Review
BibTex RIS Cite

FOTOBİYOKATALİZ YÖNTEMİ KULLANILARAK PESTİSİT GİDERİMİ-DERLEME ÇALIŞMASI

Year 2019, Volume: 8 Issue: 2, 675 - 688, 31.07.2019
https://doi.org/10.28948/ngumuh.598101

Abstract

   Aromatik yapılı, çevresel koşullarda
zorlukla parçalanabilen, kararlı organik kirleticilerin başında gelen
pestisitler, atmosfere, su sistemlerine, besin zincirine taşınmakta, asıl
kaynaklarından çok uzak noktalarda birikebilmektedir. Konvansiyonel arıtma
proseslerinin pestisitlerin gideriminde yetersiz kalmasından dolayı kirletilmiş
sulardan uzaklaştırılmaları için yeni arıtım teknolojilerine ihtiyaç
duyulmaktadır. Son yıllarda, su sistemlerinden konvansiyonel tekniklerle arıtılamayan
kirleticilerin giderilmesinde birleşik fotokatalitik-biyolojik arıtma umut
verici bir alternatiftir: Fotokataliz toksik organikleri biyolojik olarak
parçalanabilir ürünlere dönüştürürken, biyolojik parçalama ürünlerini verimli
şekilde mineralize eder. Ön arıtma sırasında gereksiz kimyasal ve %60 oranında
enerji sarfiyatından kaçınmak amacıyla ön arıtma basamağında mineralizasyon
yüzdesi minimalize edilerek çalışma maliyeti düşürülür. Literatüre göre yalnız
kimyasal prosesle yaklaşık %80 pestisit parçalanması ve %50’den az
mineralizasyon gözlemlenebilirken hibrit reaktör sistemiyle tamamen parçalanma
ve yaklaşık %90 pestisit mineralizasyonu elde edilebilmektedir. Bu derlemenin
amacı, fotobiyokataliz işleminin, bireysel fotokataliz ve/veya biyolojik arıtma
yöntemlerine göre pestisit giderim koşulları kapsamında, temellerini,
mekanizmalarını ve literatürde yer alan güncel çalışmaları ele almak ve
incelemektir.

Thanks

Yazarlar, değerli desteklerinden dolayı Abant İzzet Baysal Üniversitesi Bilimsel Araştırma Projeleri Birimine (2016.09.02.1032 ve 2016.09.02.1033) sayılı projelerin desteği için teşekkür ederler. Ayrıca, yazarlar Türkiye Bilimsel ve Teknolojik Araştırma Kurumu (TÜBİTAK), BİDEB’e (Bilim İnsanı Destekleme Daire Başkanlığı) 2228-B Yüksek Lisans Öğrencileri için Doktora Burs Programı kapsamında yazar Gamze Doğdu Okçu’yu desteklediğinden teşekkürü bir borç bilirler.

References

  • [1] MORENO-SORIA, A.R., URBINA, F., “Impactos sociales del cambio climático en México”, Institute Nacional de Ecologia, INE-PNUD Méx, 72, 41-64, 2008.
  • [2] KRALJ, M.B., ČERNIGOJ, U., FRANKO, M., TREBŠE, P., “Comparison of photocatalytic and photolysis of malathion, isomalathion, malaoxon, and commercial malathion-Products and toxicity studies”, Water Research, 41, 4504-4514, 2007.
  • [3] LIU, B., YU, Z., SONG, X., YANG, F., “Effects of sodium dodecylbenzene sulfonate and sodium dodecyl sulfate on the Mytilus galloprovincialis biomarker system”, Ecotoxicology and Environmental Safety, 73, 835–841, 2010.
  • [4] MAIA C.G., OLIVEIRA A.S., SAGGIORO A.M., MOREIRA J.C., “Optimization of the photocatalytic degradation of commercial azo dyes in aqueous TiO2 suspensions”, Reaction Kinetics, Mechanisms and Catalysis, 113, 305-320, 2014.
  • [5] DALRYMPLE, O.K., YEH, D.H., TROTZ, M.A., “Removing pharmaceuticals and endocrine disrupting compounds from wastewater by photocatalysis”, Journal of Chemical Technology and Biotechnology, 82, 121–134, 2007.
  • [6] NING, X-A., WANG, J-Y., LI, R-J., WEN, W-B., CHEN, C-M., WANG, Y-J., YANG, Z-Y., LIU, J-Y., “Fate of volatile aromatic hydrocarbons in the wastewater from six textile dyeing wastewater treatment plants”, Chemosphere, 136, 50–56, 2015.
  • [7] GARCIA, F.P., CORTÉS, ASCENCIO, S.Y., GAYTAN OYARZUN, J.C., HERNANDEZ, A.C., ALAVARADO, P.V., “Pesticides: classification, uses and toxicity. Measures of exposure and genotoxic risks”, Journal of Research in Environmental Science and Toxicology (JREST), 1 (11), 279-293, 2012.
  • [8] ZEGHIOUD, H., KHELLAF, N., DJELAL, H., AMRANE, A., BOUHELASSA, M., “Photocatalytic Reactors Dedicated to the Degredation of Hazardous Organic Pollutants: Kinetics, Mechanistic Aspects, and Design-A Review”, Chemical Engineering Communications, 203, 1415-1431, 2016.
  • [9] CHONG, M.N., JIN, B., CHOW, C.W.K., SAINT, C., “Recent developments in photocatalytic water treatment technology: a review”, Water Research, 44, 2997-3027, 2010.
  • [10] DA SILVA, C.G., FARIA, J.L., “Photochemical and photocatalytic degradation of an azo dye in aqueous solution by UV irradiation”, Journal of Photochemistry and Photobiology A, 155, 133–143, 2003.
  • [11] WHO, 2,4-D in Drinking-water Background document for development of WHO Guidelines for Drinking-water Quality, World Health Organization, International Programme on Chemical Safety (WHO/SDE/WSH/03.04/70), Geneva, 2003.
  • [12] MARTÍNEZ, C., GÓMEZ, S., “Riesgo genotóxico por exposición a plagucidas en trabajadores agrícolas”, Revista Internacional de Contaminación Ambiental, 23 (4), 185-200, 2007.
  • [13] RANI, M., SHANKER, U., JASSAL, V., “Recent strategies for removal and degradation of persistent & toxic organochlorine pesticides using nanoparticles: A review”, Journal of Environmental Management, 190, 208-222, 2017.
  • [14] OJANPERÄ, I., Pesticides. In: Forensic Science, Handbook of Analytical Separations, Vol 2, Editor: Bogusz M.J., Elsevier Science, 2000.
  • [15] SRAW, A., TOOR, A.P., WANCHOO, R.K., “Adsorption kinetics and degradation mechanism study of water persistent insecticide quinalphos: for heterogeneous photocatalysis onto TiO2”, Desalination and Water Treatment, 57, 16831-16842, 2016.
  • [16] YUSA, V., MILLET, M., COSCOLLA, C., ROCA, M., “Analytical methods for human biomonitoring of pesticides. A review”, Analytica Chimica Acta, 891, 15-31, 2015.
  • [17] TU, W., XU, C., LU, B., LIN, C., WU, Y., LIU, W., “Acute exposure to synthetic pyrethroids causes bioconcentration and disruption of the hypothalamus–pituitary–thyroid axis in zebrafish embryos”, Science of the Total Environment, 542, 876-885, 2016.
  • [18] VENTURA, C., NIETO, M.R.R., BOURGUIGNON, N., LUX-LANTOS, V., “Pesticide chlorpyrifos acts as an endocrine disruptor in adult rats causing changes in mammary gland and hormonal balance”, The Journal of Steroid Biochemistry and Molecular Biology, 156, 1-9, 2016.
  • [19] RASHID, B., HUSNAIN, T., RIAZUDDIN, S., Herbicides and pesticides as potential pollutants: a global problem, Plant Adaptation Phytoremediation, Springer, Dordrecht, 427- 447, 2010.
  • [20] MAHMOOD, I., IMADI, S.R., SHAZADI, K., GUL, A., HAKEEM, K.R., Plant Soil and Microbes: Implications in Crop Science, Chapter: Effects of Pesticides on Environment, Volume 1, Springer International Publishing, Switzerland, 2016.
  • [21] TRIVEDI, N.S., KHARKAR, R.A., MANDAVGANE, S.A., “Utilization of cotton plant ash and char for removal of 2,4-dichlorophenoxyacetic acid”, Resource-Efficient Technologies, 2, 39-46, 2016.
  • [22] AKSU, Z., YENER, J., “A comparative adsorption/biosorption study of mono-chlorinated phenols onto various sorbents”, Waste Management, 21 (8), 695–702, 2001.
  • [23] MURUGANANDHAM, M., SURI, R.P.S., JAFARI, SH., SILLANPÄÄ, M., JJ WU, GANG-JUAN, L., SWAMINATHAN, M., “Recent Developments in Homogeneous Advanced Oxidation Processes for Water and Wastewater Treatment”, International Journal of Photoenergy, Volume 2014, Article ID 821674, DOI: 10.1155/2014/821674, 2014.
  • [24] GONZÁLEZ, S., MÜLLER, J., PETROVIC, M., BARCELÓ, D., KNEPPER, T.P., “Biodegradation studies of selected priority acidic pesticides and diclofenac in different bioreactors”, Environmental Pollution, 144, 926-932, 2006.
  • [25] CHEN, G., CHEN, X., YUE, P.L., “Electrocoagulation and electroflotation of restaurant wastewater”, Journal of Environmental Engineering, 126 (9), 858–863, 2000.
  • [26] VAN HOOF, S.C.J.M., HASHIM, A., KORDES, A.J., “The effect of ultrafiltration as pretreatment to reverse osmosis in wastewater reuse and seawater desalination applications”, Desalination, 124 (1-3), 231–242, 1999.
  • [27] HERRMANN, J.M., GUILLARD, C., “Photocatalytic degradation of pesticides in agricultural used waters”, Comptes Rendus de l’Académie des Sciences-Series IIC-Chemistry, 3 (23), 417-422, 2000.
  • [28] BENITEZ, F.J., ACERO, J.L., GONZALEZ, T., GARCIA, J., “Organic matter removal from wastewaters with manure, household waste or sewage sludge”, Process Biochemistry, 37, 257-265, 2001.
  • [29] NGUYEN, A.T., HSIEH, C.T., JUANG, R.S., “Substituent effects on photodegradation of phenols in binary mixtures by hybrid H2O2 and TiO2 suspensions under UV irradiation”, Journal of the Taiwan Institute of Chemical Engineers, 62, 68-75, 2016.
  • [30] FINČUR, N.L., KRSTIĆ, J.B., ŠIBUL, F.S., ŠOJIĆ, D.V., DESPOTOVIĆ, V.N., BANIĆ, N.D., AGBABA, J.R., ABRAMOVIĆ, B.F., “Removal of alprazolam from aqueous solutions by heterogeneous photocatalysis: Influencing factors, intermediates, and products”, Chemical Engineering Journal, 307, 1105-1115, 2017.
  • [31] COMNINELLIS, C., KAPALKA, A., MALATO, S., PARSONS, S.A., POULIOS, I., MANTZAVINOS, D., “Advanced oxidation processes for water treatment: advances and trends for R&D”, Journal of Chemical Technology and Biotechnology, 83, 769-776, 2008.
  • [32] XIONG, H., ZOU, D., ZHOU, D., DONG, S., WANG, J., RITTMANN, B.E., “Enhancing degradation and mineralization of tetracycline using intimately coupled photocatalysis and biodegradation (ICPB)”, Chemical Engineering Journal, 316, 7-14, 2017.
  • [33] SHARMA, N.K., PHILIP, L., “Combined biological and photocatalytic treatment of real coke oven wastewater”, Chemical Engineering Journal, 295, 20-28, 2016.
  • [34] OLLER, I., MALATO, S., SANCHEZ-PEREZ, J.A., MALDONADO, M.I., GASSO, R., “Detoxification of wastewater containing five common pesticides by solar AOPs-biological coupled system”, Catalysis Today, 129, 69-78, 2007.
  • [35] ZHANG Y., WANG L., RITTMANN B.E., “Integrated photocatalytic-biological reactor for accelerated phenol mineralization”, Applied Microbiology and Biotechnology, 86, 1977-1985, 2010.
  • [36] PARRA, S., SARRIA, V., MALATO, S., PERINGER, P., PULGARIN, C., “Photochemical versus coupled photochemical–biological flow system for the treatment of two biorecalcitrant herbicides: metobromuron and isoproturon”, Applied Catalysis, B, 27, 153–168, 2000.
  • [37] LAFI, W.K., AL-QODAH, Z., “Combined advanced oxidation and biological treatment process for the removal of pesticides from aqueous solutions”, Journal of Hazardous Materials, 137, 489–497, 2006.
  • [38] ORTEGA MENDEZ, J.A, HERRERA, MELIAN, J.A, ARANA, J, DONA RODRIGUEZ, J.M, GONZALEZ DIAZ, O., “Detoxification of waters contaminated with phenol, formaldehyde and phenol-formaldehyde mixtures using a combination of biological treatments and advanced oxidation techniques”, Applied Catalysis, B, 163, 63-73, 2015.
  • [39] QUIROZ, M.A., BANDALA, E.R., MARTΊNEZ-HUITLE, C.A., Advanced Oxidation Processes (AOPs) for Removal of Pesticides from Aqueous Media, Pesticides-Formulations, Effects, Fate, Margarita Stoytcheva (Ed.), ISBN:978-953-307-532-7, InTech, 2011.
  • [40] WU, C-H., CHANG, C-L., “Decolorization of Reactive Red 2 by advanced oxidation processes: Comparative studies of homogeneous and heterogeneous systems”, Journal of Hazardous Materials, 128 (2-3), 265-272, 2006.
  • [41] ALVAREZ-CORENA, J.R., BERGENDAHL, J.A., HART, F.L., “Advanced oxidation of five contaminants in water by UV/TiO2: Reaction kinetics and byproducts identification”, Journal of Environmental Management, 181, 544-551, 2016.
  • [42] AHMED, S., RASUL, M.G., BROWN, R., HASHIB, M.A., “Influence of parameters on the heterogeneous photocatalytic degradation of pesticides and phenolic contaminants in wastewater: A short review”, Journal of Environmental Management, 92, 311-330, 2011.
  • [43] ÖZKAL, C.B., PAGANO, S.M., “Antibiyotik ve antibiyotiklere dirençli bakterilerin fotokataliz prosesi ile gideriminin değerlendirilmesi”, Niğde Üniversitesi Mühendislik Bilimleri Dergisi, 5(1), 1-18, 2016.
  • [44] QAMAR, M., MUNEER, M., “Comparative photocatalytic study of two selected pesticide derivatives, indole-3-acetic acid and indole-3-butyric acid in aqueous suspensions of titanium dioxide”, Journal of Hazardous Materials, B120, 219-227, 2005.
  • [45] DJEBBAR, K., ZERTAL, A., SEHILI, T., “Photocatalytic Degradation of 2,4-Dichlorophenoxyacetic Acid and 4-Chloro-2-Methylphenoxyacetic Acid in Water by using TiO2”, Environmental Technology, 27 (11), 1191-1197, 2006.
  • [46] BAMBA, D., ATHEBA, P., ROBERT, D., TROKOUREY, A., DONGUI, B., “Photocatalytic degradation of the diuron pesticide”, Environmental Chemistry Letters, 6, 163–167, 2008.
  • [47] RAJESWARI, R., KANMANI, S., “A study on degradation of pesticide wastewater by TiO2 photocatalysis”, Journal of Scientific & Industrial Research (JSIR), 68, 1063-1067, 2009.
  • [48] MUHAMAD, S.G., “Kinetic studies of catalytic photodegradation of chlorpyrifos insecticide in various natural waters”, King Saud Chemistry, Arabian Journal of Chemistry, 3 (2), 127-133, 2010.
  • [49] AFFAM, A.C., CHAUDHURI, M., “Degradation of pesticides chlorpyrifos, cypermethrin and chlorothalonil in aqueous solution by TiO2 photocatalysis”, Journal of Environmental Management, 130, 160-165, 2013.
  • [50] LAOUFI, N.A., BENTAHAR, F., “Pesticide removal from water suspension by UV/TiO2 process: a parametric study”, Desalination and Water Treatment, 52, 1947-1955, 2014.
  • [51] SIVAGAMI, K., VIKRAMAN, B., RAVI KRISHNA, R., SWAMINATHAN, T., “Chlorpyrifos and Endosulfan degradation studies in an annular slurry photo reactor”, Ecotoxicology and Environmental Safety, 134 (Part-2), 327-331, 2015.
  • [52] ZABAR, R., SARAKHA, M., LEBEDEV, A.T., POLYAKOVA, O.V., “Photochemical fate and photocatalysis of 3,5,6-trichloro-2-pyridinol, degradation product of chlorpyrifos”, Chemosphere, 144, 615-620, 2016.
  • [53] JAFARI, S.J., MOUSSAVI, G., HOSSAINI, H., Degradation and mineralization of diazinon pesticide in UVC and UVC/TiO2 process, Desalination and Water Treatment, 57, 3782-3790, 2016.
  • [54] VISHNUGANTH, M.A., NEELANCHERRY, R., KUMAR, M., SELVARAJU, N., “Carbofuran removal in continuous-photocatalytic reactor: Reactor optimization, rate-constant determination and carbofuran degradation pathway analysis”, Journal of Environmental Science and Health, Part B, 52(5), 353-360, 2017.
  • [55] DOGDU OKCU, G., “Sulardan 2,4-Diklorofenoksi asetik asit (2,4-D) herbisitinin fotobiyokataliz kullanarak arıtılması”, Doktora Tezi, Abant İzzet Baysal Üniversitesi, Fen Bilimleri Enstitüsü, Bolu, 2018.
  • [56] GARCIA-RODRÍGUEZ, A., MATAMOROS, V., FONTÀS, C., SALVADÓ, V., “The ability of biologically based wastewater treatment systems to remove emerging organic contaminants—a review”, Environmental Science and Pollution Research, 21 (20), 11708-11728, 2014.
  • [57] TRAN, N.H., URASE, T., NGO, H.Y.H., HU, J., ONG, S.L., “Insight into metabolic and cometabolic activities of autotrophic and heterotrophic microorganisms in the biodegradation of emerging trace organic contaminants”, Bioresource Technology, 146, 721-731, 2013.
  • [58] TABRIZI, G.B., MEHRVAR, M., “Integration of Advanced Oxidation Technologies and Biological Processes: Recent Developments, Trends, and Advances”, Journal of Environmental Science and Health, Part A, A39 (11-12), 3029-3081, 2004.
  • [59] AHMED, M.B., ZHOU, J.L., NGO, H.H., GUO, W., THOMAIDIS, N.S., XU, J., “Progress in the biological and chemical treatment Technologies for emerging contaminant removal from wastewater: A critical review”, Journal of Hazardous Materials, 323, Part A, 274-298, 2016.
  • [60] MUÑOZ, J., RIERADEVALL, F., TORRADES, J., PERAL, X., DOMÉNECH., “Environmental assessment of different solar driven advanced oxidation processes”, Solar Energy, 79, 369–375, 2005.
  • [61] OLLER, I., MALATO, S., SÁNCHEZ-PÉREZ, J.A., “Combination of advanced oxidation processes and biological treatments for wastewater decontamination—a review”, Science of the Total Environment, 409, 4141 –4166, 2011.
  • [62] BANDARA, J., PULGARIN, C., PÉRINGER, P., KIWI, J., “Chemical photoactivated coupling of biological homogeneous degradation of p-nitrotoluene sulfonic acid in a flow reactor”, Journal of Photochemistry and Photobiology A, 111, 253–63, 1997.
  • [63] SCOTT, J.P., OLLIS, D.F., “Integration of chemical and biological oxidation processes for water treatment: review and recommendations”, Environmental Progress & Sustainable Energy, 14 (2), 88-103, 1995.
  • [64] LU, L-A., MA, Y-S., KUMAR, M., LIN, J-G., “Photo-Fenton pretreatment of carbofuran-analyses via experimental design, detoxification and biodegradability enhancement”, Separation and Purification Technology., 81, 325-331, 2011.
  • [65] DONG, H., ZENG, G., TANG L., FAN, C., ZHANG, C., HE, X., HE, Y., “An overview on limitations of TiO2-based particles for photocatalytic degradation of organic pollutants and the corresponding countermeasures”, Water Research, 1 (79), 128-46, 2015.
  • [66] SARWAN, B., PARE, B., ACHARYA, AD., JONNALAGADDA, S.B., “Mineralization and toxicity reduction of textile dye neutral red in aqueous phase using BiOCl photocatalysis”, Journal of Photochemistry and Photobiology B, 116, 48–55, 2012.
  • [67] VERMA, A., PRAKASH, N.T., TOOR, A.P., “Photocatalytic degradation of herbicide isoproturon in TiO2 Aqueous Suspensions: Study of Reaction Intermediates and Degradation Pathways”, Environmental Technology, 33 (2), 402-409, 2013.
  • [68] DIAZ, E., CEBRIAN, M., BAHAMONDE, A., FARALDOS, M., MOHEDANO, A.F., CASAS, J.A., RODRIGUEZ, J.J., “Degradation of organochlorinated pollutants in water by catalytic hydrodechlorination and photocatalysis”, Catalysis Today, 266, 168-174, 2016.
  • [69] YAHIAT, S., FOURCADE, F., BROSILLON, S., AMRANE, A., “Photocatalysis as a pre-treatment prior to a biological degradation of cyproconazole”, Desalination, 281, 61-67, 2011.
  • [70] MALATO, S., FERNÁNDEZ-IBÁÑEZ, P., MALDONADO, M., BLANCO, J., GERNJAK, W., “Decontamination and disinfection of water by solar photocatalysis: recent overview and trends”, Catalysis Today, 147, 1-59, 2009.
  • [71] JIMENEZ-TOTOTZINTLE, M., OLLER, I., HERNANDEZ-RAMIREZ, A., MALATO, S., MALNANDO, M.I., “Remediation of agro-food industry effluents by biotreatment combined with supported TiO2-H2O2 solar photocatalysis”, Chemical Engineering Journal, 273, 205-213, 2015.
  • [72] SAMIR, R., ESSAM, T., RAGAB, Y., HASHEM, A., “Enhanced photocatalytic-biological degradation of 2,4 dichlorophenoxyacetic acid”, Bulletin of Faculty of Pharmacy, Cairo University, 53, 77-82, 2015.
  • [73] MARSOLEK, M.D., KIRISITS, M., GRAY, KA., RITTMANN, B.E., “Coupled photocatalytic-biodegradation of 2,4,5-trichlorophenol: Effects of photolytic and photocatalytic effluent composition on bioreactor process performance, community diversity, and resistance and resilience to perturbation”, Water Research, 50, 59-69, 2014.
  • [74] FONTMORIN, J.M., FOURCADE, F., GENESTE, F., FLONER, D., HUGUET, S., AMRANE, A., “Combined process for 2,4-Dichlorophenoxyacetic acid treatment—Coupling of an electrochemical system with a biological treatment”, Biochemical Engineering Journal, 70, 17-22, 2013.
  • [75] LIBERATORE, L., BRESSAN, M., BELLI, C., LUSTRATO, G., RANALLI, G., “Chemical and Biological Combined Treatments for the Removal of Pesticides from Wastewaters”, Water Air Soil Pollution, 223 (8), 4751-4759, 2012.
  • [76] LOVEIRA, E.L., FIOL, P.S., SENN, A., CURUTCHET, G., CANDAL, R., LITTER, M.I., “TiO2-photocatalytic treatment coupled with biological systems for the elimination of benzalkonium chloride in water”, Separation and Purification Technology, 91, 108-116, 2012.
  • [77] SURYAMAN, D., HASEGAWA, K., “Biological and photocatalytic treatment integrated with separation and reuse of titanium dioxide on the removal of chlorophenols in tap water”, Journal of Hazardous Materials, 183, 490-496, 2010.
  • [78] GOEL, M., CHOCELON, J.M., FERRONATO, C., BAYARD, R., SREEKRISHNAN, T.R., “The remediation of wastewater containing 4-chlorophenol using integrated photocatalytic and biological treatment”, Journal of Photochemistry and Photobiology B, 98, 1-6, 2010.
  • [79] BALLESTEROS, MARTIN, M.M., SANCHEZ PEREZ, J.A., CASAS LOPEZ, J.L., OLLER, I., MALATO RODRIGUEZ, S., “Degradation of a four-pesticide mixture by combined photo-Fenton and biological oxidation”, Water Research, 43, 653-660, 2009.
  • [80] CHAN, C.Y., TAO, S., DAWSON, R., WONG, P.K., “Treatment of atrazine by integrating photocatalytic and biological processes”, Environmental Pollution, 131, 45-54, 2004.
  • [81] KITIS, M., ADAMS, C., DAIGGER G.T., “The effects of Fentons’s reagent pretreatment on the biodegradability of nonionic surfactants”, Water Research, 3, 2561-2568, 1999.

THE REVIEW STUDY ON REMOVAL OF PESTICIDES IN PHOTOCATALYSIS AND BIOLOGICAL TREATMENT HYBRID PROCESS

Year 2019, Volume: 8 Issue: 2, 675 - 688, 31.07.2019
https://doi.org/10.28948/ngumuh.598101

Abstract

   Pesticides, which are aromatic, hardly degradable
under environmental conditions, leading to stable organic contaminants are
transported to the atmosphere, water systems, food chain, and can accumulate at
far distances from their original sources. Novel treatment technologies are
required to eliminate pesticides from contaminated waters due to
ineffectiveness of the conventional treatment processes for pesticide removals.
In recent years, combined photocatalytic-biological degradation is a promising
alternative to eliminate contaminants not treatable by conventional techniques
from water systems: Photocatalysis converts toxic organics into biodegradable
products, while biodegradation efficiently mineralizes the products. In order
to avoid unnecessary chemical and 60% energy consumption during pre-treatment,
the percentage mineralization in the pre-treatment step is minimized and the
operating cost is reduced. According to the literature, while only about 80%
pesticide degradation and less than 50% mineralization can be observed by the
chemical process, a completely degradation and about 90% pesticide
mineralization can be obtained with hybrid reactor system. The aim of this
review is to evaluate handling and examining fundamentals, mechanisms and
recent studies in the literature within scope of pesticide removal conditions
accordance with individual photocatalysis and/or biological treatment methods.

References

  • [1] MORENO-SORIA, A.R., URBINA, F., “Impactos sociales del cambio climático en México”, Institute Nacional de Ecologia, INE-PNUD Méx, 72, 41-64, 2008.
  • [2] KRALJ, M.B., ČERNIGOJ, U., FRANKO, M., TREBŠE, P., “Comparison of photocatalytic and photolysis of malathion, isomalathion, malaoxon, and commercial malathion-Products and toxicity studies”, Water Research, 41, 4504-4514, 2007.
  • [3] LIU, B., YU, Z., SONG, X., YANG, F., “Effects of sodium dodecylbenzene sulfonate and sodium dodecyl sulfate on the Mytilus galloprovincialis biomarker system”, Ecotoxicology and Environmental Safety, 73, 835–841, 2010.
  • [4] MAIA C.G., OLIVEIRA A.S., SAGGIORO A.M., MOREIRA J.C., “Optimization of the photocatalytic degradation of commercial azo dyes in aqueous TiO2 suspensions”, Reaction Kinetics, Mechanisms and Catalysis, 113, 305-320, 2014.
  • [5] DALRYMPLE, O.K., YEH, D.H., TROTZ, M.A., “Removing pharmaceuticals and endocrine disrupting compounds from wastewater by photocatalysis”, Journal of Chemical Technology and Biotechnology, 82, 121–134, 2007.
  • [6] NING, X-A., WANG, J-Y., LI, R-J., WEN, W-B., CHEN, C-M., WANG, Y-J., YANG, Z-Y., LIU, J-Y., “Fate of volatile aromatic hydrocarbons in the wastewater from six textile dyeing wastewater treatment plants”, Chemosphere, 136, 50–56, 2015.
  • [7] GARCIA, F.P., CORTÉS, ASCENCIO, S.Y., GAYTAN OYARZUN, J.C., HERNANDEZ, A.C., ALAVARADO, P.V., “Pesticides: classification, uses and toxicity. Measures of exposure and genotoxic risks”, Journal of Research in Environmental Science and Toxicology (JREST), 1 (11), 279-293, 2012.
  • [8] ZEGHIOUD, H., KHELLAF, N., DJELAL, H., AMRANE, A., BOUHELASSA, M., “Photocatalytic Reactors Dedicated to the Degredation of Hazardous Organic Pollutants: Kinetics, Mechanistic Aspects, and Design-A Review”, Chemical Engineering Communications, 203, 1415-1431, 2016.
  • [9] CHONG, M.N., JIN, B., CHOW, C.W.K., SAINT, C., “Recent developments in photocatalytic water treatment technology: a review”, Water Research, 44, 2997-3027, 2010.
  • [10] DA SILVA, C.G., FARIA, J.L., “Photochemical and photocatalytic degradation of an azo dye in aqueous solution by UV irradiation”, Journal of Photochemistry and Photobiology A, 155, 133–143, 2003.
  • [11] WHO, 2,4-D in Drinking-water Background document for development of WHO Guidelines for Drinking-water Quality, World Health Organization, International Programme on Chemical Safety (WHO/SDE/WSH/03.04/70), Geneva, 2003.
  • [12] MARTÍNEZ, C., GÓMEZ, S., “Riesgo genotóxico por exposición a plagucidas en trabajadores agrícolas”, Revista Internacional de Contaminación Ambiental, 23 (4), 185-200, 2007.
  • [13] RANI, M., SHANKER, U., JASSAL, V., “Recent strategies for removal and degradation of persistent & toxic organochlorine pesticides using nanoparticles: A review”, Journal of Environmental Management, 190, 208-222, 2017.
  • [14] OJANPERÄ, I., Pesticides. In: Forensic Science, Handbook of Analytical Separations, Vol 2, Editor: Bogusz M.J., Elsevier Science, 2000.
  • [15] SRAW, A., TOOR, A.P., WANCHOO, R.K., “Adsorption kinetics and degradation mechanism study of water persistent insecticide quinalphos: for heterogeneous photocatalysis onto TiO2”, Desalination and Water Treatment, 57, 16831-16842, 2016.
  • [16] YUSA, V., MILLET, M., COSCOLLA, C., ROCA, M., “Analytical methods for human biomonitoring of pesticides. A review”, Analytica Chimica Acta, 891, 15-31, 2015.
  • [17] TU, W., XU, C., LU, B., LIN, C., WU, Y., LIU, W., “Acute exposure to synthetic pyrethroids causes bioconcentration and disruption of the hypothalamus–pituitary–thyroid axis in zebrafish embryos”, Science of the Total Environment, 542, 876-885, 2016.
  • [18] VENTURA, C., NIETO, M.R.R., BOURGUIGNON, N., LUX-LANTOS, V., “Pesticide chlorpyrifos acts as an endocrine disruptor in adult rats causing changes in mammary gland and hormonal balance”, The Journal of Steroid Biochemistry and Molecular Biology, 156, 1-9, 2016.
  • [19] RASHID, B., HUSNAIN, T., RIAZUDDIN, S., Herbicides and pesticides as potential pollutants: a global problem, Plant Adaptation Phytoremediation, Springer, Dordrecht, 427- 447, 2010.
  • [20] MAHMOOD, I., IMADI, S.R., SHAZADI, K., GUL, A., HAKEEM, K.R., Plant Soil and Microbes: Implications in Crop Science, Chapter: Effects of Pesticides on Environment, Volume 1, Springer International Publishing, Switzerland, 2016.
  • [21] TRIVEDI, N.S., KHARKAR, R.A., MANDAVGANE, S.A., “Utilization of cotton plant ash and char for removal of 2,4-dichlorophenoxyacetic acid”, Resource-Efficient Technologies, 2, 39-46, 2016.
  • [22] AKSU, Z., YENER, J., “A comparative adsorption/biosorption study of mono-chlorinated phenols onto various sorbents”, Waste Management, 21 (8), 695–702, 2001.
  • [23] MURUGANANDHAM, M., SURI, R.P.S., JAFARI, SH., SILLANPÄÄ, M., JJ WU, GANG-JUAN, L., SWAMINATHAN, M., “Recent Developments in Homogeneous Advanced Oxidation Processes for Water and Wastewater Treatment”, International Journal of Photoenergy, Volume 2014, Article ID 821674, DOI: 10.1155/2014/821674, 2014.
  • [24] GONZÁLEZ, S., MÜLLER, J., PETROVIC, M., BARCELÓ, D., KNEPPER, T.P., “Biodegradation studies of selected priority acidic pesticides and diclofenac in different bioreactors”, Environmental Pollution, 144, 926-932, 2006.
  • [25] CHEN, G., CHEN, X., YUE, P.L., “Electrocoagulation and electroflotation of restaurant wastewater”, Journal of Environmental Engineering, 126 (9), 858–863, 2000.
  • [26] VAN HOOF, S.C.J.M., HASHIM, A., KORDES, A.J., “The effect of ultrafiltration as pretreatment to reverse osmosis in wastewater reuse and seawater desalination applications”, Desalination, 124 (1-3), 231–242, 1999.
  • [27] HERRMANN, J.M., GUILLARD, C., “Photocatalytic degradation of pesticides in agricultural used waters”, Comptes Rendus de l’Académie des Sciences-Series IIC-Chemistry, 3 (23), 417-422, 2000.
  • [28] BENITEZ, F.J., ACERO, J.L., GONZALEZ, T., GARCIA, J., “Organic matter removal from wastewaters with manure, household waste or sewage sludge”, Process Biochemistry, 37, 257-265, 2001.
  • [29] NGUYEN, A.T., HSIEH, C.T., JUANG, R.S., “Substituent effects on photodegradation of phenols in binary mixtures by hybrid H2O2 and TiO2 suspensions under UV irradiation”, Journal of the Taiwan Institute of Chemical Engineers, 62, 68-75, 2016.
  • [30] FINČUR, N.L., KRSTIĆ, J.B., ŠIBUL, F.S., ŠOJIĆ, D.V., DESPOTOVIĆ, V.N., BANIĆ, N.D., AGBABA, J.R., ABRAMOVIĆ, B.F., “Removal of alprazolam from aqueous solutions by heterogeneous photocatalysis: Influencing factors, intermediates, and products”, Chemical Engineering Journal, 307, 1105-1115, 2017.
  • [31] COMNINELLIS, C., KAPALKA, A., MALATO, S., PARSONS, S.A., POULIOS, I., MANTZAVINOS, D., “Advanced oxidation processes for water treatment: advances and trends for R&D”, Journal of Chemical Technology and Biotechnology, 83, 769-776, 2008.
  • [32] XIONG, H., ZOU, D., ZHOU, D., DONG, S., WANG, J., RITTMANN, B.E., “Enhancing degradation and mineralization of tetracycline using intimately coupled photocatalysis and biodegradation (ICPB)”, Chemical Engineering Journal, 316, 7-14, 2017.
  • [33] SHARMA, N.K., PHILIP, L., “Combined biological and photocatalytic treatment of real coke oven wastewater”, Chemical Engineering Journal, 295, 20-28, 2016.
  • [34] OLLER, I., MALATO, S., SANCHEZ-PEREZ, J.A., MALDONADO, M.I., GASSO, R., “Detoxification of wastewater containing five common pesticides by solar AOPs-biological coupled system”, Catalysis Today, 129, 69-78, 2007.
  • [35] ZHANG Y., WANG L., RITTMANN B.E., “Integrated photocatalytic-biological reactor for accelerated phenol mineralization”, Applied Microbiology and Biotechnology, 86, 1977-1985, 2010.
  • [36] PARRA, S., SARRIA, V., MALATO, S., PERINGER, P., PULGARIN, C., “Photochemical versus coupled photochemical–biological flow system for the treatment of two biorecalcitrant herbicides: metobromuron and isoproturon”, Applied Catalysis, B, 27, 153–168, 2000.
  • [37] LAFI, W.K., AL-QODAH, Z., “Combined advanced oxidation and biological treatment process for the removal of pesticides from aqueous solutions”, Journal of Hazardous Materials, 137, 489–497, 2006.
  • [38] ORTEGA MENDEZ, J.A, HERRERA, MELIAN, J.A, ARANA, J, DONA RODRIGUEZ, J.M, GONZALEZ DIAZ, O., “Detoxification of waters contaminated with phenol, formaldehyde and phenol-formaldehyde mixtures using a combination of biological treatments and advanced oxidation techniques”, Applied Catalysis, B, 163, 63-73, 2015.
  • [39] QUIROZ, M.A., BANDALA, E.R., MARTΊNEZ-HUITLE, C.A., Advanced Oxidation Processes (AOPs) for Removal of Pesticides from Aqueous Media, Pesticides-Formulations, Effects, Fate, Margarita Stoytcheva (Ed.), ISBN:978-953-307-532-7, InTech, 2011.
  • [40] WU, C-H., CHANG, C-L., “Decolorization of Reactive Red 2 by advanced oxidation processes: Comparative studies of homogeneous and heterogeneous systems”, Journal of Hazardous Materials, 128 (2-3), 265-272, 2006.
  • [41] ALVAREZ-CORENA, J.R., BERGENDAHL, J.A., HART, F.L., “Advanced oxidation of five contaminants in water by UV/TiO2: Reaction kinetics and byproducts identification”, Journal of Environmental Management, 181, 544-551, 2016.
  • [42] AHMED, S., RASUL, M.G., BROWN, R., HASHIB, M.A., “Influence of parameters on the heterogeneous photocatalytic degradation of pesticides and phenolic contaminants in wastewater: A short review”, Journal of Environmental Management, 92, 311-330, 2011.
  • [43] ÖZKAL, C.B., PAGANO, S.M., “Antibiyotik ve antibiyotiklere dirençli bakterilerin fotokataliz prosesi ile gideriminin değerlendirilmesi”, Niğde Üniversitesi Mühendislik Bilimleri Dergisi, 5(1), 1-18, 2016.
  • [44] QAMAR, M., MUNEER, M., “Comparative photocatalytic study of two selected pesticide derivatives, indole-3-acetic acid and indole-3-butyric acid in aqueous suspensions of titanium dioxide”, Journal of Hazardous Materials, B120, 219-227, 2005.
  • [45] DJEBBAR, K., ZERTAL, A., SEHILI, T., “Photocatalytic Degradation of 2,4-Dichlorophenoxyacetic Acid and 4-Chloro-2-Methylphenoxyacetic Acid in Water by using TiO2”, Environmental Technology, 27 (11), 1191-1197, 2006.
  • [46] BAMBA, D., ATHEBA, P., ROBERT, D., TROKOUREY, A., DONGUI, B., “Photocatalytic degradation of the diuron pesticide”, Environmental Chemistry Letters, 6, 163–167, 2008.
  • [47] RAJESWARI, R., KANMANI, S., “A study on degradation of pesticide wastewater by TiO2 photocatalysis”, Journal of Scientific & Industrial Research (JSIR), 68, 1063-1067, 2009.
  • [48] MUHAMAD, S.G., “Kinetic studies of catalytic photodegradation of chlorpyrifos insecticide in various natural waters”, King Saud Chemistry, Arabian Journal of Chemistry, 3 (2), 127-133, 2010.
  • [49] AFFAM, A.C., CHAUDHURI, M., “Degradation of pesticides chlorpyrifos, cypermethrin and chlorothalonil in aqueous solution by TiO2 photocatalysis”, Journal of Environmental Management, 130, 160-165, 2013.
  • [50] LAOUFI, N.A., BENTAHAR, F., “Pesticide removal from water suspension by UV/TiO2 process: a parametric study”, Desalination and Water Treatment, 52, 1947-1955, 2014.
  • [51] SIVAGAMI, K., VIKRAMAN, B., RAVI KRISHNA, R., SWAMINATHAN, T., “Chlorpyrifos and Endosulfan degradation studies in an annular slurry photo reactor”, Ecotoxicology and Environmental Safety, 134 (Part-2), 327-331, 2015.
  • [52] ZABAR, R., SARAKHA, M., LEBEDEV, A.T., POLYAKOVA, O.V., “Photochemical fate and photocatalysis of 3,5,6-trichloro-2-pyridinol, degradation product of chlorpyrifos”, Chemosphere, 144, 615-620, 2016.
  • [53] JAFARI, S.J., MOUSSAVI, G., HOSSAINI, H., Degradation and mineralization of diazinon pesticide in UVC and UVC/TiO2 process, Desalination and Water Treatment, 57, 3782-3790, 2016.
  • [54] VISHNUGANTH, M.A., NEELANCHERRY, R., KUMAR, M., SELVARAJU, N., “Carbofuran removal in continuous-photocatalytic reactor: Reactor optimization, rate-constant determination and carbofuran degradation pathway analysis”, Journal of Environmental Science and Health, Part B, 52(5), 353-360, 2017.
  • [55] DOGDU OKCU, G., “Sulardan 2,4-Diklorofenoksi asetik asit (2,4-D) herbisitinin fotobiyokataliz kullanarak arıtılması”, Doktora Tezi, Abant İzzet Baysal Üniversitesi, Fen Bilimleri Enstitüsü, Bolu, 2018.
  • [56] GARCIA-RODRÍGUEZ, A., MATAMOROS, V., FONTÀS, C., SALVADÓ, V., “The ability of biologically based wastewater treatment systems to remove emerging organic contaminants—a review”, Environmental Science and Pollution Research, 21 (20), 11708-11728, 2014.
  • [57] TRAN, N.H., URASE, T., NGO, H.Y.H., HU, J., ONG, S.L., “Insight into metabolic and cometabolic activities of autotrophic and heterotrophic microorganisms in the biodegradation of emerging trace organic contaminants”, Bioresource Technology, 146, 721-731, 2013.
  • [58] TABRIZI, G.B., MEHRVAR, M., “Integration of Advanced Oxidation Technologies and Biological Processes: Recent Developments, Trends, and Advances”, Journal of Environmental Science and Health, Part A, A39 (11-12), 3029-3081, 2004.
  • [59] AHMED, M.B., ZHOU, J.L., NGO, H.H., GUO, W., THOMAIDIS, N.S., XU, J., “Progress in the biological and chemical treatment Technologies for emerging contaminant removal from wastewater: A critical review”, Journal of Hazardous Materials, 323, Part A, 274-298, 2016.
  • [60] MUÑOZ, J., RIERADEVALL, F., TORRADES, J., PERAL, X., DOMÉNECH., “Environmental assessment of different solar driven advanced oxidation processes”, Solar Energy, 79, 369–375, 2005.
  • [61] OLLER, I., MALATO, S., SÁNCHEZ-PÉREZ, J.A., “Combination of advanced oxidation processes and biological treatments for wastewater decontamination—a review”, Science of the Total Environment, 409, 4141 –4166, 2011.
  • [62] BANDARA, J., PULGARIN, C., PÉRINGER, P., KIWI, J., “Chemical photoactivated coupling of biological homogeneous degradation of p-nitrotoluene sulfonic acid in a flow reactor”, Journal of Photochemistry and Photobiology A, 111, 253–63, 1997.
  • [63] SCOTT, J.P., OLLIS, D.F., “Integration of chemical and biological oxidation processes for water treatment: review and recommendations”, Environmental Progress & Sustainable Energy, 14 (2), 88-103, 1995.
  • [64] LU, L-A., MA, Y-S., KUMAR, M., LIN, J-G., “Photo-Fenton pretreatment of carbofuran-analyses via experimental design, detoxification and biodegradability enhancement”, Separation and Purification Technology., 81, 325-331, 2011.
  • [65] DONG, H., ZENG, G., TANG L., FAN, C., ZHANG, C., HE, X., HE, Y., “An overview on limitations of TiO2-based particles for photocatalytic degradation of organic pollutants and the corresponding countermeasures”, Water Research, 1 (79), 128-46, 2015.
  • [66] SARWAN, B., PARE, B., ACHARYA, AD., JONNALAGADDA, S.B., “Mineralization and toxicity reduction of textile dye neutral red in aqueous phase using BiOCl photocatalysis”, Journal of Photochemistry and Photobiology B, 116, 48–55, 2012.
  • [67] VERMA, A., PRAKASH, N.T., TOOR, A.P., “Photocatalytic degradation of herbicide isoproturon in TiO2 Aqueous Suspensions: Study of Reaction Intermediates and Degradation Pathways”, Environmental Technology, 33 (2), 402-409, 2013.
  • [68] DIAZ, E., CEBRIAN, M., BAHAMONDE, A., FARALDOS, M., MOHEDANO, A.F., CASAS, J.A., RODRIGUEZ, J.J., “Degradation of organochlorinated pollutants in water by catalytic hydrodechlorination and photocatalysis”, Catalysis Today, 266, 168-174, 2016.
  • [69] YAHIAT, S., FOURCADE, F., BROSILLON, S., AMRANE, A., “Photocatalysis as a pre-treatment prior to a biological degradation of cyproconazole”, Desalination, 281, 61-67, 2011.
  • [70] MALATO, S., FERNÁNDEZ-IBÁÑEZ, P., MALDONADO, M., BLANCO, J., GERNJAK, W., “Decontamination and disinfection of water by solar photocatalysis: recent overview and trends”, Catalysis Today, 147, 1-59, 2009.
  • [71] JIMENEZ-TOTOTZINTLE, M., OLLER, I., HERNANDEZ-RAMIREZ, A., MALATO, S., MALNANDO, M.I., “Remediation of agro-food industry effluents by biotreatment combined with supported TiO2-H2O2 solar photocatalysis”, Chemical Engineering Journal, 273, 205-213, 2015.
  • [72] SAMIR, R., ESSAM, T., RAGAB, Y., HASHEM, A., “Enhanced photocatalytic-biological degradation of 2,4 dichlorophenoxyacetic acid”, Bulletin of Faculty of Pharmacy, Cairo University, 53, 77-82, 2015.
  • [73] MARSOLEK, M.D., KIRISITS, M., GRAY, KA., RITTMANN, B.E., “Coupled photocatalytic-biodegradation of 2,4,5-trichlorophenol: Effects of photolytic and photocatalytic effluent composition on bioreactor process performance, community diversity, and resistance and resilience to perturbation”, Water Research, 50, 59-69, 2014.
  • [74] FONTMORIN, J.M., FOURCADE, F., GENESTE, F., FLONER, D., HUGUET, S., AMRANE, A., “Combined process for 2,4-Dichlorophenoxyacetic acid treatment—Coupling of an electrochemical system with a biological treatment”, Biochemical Engineering Journal, 70, 17-22, 2013.
  • [75] LIBERATORE, L., BRESSAN, M., BELLI, C., LUSTRATO, G., RANALLI, G., “Chemical and Biological Combined Treatments for the Removal of Pesticides from Wastewaters”, Water Air Soil Pollution, 223 (8), 4751-4759, 2012.
  • [76] LOVEIRA, E.L., FIOL, P.S., SENN, A., CURUTCHET, G., CANDAL, R., LITTER, M.I., “TiO2-photocatalytic treatment coupled with biological systems for the elimination of benzalkonium chloride in water”, Separation and Purification Technology, 91, 108-116, 2012.
  • [77] SURYAMAN, D., HASEGAWA, K., “Biological and photocatalytic treatment integrated with separation and reuse of titanium dioxide on the removal of chlorophenols in tap water”, Journal of Hazardous Materials, 183, 490-496, 2010.
  • [78] GOEL, M., CHOCELON, J.M., FERRONATO, C., BAYARD, R., SREEKRISHNAN, T.R., “The remediation of wastewater containing 4-chlorophenol using integrated photocatalytic and biological treatment”, Journal of Photochemistry and Photobiology B, 98, 1-6, 2010.
  • [79] BALLESTEROS, MARTIN, M.M., SANCHEZ PEREZ, J.A., CASAS LOPEZ, J.L., OLLER, I., MALATO RODRIGUEZ, S., “Degradation of a four-pesticide mixture by combined photo-Fenton and biological oxidation”, Water Research, 43, 653-660, 2009.
  • [80] CHAN, C.Y., TAO, S., DAWSON, R., WONG, P.K., “Treatment of atrazine by integrating photocatalytic and biological processes”, Environmental Pollution, 131, 45-54, 2004.
  • [81] KITIS, M., ADAMS, C., DAIGGER G.T., “The effects of Fentons’s reagent pretreatment on the biodegradability of nonionic surfactants”, Water Research, 3, 2561-2568, 1999.
There are 81 citations in total.

Details

Primary Language Turkish
Subjects Environmental Engineering
Journal Section Environmental Engineering
Authors

Gamze Doğdu Okçu 0000-0002-0278-8503

Hatice Eser Ökten This is me 0000-0001-7511-940X

Arda Yalçuk This is me 0000-0002-8090-5357

Publication Date July 31, 2019
Submission Date March 11, 2018
Acceptance Date September 14, 2018
Published in Issue Year 2019 Volume: 8 Issue: 2

Cite

APA Doğdu Okçu, G., Ökten, H. E., & Yalçuk, A. (2019). FOTOBİYOKATALİZ YÖNTEMİ KULLANILARAK PESTİSİT GİDERİMİ-DERLEME ÇALIŞMASI. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 8(2), 675-688. https://doi.org/10.28948/ngumuh.598101
AMA Doğdu Okçu G, Ökten HE, Yalçuk A. FOTOBİYOKATALİZ YÖNTEMİ KULLANILARAK PESTİSİT GİDERİMİ-DERLEME ÇALIŞMASI. NOHU J. Eng. Sci. July 2019;8(2):675-688. doi:10.28948/ngumuh.598101
Chicago Doğdu Okçu, Gamze, Hatice Eser Ökten, and Arda Yalçuk. “FOTOBİYOKATALİZ YÖNTEMİ KULLANILARAK PESTİSİT GİDERİMİ-DERLEME ÇALIŞMASI”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 8, no. 2 (July 2019): 675-88. https://doi.org/10.28948/ngumuh.598101.
EndNote Doğdu Okçu G, Ökten HE, Yalçuk A (July 1, 2019) FOTOBİYOKATALİZ YÖNTEMİ KULLANILARAK PESTİSİT GİDERİMİ-DERLEME ÇALIŞMASI. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 8 2 675–688.
IEEE G. Doğdu Okçu, H. E. Ökten, and A. Yalçuk, “FOTOBİYOKATALİZ YÖNTEMİ KULLANILARAK PESTİSİT GİDERİMİ-DERLEME ÇALIŞMASI”, NOHU J. Eng. Sci., vol. 8, no. 2, pp. 675–688, 2019, doi: 10.28948/ngumuh.598101.
ISNAD Doğdu Okçu, Gamze et al. “FOTOBİYOKATALİZ YÖNTEMİ KULLANILARAK PESTİSİT GİDERİMİ-DERLEME ÇALIŞMASI”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 8/2 (July 2019), 675-688. https://doi.org/10.28948/ngumuh.598101.
JAMA Doğdu Okçu G, Ökten HE, Yalçuk A. FOTOBİYOKATALİZ YÖNTEMİ KULLANILARAK PESTİSİT GİDERİMİ-DERLEME ÇALIŞMASI. NOHU J. Eng. Sci. 2019;8:675–688.
MLA Doğdu Okçu, Gamze et al. “FOTOBİYOKATALİZ YÖNTEMİ KULLANILARAK PESTİSİT GİDERİMİ-DERLEME ÇALIŞMASI”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, vol. 8, no. 2, 2019, pp. 675-88, doi:10.28948/ngumuh.598101.
Vancouver Doğdu Okçu G, Ökten HE, Yalçuk A. FOTOBİYOKATALİZ YÖNTEMİ KULLANILARAK PESTİSİT GİDERİMİ-DERLEME ÇALIŞMASI. NOHU J. Eng. Sci. 2019;8(2):675-88.

download