Araştırma Makalesi
BibTex RIS Kaynak Göster

HİDROKSİ GAZ ÜRETİMİNDE YENİ BİR KONTROL TEKNOLOJİSİ

Yıl 2019, Cilt: 8 Sayı: 1, 502 - 511, 28.01.2019
https://doi.org/10.28948/ngumuh.517164

Öz

   Bu çalışmanın ana fikri, kullanıcı tanımlı
içten yanmalı motor hacmi için optimum bir oksihidrojen üretim algoritması
tasarlamaktır. İçten yanmalı motorlarda hidrojen kullanılmasının, belirli bir
sınıra kadar performans ve emisyon açısından faydalı olduğu bilimsel olarak
kanıtlanmış bir gerçektir. Her ne kadar performans ve emisyonlardaki gelişmeler
araştırmacılar tarafından bildirilmiş olsa da; tasarlanan kontrol sistemi,
sıkıştırma ateşlemeli motorlarda hidroksi kullanımı için elde edilebilecek en
yüksek verime yaklaşma seçeneği sunar. Sistem, HHO üretim oranı ve
zenginleştirme miktarının anlık hesaplamaları ve geri bildirim algoritması ile
verimliliğin artırılmasını sağlar. Otomatik HHO sistemi, motor bataryalarının
ve HHO reaktörlerinin servis ömrünü uzatmak için 0-30 amper aralığında ve
nispeten daha düşük çalışma sıcaklıklarında çalışmak üzere tasarlanmıştır.

Kaynakça

  • [1] VEZIROǦLU, T. N. “Hydrogen movement and the next action: fossil fuels industry and sustainability economics”, International journal of hydrogen energy, 22(6), 551-556., 1997.
  • [2] MIDILLI, A., AY, M., DINCER, I., & ROSEN, M. A. “On hydrogen and hydrogen energy strategies: I: current status and needs” Renewable and sustainable energy reviews, 9(3), 255-271, 2005.
  • [3] DINCER, I. “Renewable energy and sustainable development: a crucial review”, Renewable and sustainable energy reviews, 4(2), 157-175, 2000.
  • [4] WANG, J., HUANG, Z., FANG, Y., LIU, B., ZENG, K., MIAO, H., & JIANG, D. “Combustion behaviors of a direct-injection engine operating on various fractions of natural gas–hydrogen blends”, International Journal of Hydrogen Energy, 32(15), 3555-3564, 2007.
  • [5] GANESH, R. H., SUBRAMANIAN, V., BALASUBRAMANIAN, V., MALLIKARJUNA, J. M., RAMESH, A., & SHARMA, R. P., “Hydrogen fueled spark ignition engine with electronically controlled manifold injection: An experimental study”, Renewable energy, 33(6), 1324-1333, 2008.
  • [6] KUMAR, M. S., RAMESH, A., & NAGALINGAM, B. “Use of hydrogen to enhance the performance of a vegetable oil fuelled compression ignition engine”, International Journal of Hydrogen Energy, 28(10), 1143-1154, 2003.
  • [7] GURZ, M., BALTACIOGLU, E., HAMES, Y., & KAYA, K., “The meeting of hydrogen and automotive: a review”, International Journal of Hydrogen Energy, 42(36), 23334-23346, 2017.
  • [8] REN, G., MA, G., & CONG, N., “Review of electrical energy storage system for vehicular applications”, Renewable and Sustainable Energy Reviews, 41, 225-236, 2015.
  • [9] JAIN, I. P., “Hydrogen the fuel for 21st century”, International journal of hydrogen energy, 34(17), 7368-7378, 2009.
  • [10] CHUNG, C. A., CHEN, Y. Z., CHEN, Y. P., & CHANG, M. S., “CFD investigation on performance enhancement of metal hydride hydrogen storage vessels using heat pipes”, Applied Thermal Engineering, 91, 434-446, 2015.
  • [11] WALKER, S. B., FOWLER, M., & AHMADI, L., “Comparative life cycle assessment of power-to-gas generation of hydrogen with a dynamic emissions factor for fuel cell vehicles”, Journal of Energy Storage, 4, 62-73, 2015.
  • [12] KATIKANENI, S. P., AL-MUHAISH, F., HARALE, A., & PHAM, T. V., “On-site hydrogen production from transportation fuels: An overview and techno-economic assessment”, International Journal of Hydrogen Energy, 39(9), 4331-4350, 2014.
  • [13] YILMAZ, A. C., ULUDAMAR, E., AYDIN, K., “Effect of hydroxy (HHO) gas addition on performance and exhaust emissions in compression ignition engines”, International journal of hydrogen energy, 35(20), 11366-11372, 2010.
  • [14] WHITE, C. M., STEEPER, R. R., & LUTZ, A. E., “The hydrogen-fueled internal combustion engine: a technical review.”, International journal of hydrogen energy, 31(10), 1292-1305, 2006.
  • [15] TANG, X., KABAT, D. M., NATKIN, R. J., STOCKHAUSEN, W. F., & HEFFEL, J., “Ford P2000 Hydrogen Engine Dynamometer Development” (No. 2002-01-0242). SAE Technical Paper, 2002.
  • [16] HEFFEL, J. W., “NOx emission and performance data for a hydrogen fueled internal combustion engine at 1500 rpm using exhaust gas recirculation” International Journal of Hydrogen Energy, 28(8), 901-908, 2003.
  • [17] KUMAR, S. S., & KUMAR, K. S. “Optimization and Control of Fuel by Producing Brown Gas by HHO Generating Device Controlled by VHDL and Implementing In FPGA”, International Journal of Mechanical Engineering and Robotics Research, 4(1), 154, 2015.
  • [18] MOHAMMADI, A., SHIOJI, M., NAKAI, Y., ISHIKURA, W., & TABO, E., “Performance and combustion characteristics of a direct injection SI hydrogen engine”, International Journal of Hydrogen Energy, 32(2), 296-304, 2007.
  • [19] KARIM, G. A.,”Hydrogen as a spark ignition engine fuel”, International Journal of Hydrogen Energy, 28(5), 569-577, 2003.
  • [20] GUMUS, M., “Effects of volumetric efficiency on the performance and emissions characteristics of a dual fueled (gasoline and LPG) spark ignition engine”, Fuel Processing Technology, 92(10), 1862-1867, 2011.
  • [21] ÇINAR, C., ŞAHIN, F., CAN, Ö., & UYUMAZ, A., “A comparison of performance and exhaust emissions with different valve lift profiles between gasoline and LPG fuels in a SI engine”, Applied Thermal Engineering, 107, 1261-1268, 2016.
  • [22] KARABULUT, H., & SARIDEMIR, S., “Farkli Supap Açik Kalma Süreleri ve Kurslari için Klasik Spline Yöntemi ile Elde Edilen Kam Profillerinin Karşilaştirilmasi”, Gazi Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 24(3), 2009.
  • [23] WYSZYNSKI, L. P., STONE, C. R., & KALGHATGI, G. T. “The volumetric efficiency of direct and port injection gasoline engines with different fuels”, (No. 2002-01-0839). SAE Technical Paper, 2002.
  • [24] AL-HASAN, M.” Effect of ethanol–unleaded gasoline blends on engine performance and exhaust emission”, Energy Conversion and Management, 44(9), 1547-1561, 2003.
  • [25] ZHOU, J. H., CHEUNG, C. S., & LEUNG, C. W., “Combustion, performance and emissions of a diesel engine with H2, CH4 and H2–CH4 addition”, International journal of hydrogen energy, 39(9), 4611-4621, 2014.
  • [26] SHAABAN, S., & SEUME, J., ”Impact of turbocharger non-adiabatic operation on engine volumetric efficiency and turbo lag”, International Journal of Rotating Machinery, https://doi.org/10.1155/2012/625453.
  • [27] SARAVANAN, N., NAGARAJAN, G., KALAISELVAN, K. M., & DHANASEKARAN, C., “An experimental investigation on hydrogen as a dual fuel for diesel engine system with exhaust gas recirculation technique”, Renewable Energy, 33(3), 422-427, 2008.
  • [28] SARAVANAN, N., NAGARAJAN, G., & NARAYANASAMY, S., “An experimental investigation on DI diesel engine with hydrogen fuel”, Renewable energy, 33(3), 415-421, 2008.
  • [29] KÖSE, H., & CINIVIZ, M., “An experimental investigation of effect on diesel engine performance and exhaust emissions of addition at dual fuel mode of hydrogen”, Fuel processing technology, 114, 26-34, 2013.
  • [30] KORAKIANITIS, T., NAMASIVAYAM, A. M., & CROOKES, R. J., “Diesel and rapeseed methyl ester (RME) pilot fuels for hydrogen and natural gas dual-fuel combustion in compression–ignition engines”, Fuel, 90(7), 2384-2395, 2011.
  • [31] MASJUKI, H. H., RUHUL, A. M., MUSTAFI, N. N., KALAM, M. A., ARBAB, M. I., & FATTAH, I. R., “Study of production optimization and effect of hydroxyl gas on a CI engine performance and emission fueled with biodiesel blends”, International Journal of Hydrogen Energy, 41(33), 14519-14528, 2016.
  • [32] MUSTAFI N., N., RUHUL, A. M., ZAKARIA, A. M., & MAYEEDUL, I. M., “An Investigation on the Production of Brown Gas (HHO) as an Alternative Automotive Fuel by Water Electrolysis”, Paper ID: ET-14, 239-244, 2013.
  • [33] BADR, M. H., HASSAN, M. I., & EL-HAMALAWY, A. A., “An On-Demand Hydrogen Cell for Automobile Fuel Consumption Efficiency”, International journal of green energy, 12(11), 1086-1090, 2015.
  • [34] KUMAR, K. P., ARORA, N. S., & MAHESH, M., “Development of constant current power system for hho cell operations to reduce fuel consumption. In Power Electronics and Motion Control Conference (PEMC)”, 2016 IEEE International (pp. 273-279). IEEE, 2016.
  • [35] WORAWAT, S. N., & AURASOPON, A., “Application of Microcontroller for Controlling HHO Dry Cell in Small Trucks”, International Journal of Engineering Technology, 1(2), 10-13, 2015.
  • [36] ARAT, H. T., BALTACIOGLU, M. K., ÖZCANLI, M., & AYDIN, K., “Effect of using Hydroxy–CNG fuel mixtures in a non-modified diesel engine by substitution of diesel fuel”, International Journal of Hydrogen Energy, 41(19), 8354-8363, 2016.
  • [37] ARUNACHALAM, T., “Digital pulse width modulation techniques for power converters”, (Doctoral dissertation, The University of Alabama), USA, 2010.
  • [38] HEYWOOD J.B., “Internal Combustion Engine Fundamentals”, McGraw-Hill, New York, 1988.

A NEW CONTROL TECHNOLOGY IN HYDROXY GAS PRODUCTION

Yıl 2019, Cilt: 8 Sayı: 1, 502 - 511, 28.01.2019
https://doi.org/10.28948/ngumuh.517164

Öz

   The main idea of this study is to design an
optimum oxyhydrogen production algorithm for user-defined internal combustion
engine volume. It is a scientifically proven fact that the use of hydrogen in
internal combustion engines is beneficial to performance and emissions until a
certain limit. Although improvements in performance and emissions have been
reported by researchers; the designed control system offers an option to
approach the highest achievable efficiency for hydroxy usage in compression
ignition engines. The system allows improving efficiency with instantaneous
calculations and feedback algorithm of HHO production rate and enrichment amount.
Automated HHO system designed to operate between 0-30 amperes range and
relatively less operating temperatures to prolong the service life of engine
batteries and HHO generator.  

Kaynakça

  • [1] VEZIROǦLU, T. N. “Hydrogen movement and the next action: fossil fuels industry and sustainability economics”, International journal of hydrogen energy, 22(6), 551-556., 1997.
  • [2] MIDILLI, A., AY, M., DINCER, I., & ROSEN, M. A. “On hydrogen and hydrogen energy strategies: I: current status and needs” Renewable and sustainable energy reviews, 9(3), 255-271, 2005.
  • [3] DINCER, I. “Renewable energy and sustainable development: a crucial review”, Renewable and sustainable energy reviews, 4(2), 157-175, 2000.
  • [4] WANG, J., HUANG, Z., FANG, Y., LIU, B., ZENG, K., MIAO, H., & JIANG, D. “Combustion behaviors of a direct-injection engine operating on various fractions of natural gas–hydrogen blends”, International Journal of Hydrogen Energy, 32(15), 3555-3564, 2007.
  • [5] GANESH, R. H., SUBRAMANIAN, V., BALASUBRAMANIAN, V., MALLIKARJUNA, J. M., RAMESH, A., & SHARMA, R. P., “Hydrogen fueled spark ignition engine with electronically controlled manifold injection: An experimental study”, Renewable energy, 33(6), 1324-1333, 2008.
  • [6] KUMAR, M. S., RAMESH, A., & NAGALINGAM, B. “Use of hydrogen to enhance the performance of a vegetable oil fuelled compression ignition engine”, International Journal of Hydrogen Energy, 28(10), 1143-1154, 2003.
  • [7] GURZ, M., BALTACIOGLU, E., HAMES, Y., & KAYA, K., “The meeting of hydrogen and automotive: a review”, International Journal of Hydrogen Energy, 42(36), 23334-23346, 2017.
  • [8] REN, G., MA, G., & CONG, N., “Review of electrical energy storage system for vehicular applications”, Renewable and Sustainable Energy Reviews, 41, 225-236, 2015.
  • [9] JAIN, I. P., “Hydrogen the fuel for 21st century”, International journal of hydrogen energy, 34(17), 7368-7378, 2009.
  • [10] CHUNG, C. A., CHEN, Y. Z., CHEN, Y. P., & CHANG, M. S., “CFD investigation on performance enhancement of metal hydride hydrogen storage vessels using heat pipes”, Applied Thermal Engineering, 91, 434-446, 2015.
  • [11] WALKER, S. B., FOWLER, M., & AHMADI, L., “Comparative life cycle assessment of power-to-gas generation of hydrogen with a dynamic emissions factor for fuel cell vehicles”, Journal of Energy Storage, 4, 62-73, 2015.
  • [12] KATIKANENI, S. P., AL-MUHAISH, F., HARALE, A., & PHAM, T. V., “On-site hydrogen production from transportation fuels: An overview and techno-economic assessment”, International Journal of Hydrogen Energy, 39(9), 4331-4350, 2014.
  • [13] YILMAZ, A. C., ULUDAMAR, E., AYDIN, K., “Effect of hydroxy (HHO) gas addition on performance and exhaust emissions in compression ignition engines”, International journal of hydrogen energy, 35(20), 11366-11372, 2010.
  • [14] WHITE, C. M., STEEPER, R. R., & LUTZ, A. E., “The hydrogen-fueled internal combustion engine: a technical review.”, International journal of hydrogen energy, 31(10), 1292-1305, 2006.
  • [15] TANG, X., KABAT, D. M., NATKIN, R. J., STOCKHAUSEN, W. F., & HEFFEL, J., “Ford P2000 Hydrogen Engine Dynamometer Development” (No. 2002-01-0242). SAE Technical Paper, 2002.
  • [16] HEFFEL, J. W., “NOx emission and performance data for a hydrogen fueled internal combustion engine at 1500 rpm using exhaust gas recirculation” International Journal of Hydrogen Energy, 28(8), 901-908, 2003.
  • [17] KUMAR, S. S., & KUMAR, K. S. “Optimization and Control of Fuel by Producing Brown Gas by HHO Generating Device Controlled by VHDL and Implementing In FPGA”, International Journal of Mechanical Engineering and Robotics Research, 4(1), 154, 2015.
  • [18] MOHAMMADI, A., SHIOJI, M., NAKAI, Y., ISHIKURA, W., & TABO, E., “Performance and combustion characteristics of a direct injection SI hydrogen engine”, International Journal of Hydrogen Energy, 32(2), 296-304, 2007.
  • [19] KARIM, G. A.,”Hydrogen as a spark ignition engine fuel”, International Journal of Hydrogen Energy, 28(5), 569-577, 2003.
  • [20] GUMUS, M., “Effects of volumetric efficiency on the performance and emissions characteristics of a dual fueled (gasoline and LPG) spark ignition engine”, Fuel Processing Technology, 92(10), 1862-1867, 2011.
  • [21] ÇINAR, C., ŞAHIN, F., CAN, Ö., & UYUMAZ, A., “A comparison of performance and exhaust emissions with different valve lift profiles between gasoline and LPG fuels in a SI engine”, Applied Thermal Engineering, 107, 1261-1268, 2016.
  • [22] KARABULUT, H., & SARIDEMIR, S., “Farkli Supap Açik Kalma Süreleri ve Kurslari için Klasik Spline Yöntemi ile Elde Edilen Kam Profillerinin Karşilaştirilmasi”, Gazi Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 24(3), 2009.
  • [23] WYSZYNSKI, L. P., STONE, C. R., & KALGHATGI, G. T. “The volumetric efficiency of direct and port injection gasoline engines with different fuels”, (No. 2002-01-0839). SAE Technical Paper, 2002.
  • [24] AL-HASAN, M.” Effect of ethanol–unleaded gasoline blends on engine performance and exhaust emission”, Energy Conversion and Management, 44(9), 1547-1561, 2003.
  • [25] ZHOU, J. H., CHEUNG, C. S., & LEUNG, C. W., “Combustion, performance and emissions of a diesel engine with H2, CH4 and H2–CH4 addition”, International journal of hydrogen energy, 39(9), 4611-4621, 2014.
  • [26] SHAABAN, S., & SEUME, J., ”Impact of turbocharger non-adiabatic operation on engine volumetric efficiency and turbo lag”, International Journal of Rotating Machinery, https://doi.org/10.1155/2012/625453.
  • [27] SARAVANAN, N., NAGARAJAN, G., KALAISELVAN, K. M., & DHANASEKARAN, C., “An experimental investigation on hydrogen as a dual fuel for diesel engine system with exhaust gas recirculation technique”, Renewable Energy, 33(3), 422-427, 2008.
  • [28] SARAVANAN, N., NAGARAJAN, G., & NARAYANASAMY, S., “An experimental investigation on DI diesel engine with hydrogen fuel”, Renewable energy, 33(3), 415-421, 2008.
  • [29] KÖSE, H., & CINIVIZ, M., “An experimental investigation of effect on diesel engine performance and exhaust emissions of addition at dual fuel mode of hydrogen”, Fuel processing technology, 114, 26-34, 2013.
  • [30] KORAKIANITIS, T., NAMASIVAYAM, A. M., & CROOKES, R. J., “Diesel and rapeseed methyl ester (RME) pilot fuels for hydrogen and natural gas dual-fuel combustion in compression–ignition engines”, Fuel, 90(7), 2384-2395, 2011.
  • [31] MASJUKI, H. H., RUHUL, A. M., MUSTAFI, N. N., KALAM, M. A., ARBAB, M. I., & FATTAH, I. R., “Study of production optimization and effect of hydroxyl gas on a CI engine performance and emission fueled with biodiesel blends”, International Journal of Hydrogen Energy, 41(33), 14519-14528, 2016.
  • [32] MUSTAFI N., N., RUHUL, A. M., ZAKARIA, A. M., & MAYEEDUL, I. M., “An Investigation on the Production of Brown Gas (HHO) as an Alternative Automotive Fuel by Water Electrolysis”, Paper ID: ET-14, 239-244, 2013.
  • [33] BADR, M. H., HASSAN, M. I., & EL-HAMALAWY, A. A., “An On-Demand Hydrogen Cell for Automobile Fuel Consumption Efficiency”, International journal of green energy, 12(11), 1086-1090, 2015.
  • [34] KUMAR, K. P., ARORA, N. S., & MAHESH, M., “Development of constant current power system for hho cell operations to reduce fuel consumption. In Power Electronics and Motion Control Conference (PEMC)”, 2016 IEEE International (pp. 273-279). IEEE, 2016.
  • [35] WORAWAT, S. N., & AURASOPON, A., “Application of Microcontroller for Controlling HHO Dry Cell in Small Trucks”, International Journal of Engineering Technology, 1(2), 10-13, 2015.
  • [36] ARAT, H. T., BALTACIOGLU, M. K., ÖZCANLI, M., & AYDIN, K., “Effect of using Hydroxy–CNG fuel mixtures in a non-modified diesel engine by substitution of diesel fuel”, International Journal of Hydrogen Energy, 41(19), 8354-8363, 2016.
  • [37] ARUNACHALAM, T., “Digital pulse width modulation techniques for power converters”, (Doctoral dissertation, The University of Alabama), USA, 2010.
  • [38] HEYWOOD J.B., “Internal Combustion Engine Fundamentals”, McGraw-Hill, New York, 1988.
Toplam 38 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Makine Mühendisliği
Bölüm Makine Mühendisliği
Yazarlar

Mustafa Kaan Baltacıoğlu 0000-0002-4082-902X

Yayımlanma Tarihi 28 Ocak 2019
Gönderilme Tarihi 25 Eylül 2018
Kabul Tarihi 15 Ekim 2018
Yayımlandığı Sayı Yıl 2019 Cilt: 8 Sayı: 1

Kaynak Göster

APA Baltacıoğlu, M. K. (2019). A NEW CONTROL TECHNOLOGY IN HYDROXY GAS PRODUCTION. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 8(1), 502-511. https://doi.org/10.28948/ngumuh.517164
AMA Baltacıoğlu MK. A NEW CONTROL TECHNOLOGY IN HYDROXY GAS PRODUCTION. NÖHÜ Müh. Bilim. Derg. Ocak 2019;8(1):502-511. doi:10.28948/ngumuh.517164
Chicago Baltacıoğlu, Mustafa Kaan. “A NEW CONTROL TECHNOLOGY IN HYDROXY GAS PRODUCTION”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 8, sy. 1 (Ocak 2019): 502-11. https://doi.org/10.28948/ngumuh.517164.
EndNote Baltacıoğlu MK (01 Ocak 2019) A NEW CONTROL TECHNOLOGY IN HYDROXY GAS PRODUCTION. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 8 1 502–511.
IEEE M. K. Baltacıoğlu, “A NEW CONTROL TECHNOLOGY IN HYDROXY GAS PRODUCTION”, NÖHÜ Müh. Bilim. Derg., c. 8, sy. 1, ss. 502–511, 2019, doi: 10.28948/ngumuh.517164.
ISNAD Baltacıoğlu, Mustafa Kaan. “A NEW CONTROL TECHNOLOGY IN HYDROXY GAS PRODUCTION”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 8/1 (Ocak 2019), 502-511. https://doi.org/10.28948/ngumuh.517164.
JAMA Baltacıoğlu MK. A NEW CONTROL TECHNOLOGY IN HYDROXY GAS PRODUCTION. NÖHÜ Müh. Bilim. Derg. 2019;8:502–511.
MLA Baltacıoğlu, Mustafa Kaan. “A NEW CONTROL TECHNOLOGY IN HYDROXY GAS PRODUCTION”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, c. 8, sy. 1, 2019, ss. 502-11, doi:10.28948/ngumuh.517164.
Vancouver Baltacıoğlu MK. A NEW CONTROL TECHNOLOGY IN HYDROXY GAS PRODUCTION. NÖHÜ Müh. Bilim. Derg. 2019;8(1):502-11.

download