Research Article
BibTex RIS Cite

MACH SAYISININ TURBOJET MOTORU TERMODİNAMİK VERİMLERİ ÜZERİNDEKİ ETKİSİ: BİR UAV UYGULAMASI

Year 2018, Volume: 7 Issue: 2, 848 - 863, 20.07.2018
https://doi.org/10.28948/ngumuh.445287

Abstract

Hava araçlarının karmaşık yapılı sistemler olup
tasarım süreçleri detaylı analizlere ihtiyaç duyarlar. Sonraki nesil uçaklarda
itki sistemlerinin performansı için termodinamiği kurallarını kullanmak
gereklidir. Bu sebeple termodinamiğin I. ve II. Kanunlarını, akışa ve momentum
dengesine uygulamak gereklidir. Bu çalışmada, küçük bir turbojet motorunun
enerji ve ekserji performansı üzerinde uçuş Mach sayısının etkileri, uçuş
irtifası  8,000 m alınarak incelenmiştir.  0.3≤ M0≤0.8 aralığında motorun
ekserji verimi %48.61-49.88, enerji verimi 
%3.25-9.96, olarak hesaplanmıştır. 
Bu ana verimlere ilave olarak,  
kompresör  ekserji verimi %89.45,  yanma odası ekserji verimi %61.11, türbin
ekserji verimi %89.21 ve egzoz ekserji verimi 84.15 olarak hesap edilmiş olup,
uçuş Mach sayının arttıkça ekserji yıkımının da düşük miktarda azaldığı
görülmüştür.

References

  • [1] DİNÇ, A., “Optimization of a Turboprop UAV for Maximum Loiter and Specific Power Using Genetic Algorithm”, International Journal of Turbo&Jet Engine, DOI 10.1515/tjj-2015-0030, 2015.
  • [2] FAA,Federal Aviation Administration, Aviation Safety Unmanned Aircraft Program Office (UAPO), Interim Operational Approval Guidance. Unmanned Aircraft Systems Operations in the U. S. National Airspace System. 2008.
  • [3] U.S. Department of Defense. Office of the Secretary of Defense 2007–2032 Unmanned Systems Roadmap, 2007.
  • [4] ANDREU, L. Performance of a ducted micro-turbojet engine. Master’s thesis, Naval Postgraduate School, Monterey, CA, USA, 1999.
  • [5] GUHA, A., “Optimization of aero gas turbine engines”, The Aeronautical Journal; pp.345-358, 2001.
  • [6] GUHA, A., “Performance and optimization of gas turbine engine with real gas effects”, Proceedings Institution of Mechanical Engineers, 215, 507-512, 2001.
  • [7] TURAN, O, AYDIN, H., “Exergetic and exergo-economic analyses of an aero-derivative gas turbine engine”, Energy, Vol.74, 638-650, 2014.
  • [8] ATILGAN, R., TURAN, O., ALTUNTAS, O., AYDIN, H., SYNYLO, K., “Environmental impact assessment of a turboprop engine with the aid of exergy”, Energy; 58, 664-671, 2013.
  • [9] BAKLACIOGLU, T., TURAN, O., AYDIN, H., “Dynamic modeling of exergy efficiency of turboprop engine components using hybrid genetic algorithm-artificial neural networks”, Energy, 86:709-721, 2015.
  • [10] TURAN, O.,” Effect of reference altitudes for a turbofan engine with the aid of specific-exergy based method”, International Journal of Exergy, 11, 252-270, 2012.
  • [11] TURAN, O.,” An exergy way to quantify sustainability metrics for a high bypass turbofan engine”, Energy, 86,722-736, 2015.
  • [12] TURAN, O., “Exergetic effects of some design parameters on the small turbojet engine for unmanned air vehicle applications”, Energy, 46, 51-61,2012.
  • [13] CUMPTSY, NA., Jet propulsion: A simple guide to the aerodynamic and thermodynamic design and performance of jet engines. Cambridge University Press, Second Edition, 2003.
  • [14] KERREBROCK, J.L.. Aircraft engines and gas turbines. MIT Press, Second Edition, 1992.
  • [15] SARAVANAMUTTO, H.I.H., ROGERS, G..FC., COHEN, H., Gas turbine theory. Prentice Hall, 5th Edition, 2001.
  • [16] Microturbo http://www.safran-power-units.com/ (access date: May, 12,2016)
  • [17] HALL, D.K., Performance limits of axial turbomachine stages. Master of Science Thesis. MIT, USA, 2011.
  • [18] EL-SAYED, A. F., Aircraft propulsion and gas turbine engines, CRC Press, 2008.
  • [19] JOHN, H.D., CAMBEROS, J.A., MOORHOUSE, D.J., “Benefits of exergy-based analysis for aerospace engineering applications part I”, International Journal of Aerospace Engineering, 1-11, 2009.
  • [20] ARNTZ, A., ATİNAULT, O., “Exergy-based formulation for aircraft aeropropulsive performance assessment: theoretical development”, AIAA Journal, 53 (6); 1627-39, 2015.
  • [21] HEPBAŞLI, A. A., “Key review on exergetic analysis and assessment of renewable energy resources for a sustainable future”, Renewable and Sustainable Energy Reviews,; 12, 593-661, 2008.
  • [22] BEJAN, A., TSATSARONIS, G., MORAN, M., Thermal design and optimization. USA,Wiley; 1996.
  • [23] KOTAS, T.J., The exergy method of thermal power plants. Malabar, FL, Krieger Publishing Company; 1995.
  • [24] DİNCER, I. Environmental and sustainability aspects of hydrogen and fuel cell systems. International Journal of Energy Resources, 31, 29–55, 2007.

MACH NUMBER EFFECT ON THE THERMODYNAMIC EFFICIENCIES OF A TURBOJET ENGINE: AN UAV APPLICATION

Year 2018, Volume: 7 Issue: 2, 848 - 863, 20.07.2018
https://doi.org/10.28948/ngumuh.445287

Abstract

Air vehicles have evolved into extremely complex
systems that need detail analysis and tools for an efficient design process. A
theoretical formulation based on law of thermodynamics is proposed for
assessing the propulsive performance of future aircraft configurations. It
consists of the combination of a momentum balance and a fluid flow analysis
involving the first and second laws of thermodynamics. To meet this need, this
study presents and evaluates flight Mach number (M0) effects on
energetic and exergetic performance of a small turbojet engine. Energy and
exergy analysis are applied to a small turbojet engine to examine the effects
of using different aircraft velocities at constant reference environment
(flying altitude is assumed to be constant at 8,000 m). The results of analysis
using 0.3≤ M0≤0.8 are the exergetic and energetic efficiency ranging
from 48.61% to 49.88% and 3.25% to 9.96%, respectively. Furthermore, exergy
efficiency values were found to be 89.45% for the centrifugal compressor, 61.11
% for the combustion chamber and 89.21% for the turbine, and 84.15% for the
exhaust, while engine exergy destruction is also slight decrease with flight
Mach number.

References

  • [1] DİNÇ, A., “Optimization of a Turboprop UAV for Maximum Loiter and Specific Power Using Genetic Algorithm”, International Journal of Turbo&Jet Engine, DOI 10.1515/tjj-2015-0030, 2015.
  • [2] FAA,Federal Aviation Administration, Aviation Safety Unmanned Aircraft Program Office (UAPO), Interim Operational Approval Guidance. Unmanned Aircraft Systems Operations in the U. S. National Airspace System. 2008.
  • [3] U.S. Department of Defense. Office of the Secretary of Defense 2007–2032 Unmanned Systems Roadmap, 2007.
  • [4] ANDREU, L. Performance of a ducted micro-turbojet engine. Master’s thesis, Naval Postgraduate School, Monterey, CA, USA, 1999.
  • [5] GUHA, A., “Optimization of aero gas turbine engines”, The Aeronautical Journal; pp.345-358, 2001.
  • [6] GUHA, A., “Performance and optimization of gas turbine engine with real gas effects”, Proceedings Institution of Mechanical Engineers, 215, 507-512, 2001.
  • [7] TURAN, O, AYDIN, H., “Exergetic and exergo-economic analyses of an aero-derivative gas turbine engine”, Energy, Vol.74, 638-650, 2014.
  • [8] ATILGAN, R., TURAN, O., ALTUNTAS, O., AYDIN, H., SYNYLO, K., “Environmental impact assessment of a turboprop engine with the aid of exergy”, Energy; 58, 664-671, 2013.
  • [9] BAKLACIOGLU, T., TURAN, O., AYDIN, H., “Dynamic modeling of exergy efficiency of turboprop engine components using hybrid genetic algorithm-artificial neural networks”, Energy, 86:709-721, 2015.
  • [10] TURAN, O.,” Effect of reference altitudes for a turbofan engine with the aid of specific-exergy based method”, International Journal of Exergy, 11, 252-270, 2012.
  • [11] TURAN, O.,” An exergy way to quantify sustainability metrics for a high bypass turbofan engine”, Energy, 86,722-736, 2015.
  • [12] TURAN, O., “Exergetic effects of some design parameters on the small turbojet engine for unmanned air vehicle applications”, Energy, 46, 51-61,2012.
  • [13] CUMPTSY, NA., Jet propulsion: A simple guide to the aerodynamic and thermodynamic design and performance of jet engines. Cambridge University Press, Second Edition, 2003.
  • [14] KERREBROCK, J.L.. Aircraft engines and gas turbines. MIT Press, Second Edition, 1992.
  • [15] SARAVANAMUTTO, H.I.H., ROGERS, G..FC., COHEN, H., Gas turbine theory. Prentice Hall, 5th Edition, 2001.
  • [16] Microturbo http://www.safran-power-units.com/ (access date: May, 12,2016)
  • [17] HALL, D.K., Performance limits of axial turbomachine stages. Master of Science Thesis. MIT, USA, 2011.
  • [18] EL-SAYED, A. F., Aircraft propulsion and gas turbine engines, CRC Press, 2008.
  • [19] JOHN, H.D., CAMBEROS, J.A., MOORHOUSE, D.J., “Benefits of exergy-based analysis for aerospace engineering applications part I”, International Journal of Aerospace Engineering, 1-11, 2009.
  • [20] ARNTZ, A., ATİNAULT, O., “Exergy-based formulation for aircraft aeropropulsive performance assessment: theoretical development”, AIAA Journal, 53 (6); 1627-39, 2015.
  • [21] HEPBAŞLI, A. A., “Key review on exergetic analysis and assessment of renewable energy resources for a sustainable future”, Renewable and Sustainable Energy Reviews,; 12, 593-661, 2008.
  • [22] BEJAN, A., TSATSARONIS, G., MORAN, M., Thermal design and optimization. USA,Wiley; 1996.
  • [23] KOTAS, T.J., The exergy method of thermal power plants. Malabar, FL, Krieger Publishing Company; 1995.
  • [24] DİNCER, I. Environmental and sustainability aspects of hydrogen and fuel cell systems. International Journal of Energy Resources, 31, 29–55, 2007.
There are 24 citations in total.

Details

Primary Language English
Subjects Mechanical Engineering
Journal Section Mechanical Engineering
Authors

Önder Turan This is me 0000-0003-0303-4313

Publication Date July 20, 2018
Submission Date November 5, 2016
Acceptance Date January 9, 2018
Published in Issue Year 2018 Volume: 7 Issue: 2

Cite

APA Turan, Ö. (2018). MACH NUMBER EFFECT ON THE THERMODYNAMIC EFFICIENCIES OF A TURBOJET ENGINE: AN UAV APPLICATION. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 7(2), 848-863. https://doi.org/10.28948/ngumuh.445287
AMA Turan Ö. MACH NUMBER EFFECT ON THE THERMODYNAMIC EFFICIENCIES OF A TURBOJET ENGINE: AN UAV APPLICATION. NOHU J. Eng. Sci. July 2018;7(2):848-863. doi:10.28948/ngumuh.445287
Chicago Turan, Önder. “MACH NUMBER EFFECT ON THE THERMODYNAMIC EFFICIENCIES OF A TURBOJET ENGINE: AN UAV APPLICATION”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 7, no. 2 (July 2018): 848-63. https://doi.org/10.28948/ngumuh.445287.
EndNote Turan Ö (July 1, 2018) MACH NUMBER EFFECT ON THE THERMODYNAMIC EFFICIENCIES OF A TURBOJET ENGINE: AN UAV APPLICATION. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 7 2 848–863.
IEEE Ö. Turan, “MACH NUMBER EFFECT ON THE THERMODYNAMIC EFFICIENCIES OF A TURBOJET ENGINE: AN UAV APPLICATION”, NOHU J. Eng. Sci., vol. 7, no. 2, pp. 848–863, 2018, doi: 10.28948/ngumuh.445287.
ISNAD Turan, Önder. “MACH NUMBER EFFECT ON THE THERMODYNAMIC EFFICIENCIES OF A TURBOJET ENGINE: AN UAV APPLICATION”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 7/2 (July 2018), 848-863. https://doi.org/10.28948/ngumuh.445287.
JAMA Turan Ö. MACH NUMBER EFFECT ON THE THERMODYNAMIC EFFICIENCIES OF A TURBOJET ENGINE: AN UAV APPLICATION. NOHU J. Eng. Sci. 2018;7:848–863.
MLA Turan, Önder. “MACH NUMBER EFFECT ON THE THERMODYNAMIC EFFICIENCIES OF A TURBOJET ENGINE: AN UAV APPLICATION”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, vol. 7, no. 2, 2018, pp. 848-63, doi:10.28948/ngumuh.445287.
Vancouver Turan Ö. MACH NUMBER EFFECT ON THE THERMODYNAMIC EFFICIENCIES OF A TURBOJET ENGINE: AN UAV APPLICATION. NOHU J. Eng. Sci. 2018;7(2):848-63.

download