLİT MEMBRANLI (PEM) ELEKTROLİZÖRÜN SAYISAL İNCELENMESİ VE DENEYSEL DOĞRULANMASI. NOHU J. Eng. Sci. January 2018;7(1):370-380. doi:10.28948/ngumuh.387154
Chicago Genç, Ömer, and Mehmet Ali Kallioğlu. “PROTON ELEKTROLİT MEMBRANLI (PEM) ELEKTROLİZÖRÜN SAYISAL İNCELENMESİ VE DENEYSEL DOĞRULANMASI”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 7, no. 1 (January 2018): 370-80. https://doi.org/10.28948/ngumuh.387154.
EndNote Genç Ö, Kallioğlu MA (January 1, 2018) PROTON ELEKTROLİT MEMBRANLI (PEM) ELEKTROLİZÖRÜN SAYISAL İNCELENMESİ VE DENEYSEL DOĞRULANMASI. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 7 1 370–380.
IEEE Ö. Genç and M. A. Kallioğlu, “PROTON ELEKTROLİT MEMBRANLI (PEM) ELEKTROLİZÖRÜN SAYISAL İNCELENMESİ VE DENEYSEL DOĞRULANMASI”, NOHU J. Eng. Sci., vol. 7, no. 1, pp. 370–380, 2018, doi: 10.28948/ngumuh.387154.
ISNAD Genç, Ömer - Kallioğlu, Mehmet Ali. “PROTON ELEKTROLİT MEMBRANLI (PEM) ELEKTROLİZÖRÜN SAYISAL İNCELENMESİ VE DENEYSEL DOĞRULANMASI”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 7/1 (January 2018), 370-380. https://doi.org/10.28948/ngumuh.387154.
JAMA Genç Ö, Kallioğlu MA. PROTON ELEKTROLİT MEMBRANLI (PEM) ELEKTROLİZÖRÜN SAYISAL İNCELENMESİ VE DENEYSEL DOĞRULANMASI. NOHU J. Eng. Sci. 2018;7:370–380.
MLA Genç, Ömer and Mehmet Ali Kallioğlu. “PROTON ELEKTROLİT MEMBRANLI (PEM) ELEKTROLİZÖRÜN SAYISAL İNCELENMESİ VE DENEYSEL DOĞRULANMASI”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, vol. 7, no. 1, 2018, pp. 370-8, doi:10.28948/ngumuh.387154.
Vancouver Genç Ö, Kallioğlu MA. PROTON ELEKTROLİT MEMBRANLI (PEM) ELEKTROLİZÖRÜN SAYISAL İNCELENMESİ VE DENEYSEL DOĞRULANMASI. NOHU J. Eng. Sci. 2018;7(1):370-8.

Cited By

Hydrogen Production and Storage Methods
International Journal of Advanced Natural Sciences and Engineering Researches
https://doi.org/10.59287/ijanser.647

download